1
|
Jang D, Altern SH, Cramer SM. In silico mediated workflow for rapid development of downstream processing: Orthogonal product-related impurity removal for a Fc-containing therapeutic. J Chromatogr A 2024; 1735:465281. [PMID: 39243589 DOI: 10.1016/j.chroma.2024.465281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.
Collapse
Affiliation(s)
- Dongyoun Jang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
2
|
Lorek JK, Karkov HS, Matthiesen F, Dainiak M. High throughput screening for rapid and reliable prediction of monovalent antibody binding behavior in flowthrough mode. Biotechnol Bioeng 2024; 121:2332-2346. [PMID: 37926999 DOI: 10.1002/bit.28572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Flowthrough (FT) anion exchange (AEX) chromatography is a widely used polishing step for the purification of monoclonal antibody (mAb) formats. To accelerate downstream process development, high throughput screening (HTS) tools have proven useful. In this study, the binding behavior of six monovalent mAbs (mvAbs) was investigated by HTS in batch binding mode on different AEX and mixed-mode resins at process-relevant pH and NaCl concentrations. The HTS entailed the evaluation of mvAb partition coefficients (Kp) and visualization of results in surface-response models. Interestingly, the HTS data grouped the mvAbs into either a strong-binding group or a weak-binding/FT group independent of theoretical Isoelectric point. Mapping the charged and hydrophobic patches by in silico protein surface property analyses revealed that the distribution of patches play a major role in predicting FT behavior. Importantly, the conditions identified by HTS were successfully verified by 1 mL on-column experiments. Finally, employing the optimal FT conditions (7-9 mS/cm and pH 7.0) at a mini-pilot scale (CV = 259 mL) resulted in 99% yield and a 21-23-fold reduction of host cell protein to <100 ppm, depending on the varying host cell protein (HCP) levels in the load. This work opens the possibility of using HTS in FT mode to accelerate downstream process development for mvAb candidates in early research.
Collapse
Affiliation(s)
| | | | - Finn Matthiesen
- Purification Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Maria Dainiak
- Purification Technologies, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
3
|
Ito T, Lutz H, Tan L, Wang B, Tan J, Patel M, Chen L, Tsunakawa Y, Park B, Banerjee S. Host cell proteins in monoclonal antibody processing: Control, detection, and removal. Biotechnol Prog 2024; 40:e3448. [PMID: 38477405 DOI: 10.1002/btpr.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.
Collapse
Affiliation(s)
- Takao Ito
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Herb Lutz
- Independent Consultant, Sudbury, Massachusetts, USA
| | - Lihan Tan
- Life Science Services, Sigma-Aldrich Pte Ltd, Singapore, Singapore
| | - Bin Wang
- Life Science, Process Solutions, Merck Chemicals (Shanghai) Co. Ltd. (An Affiliate of Merck KGaA Darmstadt, Germany), Shanghai, China
| | - Janice Tan
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Masum Patel
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| | - Lance Chen
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Yuki Tsunakawa
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Byunghyun Park
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Seoul, South Korea
| | - Subhasis Banerjee
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| |
Collapse
|
4
|
Pybus LP, Heise C, Nagy T, Heeran C, Dover T, Raven J, Kori J, Burton G, Sakuyama H, Hastings B, Lyons M, Nakai S, Haigh J. A modular and multi-functional purification strategy that enables a common framework for manufacturing scale integrated and continuous biomanufacturing. Biotechnol Prog 2024; 40:e3456. [PMID: 38494903 DOI: 10.1002/btpr.3456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/17/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Biopharmaceutical manufacture is transitioning from batch to integrated and continuous biomanufacturing (ICB). The common framework for most ICB, potentially enables a global biomanufacturing ecosystem utilizing modular and multi-function manufacturing equipment. Integrating unit operation hardware and software from multiple suppliers, complex supply chains enabled by multiple customized single-use flow paths, and large volume buffer production/storage make this ICB vision difficult to achieve with commercially available manufacturing equipment. Thus, we developed SymphonX™, a downstream processing skid with advanced buffer management capabilities, a single disposable generic flow path design that provides plug-and-play flexibility across all downstream unit operations and a single interface to reduce operational risk. Designed for multi-product and multi-process cGMP facilities, SymphonX™ can perform stand-alone batch processing or ICB. This study utilized an Apollo™ X CHO-DG44 mAb-expressing cell line in a steady-state perfusion bioreactor, harvesting product continuously with a cell retention device and connected SymphonX™ purification skids. The downstream process used the same chemistry (resins, buffer composition, membrane composition) as our historical batch processing platform, with SymphonX™ in-line conditioning and buffer concentrates. We used surge vessels between unit operations, single-column chromatography (protein A, cation and anion exchange) and two-tank batch virus inactivation. After the first polishing step (cation exchange), we continuously pooled product for 6 days. These 6 day pools were processed in batch-mode from anion exchange to bulk drug substance. This manufacturing scale proof-of-concept ICB produced 0.54 kg/day of drug substance with consistent product quality attributes and demonstrated successful bioburden control for unit-operations undergoing continuous operation.
Collapse
Affiliation(s)
- Leon P Pybus
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Charles Heise
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Tibor Nagy
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Carmen Heeran
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Terri Dover
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - John Raven
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Junichi Kori
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kaisei, Japan
| | - Graeme Burton
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Hiroshi Sakuyama
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kaisei, Japan
| | - Benjamin Hastings
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Michelle Lyons
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Shinichi Nakai
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kaisei, Japan
| | - Jonathan Haigh
- Process Development, FUJIFILM Diosynth Biotechnologies, Billingham, UK
| |
Collapse
|
5
|
Sharma V, Mottafegh A, Joo JU, Kang JH, Wang L, Kim DP. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals. LAB ON A CHIP 2024; 24:2861-2882. [PMID: 38751338 DOI: 10.1039/d3lc01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The production of high-quality biologics entails intricate manufacturing processes, including cell culture, fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit operations to achieve high purity by effectively removing impurities and contaminants. The field of personalized precision medicine necessitates the development of novel and highly efficient technologies. Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing rapid, integrated and continuous purification modules. Moreover, the integration of intelligent biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of purification steps, leading to improved process efficiency, data management, and decision-making. Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory standards, such as good manufacturing practice (GMP), positioning the industry to effectively address emerging market demands for personalized precision nano-medicines. This perspective review will emphasize on the significance, challenges, and prospects associated with the adoption of continuous, integrated, and intelligent methodologies in small-scale downstream processing for various types of biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of biopharmaceutical production and enabling the development of personalized and targeted therapies.
Collapse
Affiliation(s)
- Vikas Sharma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
6
|
LeBarre JP, Chu W, Altern SH, Kocot AJ, Bhandari D, Barbieri E, Sly J, Crapanzano M, Cramer SM, Phillips M, Roush D, Carbonell R, Boi C, Menegatti S. Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode. J Chromatogr A 2024; 1720:464772. [PMID: 38452560 DOI: 10.1016/j.chroma.2024.464772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.
Collapse
Affiliation(s)
- Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Scott H Altern
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Andrew J Kocot
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Dipendra Bhandari
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Eduardo Barbieri
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Jae Sly
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Michael Crapanzano
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | | | - David Roush
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, Roush Biopharma Panacea, 20 Squire Terrace, Colts Neck, NJ, 07033, USA
| | - Ruben Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; Department of Civil, Chemical Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
da Costa Rodrigues T, Zorzete P, Miyaji EN, Gonçalves VM. Novel method for production and purification of untagged pneumococcal surface protein A from clade 1. Appl Microbiol Biotechnol 2024; 108:281. [PMID: 38570417 PMCID: PMC10990985 DOI: 10.1007/s00253-024-13098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.
Collapse
Affiliation(s)
- Tasson da Costa Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patricia Zorzete
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Viviane Maimoni Gonçalves
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Behavior of host-cell-protein-rich aggregates in antibody capture and polishing chromatography. J Chromatogr A 2023; 1702:464081. [PMID: 37244165 PMCID: PMC10299761 DOI: 10.1016/j.chroma.2023.464081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ronald W Maurer
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Xuankuo Xu
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
9
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Analytical characterization of host-cell-protein-rich aggregates in monoclonal antibody solutions. Biotechnol Prog 2023; 39:e3343. [PMID: 37020359 DOI: 10.1002/btpr.3343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Ronald W Maurer
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| |
Collapse
|
10
|
Schmitz F, Kruse T, Minceva M, Kampmann M. Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass tangential flow filtration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Milewska A, Baekelandt G, Boutaieb S, Mozin V, Falconbridge A. In-line monitoring of protein concentration with MIR spectroscopy during UFDF. Eng Life Sci 2023; 23:e2200050. [PMID: 36751473 PMCID: PMC9893749 DOI: 10.1002/elsc.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Rapid increase of product titers in upstream processes has presented challenges for downstream processing, where purification costs increase linearly with the increase of the product yield. Hence, innovative solutions are becoming increasingly popular. Process Analytical Technology (PAT) tools, such as spectroscopic techniques, are on the rise due to their capacity to provide real-time, precise analytics. This ensures consistent product quality and increased process understanding, as well as process control. Mid-infrared spectroscopy (MIR) has emerged as a highly promising technique within recent years, owing to its ability to monitor several critical process parameters at the same time and unchallenging spectral analysis and data interpretation. For in-line monitoring, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a method of choice, as it enables reliable measurements in a liquid environment, even though water absorption bands are present in the region of interest. Here, we present MIR spectroscopy as a monitoring tool of critical process parameters in ultrafiltration/diafiltration (UFDF). MIR spectrometer was integrated in the UFDF process in an in-line fashion through a single-use flow cell containing a single bounce silicon ATR crystal. The results indicate that the one-point calibration algorithm applied to the MIR spectra, predicts highly accurate protein concentrations, as compared with validated offline analytical methods.
Collapse
|
12
|
Yuk IH, Koulis T, Doshi N, Gregoritza K, Hediger C, Lebouc-Haefliger V, Giddings J, Khan TA. Formulation mitigations for particle formation induced by enzymatic hydrolysis of polysorbate 20 in protein-based drug products: insights from a full-factorial longitudinal study. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydrolytic degradation of the polysorbate 20 (PS20) surfactant in protein-based liquid formulations releases free fatty acids (FFAs), which can accumulate to form particles in drug products during real-time (long-term) storage. To identify formulation conditions that mitigate the risk of particle formation, we conducted a longitudinal study using purified recombinant monoclonal antibody (mAb) formulated in 24 conditions. In this real-time stability study at 5 °C, three key formulation parameters—mAb concentration, initial PS20 concentration, and pH—were varied across representative ranges in a full-factorial design. A longitudinal regression analysis was used to evaluate the effects of these parameters and their interactions on PS20 degradation (via measurements of PS20, FFAs, and PS20 ester distribution) and on particle formation (via visible particle observations and subvisible particle counts). The time-dependent onset of visible particles trended with the rise in subvisible particle counts and FFA levels and fall in PS20 concentration. In the ranges studied here, lower mAb concentration and higher initial PS20 concentration delayed the onset of particles, whereas pH had a negligible effect. These observations were consistent with the general trends predicted by our previously published FFA solubility model. Taken together, these findings highlight the complex relationships between formulation parameters, PS20 degradation, and particle formation.
Collapse
|
13
|
Sripada SA, Chu W, Williams TI, Teten MA, Mosley BJ, Carbonell RG, Lenhoff AM, Cramer SM, Bill J, Yigzaw Y, Roush D, Menegatti S. Towards continuous mAb purification: clearance of host cell proteins from CHO cell culture harvests via "flow-through affinity chromatography" using peptide-based adsorbents. Biotechnol Bioeng 2022; 119:1873-1889. [PMID: 35377460 DOI: 10.1002/bit.28096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/12/2022]
Abstract
The growth of advanced analytics in manufacturing monoclonal antibodies (mAb) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography. This work describes their integration into LigaGuardTM, an affinity adsorbent featuring an equilibrium binding capacity of ~30 mg of HCPs per mL of resin as well as dynamic capacities up to 16 and 22 mg/mL at 1- and 2-minute residence times, respectively. When evaluated against cell culture harvests with different mAb and HCP titers and properties, LigaGuardTM afforded high HCP clearance, with logarithmic removal values (LRVs) up to 1.5, and mAb yield above 90%. Proteomic analysis of the effluents confirmed the removal of high-risk HCPs, including cathepsins, histones, glutathione-S transferase, and lipoprotein lipases. Finally, combining LigaGuardTM for HCP removal with affinity adsorbents for product capture afforded a global mAb yield of 85%, and HCP and DNA LRVs > 4. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27607, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA
| | - Matthew A Teten
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Brian J Mosley
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.,Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street Colburn Laboratory Newark, DE, 19716, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Jerome Bill
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yinges Yigzaw
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - David Roush
- Merck & Co., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.,Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| |
Collapse
|
14
|
Kikuchi S, Ishihara Surpervision T, Yamamoto K, Hosono M. Virus clearance by activated carbon for therapeutic monoclonal antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123163. [DOI: 10.1016/j.jchromb.2022.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
|
15
|
Herman CE, Xu X, Traylor SJ, Ghose S, Li ZJ, Lenhoff AM. Behavior of weakly adsorbing protein impurities in flow-through ion-exchange chromatography. J Chromatogr A 2021; 1664:462788. [PMID: 34998025 DOI: 10.1016/j.chroma.2021.462788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Flow-through ion-exchange chromatography is frequently used in polishing biotherapeutics, but the factors that contribute to impurity persistence are incompletely understood. A large number of dilute impurities may be encountered that exhibit physicochemical diversity, making the flow-through separation performance highly sensitive to process conditions. The analysis presented in this work develops two novel correlations that offer transferable insights into the chromatographic behavior of weakly adsorbing impurities. The first, based on column simulations and validated experimentally, delineates the relative contributions of thermodynamic, transport, and geometric properties in dictating the initial breakthrough volumes of dilute species. The Graetz number for mass transfer was found to generalize the transport contributions, enabling estimation of a threshold in the equilibrium constant below which impurity persistence is expected. Impurity adsorption equilibria are needed to use this correlation, but such data are not typically available. The second relationship presented in this work may be used to reduce the experimental burden of estimating adsorption equilibria as a function of ionic strength. A correlation between stoichiometric displacement model parameters was found by consolidating isocratic retention data for over 200 protein-pH-resin combinations from the extant literature. Coupled with Yamamoto's analysis of linear gradient elution data, this correlation may be used to estimate retentivity approximately from a single experimental measurement, which could prove useful in predicting host-cell protein chromatographic behavior.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Steven J Traylor
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Zheng Jian Li
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
16
|
Aoyama S, Matsumoto Y, Mori C, Sota K. Application of novel mixed mode chromatography (MMC) resins having a hydrophobic modified polyallylamine ligand for monoclonal antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1191:123072. [PMID: 35051681 DOI: 10.1016/j.jchromb.2021.123072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Polyallylamine (PAA) has been utilized as a salt tolerant anion exchange chromatography ligand in downstream processing of biopharmaceuticals. We have developed novel MMC resins based on PAA polymer ligand partially modified with hydrophobic butyl or phenyl group. The resulting hydrophobic modified PAA ligand reduced HCP level to 12% (21-23 ppm) under 6 mS/cm in a flow-through polishing step of mAb, while not modified PAA ligand showed only 79% (145 ppm). We also found that structure of hydrophobic groups in the ligand mainly influenced on mAb yield. That is 25% increase of phenyl group modification ratio reduces mAb yield from 95% to 90%. On the other hand, modification with butyl group kept mAb yield more than 95%. The optimized ligand structure displayed a wide operational conductivity range. Extended purification studies of mAb using the MMC resin in the flow-through polishing step were carried out under optimized pH and conductivity condition as determined in a DOE study. The study revealed that the MMC resin was effective for developing one-step flow-through polishing workflow for mAb purification. In addition, the MMC flow-through polishing step could be directly coupled with a specified CEX chromatography step to efficiently remove mAb aggregates from 2.3% to <1.0% to achieve a biopharmaceutical-grade quality and a high yield of mAb (>93%) with a high loading capacity around 1000 mg/mL-resin. This new MMC resin will be useful in future mAb manufacturing platforms comprising of a robust and cost-effective flow-through polishing step.
Collapse
Affiliation(s)
- Shigeyuki Aoyama
- Minamata Factory, JNC Corporation, 1-1 Noguchi-cho, Minamata-shi, Kumamoto 867-8501, Japan
| | - Yoshihiro Matsumoto
- Yokohama Research Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa 236-8605, Japan.
| | - Chigusa Mori
- Yokohama Research Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa 236-8605, Japan
| | - Kojiro Sota
- Yokohama Research Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa 236-8605, Japan
| |
Collapse
|
17
|
Rosa M RM, María J IG, Tania MS, Emilio MG. Vortex flow reactor assessment for the purification of monoclonal antibodies from unclarified broths. J Chromatogr A 2021; 1655:462502. [PMID: 34492578 DOI: 10.1016/j.chroma.2021.462502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
The vortex flow reactor (VFR) can be used in many chemical engineering applications. This paper assesses its novel use in the purification of monoclonal antibodies from cell broth. To this end, the IgG2a antibody was purified from the unclarified fermentation broth of transgenic mouse 55/6 hybridoma cells. Visual experiments showed that the VFR worked in the laminar vortices flow regime and the vortices displaced slightly faster than the axial flow. The VFR has the advantage of creating two sorts of flows: axial flow to produce the expanded bed and an extra vortex flow to avoid channeling and stabilize the expanded bed, the hydrodynamic behavior of which is plug flow with an experimental Pèclet number higher than 20. The pH was adjusted in the untreated fermentation broth, which was directly introduced into the reactor thus reducing the number of stages. The IgG2a purification was carried out in a single device via two steps: antibody adsorption in the expanded bed and antibody elution in the settled bed using Streamline rProtein A. A thirty-fold increase in the high-purity antibody concentration was achieved at the top of the pH5 elution peak with a total recovery of 93.1% (w/w) between elution peaks pH 5 and 3.
Collapse
Affiliation(s)
- Redondo Miranda Rosa M
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Ibáñez González María J
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain.
| | - Mazzuca Sobczuk Tania
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Molina Grima Emilio
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| |
Collapse
|
18
|
Stein D, Thom V, Hubbuch J. Process development exploiting competitive adsorption-based displacement effects in monoclonal antibody aggregate removal-A new high-throughput screening procedure for membrane chromatography. Biotechnol Appl Biochem 2021; 69:1663-1678. [PMID: 34365669 DOI: 10.1002/bab.2236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
High-throughput screening (HTS) approaches are commonly used to accelerate downstream process development. Although most HTS approaches use batch isothermal data (KP screen) or bind and elute mode as screening procedure, different or new process designs are rarely investigated. In this paper, a mechanistic model case study for the separation of two different two-component solutions was conducted and confirmed prior evidence. With these outcomes, a novel HTS screening procedure was developed including the determination of competitive adsorption-based displacement effects and key parameter identification. The screening procedure employing an overload bind and elute (OBE) mode is presented in a case study dealing with IgG aggregate removal in a typical monoclonal antibody purification step, applying a Sartobind® S membrane adsorber (MA). Based on a MA scale down device, the OBE mode allows the determination of classical process parameters and dynamic effects, such as displacement effects. Competitive adsorption-based displacement effects are visualized by introducing a displacement identifier leading to a displacement process map. Based on this map, the approach is transferred to and confirmed by the OBE recycle experiments with 4.6 and 8.2 ml benchtop scsale devices resulting in 45% reduced IgG monomer and 88% increased higher molecular weight species binding capacities.
Collapse
Affiliation(s)
- Dominik Stein
- Sartorius Stedim Biotech GmbH, Goettingen, Germany.,Department of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Jürgen Hubbuch
- Department of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
19
|
Shi C, Vogg S, Lin DQ, Sponchioni M, Morbidelli M. Analysis and optimal design of batch and two-column continuous chromatographic frontal processes for monoclonal antibody purification. Biotechnol Bioeng 2021; 118:3420-3434. [PMID: 33755192 DOI: 10.1002/bit.27763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
The increasing demand for efficient and robust processes in the purification of monoclonal antibodies (mAbs) has recently brought frontal chromatography to the forefront. Applied during the polishing step, it enables the removal of high molecular weight aggregates from the target product, achieving high purities. Typically, this process is operated in batch using a single column, which makes it intrinsically subjected to a purity-yield tradeoff. This means that high purities can only be achieved at the cost of lowering the product yield and vice versa. Recently, a two-column continuous implementation of frontal chromatography, referred to as Flow2, was developed. Despite being able of alleviating the purity-yield tradeoff typical of batch operations, the increase in the number of process parameters complicates its optimal design, with the risk of not exploiting its full potential. In this study, we developed an ad hoc design procedure (DP) suitable for the optimization of both batch frontal chromatography and Flow2 in terms of purity, yield, and productivity. This procedure provided similar results as a multiobjective optimization based on genetic algorithm but with lower computational effort. Then, batch and Flow2 operated at their optimal conditions were compared. Besides showing a more favorable Pareto front of yield and productivity at a specified purity, the Flow2 process demonstrated improved robustness compared to the batch process with respect to modifications in the loading linear velocity, washing buffer ionic strength and loading time, thus providing an appealing operation for integrated processes.
Collapse
Affiliation(s)
- Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | | | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Slocum A, Santora S, Ly M, Zhang J, Castano J, Becerra-Arteaga A. Development of an activated carbon filtration step and high throughput screening method to remove host cell proteins from a recombinant enzyme process. Biotechnol Prog 2021; 37:e3151. [PMID: 33764696 DOI: 10.1002/btpr.3151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/07/2022]
Abstract
An increasing number of non-mAb recombinant proteins are being developed today. These biotherapeutics provide greater purification challenges where multiple polishing steps may be required to meet final purity specifications or the process steps may require extensive optimization. Recent studies have shown that activated carbon can be employed in downstream purification processes to selectively separate host cell proteins (HCPs) from monoclonal antibodies (mAb). However, the use of activated carbon as a unit operation in a cGMP purification process is relatively new. As such, the goal of this work is to provide guidance on development approaches, insight into operating parameters and solution conditions that can impact HCP removal, as well as further investigate the mechanism of removal by using mass spectrometry. In this work, activated carbon was evaluated to remove HCPs in the downstream purification process of a recombinant enzyme. Impact of process placement, flux (or residence time), and mass loading on HCP removal was investigated. Feasibility of high throughput screening (HTS) using loose activated carbon was assessed to reduce the amount of therapeutic protein needed and enable testing of a larger number of solution conditions. Finally, mass spectrometry was used to determine the population of HCPs removed by activated carbon. Our work demonstrates that activated carbon can be used effectively in downstream processes of biopharmaceuticals to remove HCPs (up to a 3 log10 reduction) and that an HTS format can be implemented to reduce material demands by up to 23x and allow for process optimization of this adsorbent for purification purposes.
Collapse
Affiliation(s)
- Ashley Slocum
- Downstream Process Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Steven Santora
- Downstream Process Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Mellisa Ly
- Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Junyan Zhang
- Downstream Process Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Juan Castano
- Manufacturing Sciences and Technology, MilliporeSigma, Burlington, Massachusetts, USA
| | | |
Collapse
|
21
|
Coffman J, Brower M, Connell-Crowley L, Deldari S, Farid SS, Horowski B, Patil U, Pollard D, Qadan M, Rose S, Schaefer E, Shultz J. A common framework for integrated and continuous biomanufacturing. Biotechnol Bioeng 2021; 118:1721-1735. [PMID: 33491769 PMCID: PMC8248397 DOI: 10.1002/bit.27690] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
There is a growing application of integrated and continuous bioprocessing (ICB) for manufacturing recombinant protein therapeutics produced from mammalian cells. At first glance, the newly evolved ICB has created a vast diversity of platforms. A closer inspection reveals convergent evolution: nearly all of the major ICB methods have a common framework that could allow manufacturing across a global ecosystem of manufacturers using simple, yet effective, equipment designs. The framework is capable of supporting the manufacturing of most major biopharmaceutical ICB and legacy processes without major changes in the regulatory license. This article reviews the ICB that are being used, or are soon to be used, in a GMP manufacturing setting for recombinant protein production from mammalian cells. The adaptation of the various ICB modes to the common ICB framework will be discussed, along with the pros and cons of such adaptation. The equipment used in the common framework is generally described. This review is presented in sufficient detail to enable discussions of IBC implementation strategy in biopharmaceutical companies and contract manufacturers, and to provide a road map for vendors equipment design. An example plant built on the common framework will be discussed. The flexibility of the plant is demonstrated with batches as small as 0.5 kg or as large as 500 kg. The yearly output of the plant is as much as 8 tons.
Collapse
Affiliation(s)
- Jonathan Coffman
- BioProcess Technology and Engineering, BioProcess Development, R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | - Mark Brower
- Merck and Company, Kennilworth, New Jersey, USA
| | | | - Sevda Deldari
- BioProcess Technology and Engineering, BioProcess Development, R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | - Suzanne S Farid
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Ujwal Patil
- BioProcess Technology and Engineering, BioProcess Development, R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | | | | | - Steven Rose
- BioProcess Technology and Engineering, BioProcess Development, R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | | | | |
Collapse
|
22
|
Wang Y, Lu J, Huang Z, Qian M, Zhang Q, Feng J. Process development of recombinant Aspergillus flavus urate oxidase production in Pichia pastoris intracellularly and its characterization as a potential biosimilar. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Khanal O, Kumar V, Lenhoff AM. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 2020; 118:164-174. [PMID: 32910459 DOI: 10.1002/bit.27559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Kruse T, Kampmann M, Rüddel I, Greller G. An alternative downstream process based on aqueous two-phase extraction for the purification of monoclonal antibodies. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Xu J, Xu X, Huang C, Angelo J, Oliveira CL, Xu M, Xu X, Temel D, Ding J, Ghose S, Borys MC, Li ZJ. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs 2020; 12:1770669. [PMID: 32425110 PMCID: PMC7531520 DOI: 10.1080/19420862.2020.1770669] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Process intensification has shown great potential to increase productivity and reduce costs in biomanufacturing. This case study describes the evolution of a manufacturing process from a conventional processing scheme at 1000-L scale (Process A, n = 5) to intensified processing schemes at both 1000-L (Process B, n = 8) and 2000-L scales (Process C, n = 3) for the production of a monoclonal antibody by a Chinese hamster ovary cell line. For the upstream part of the process, we implemented an intensified seed culture scheme to enhance cell densities at the seed culture step (N-1) prior to the production bioreactor (N) by using either enriched N-1 seed culture medium for Process B or by operating the N-1 step in perfusion mode for Process C. The increased final cell densities at the N-1 step allowed for much higher inoculation densities in the production bioreactor operated in fed-batch mode and substantially increased titers by 4-fold from Process A to B and 8-fold from Process A to C, while maintaining comparable final product quality. Multiple changes were made to intensify the downstream process to accommodate the increased titers. New high-capacity resins were implemented for the Protein A and anion exchange chromatography (AEX) steps, and the cation exchange chromatography (CEX) step was changed from bind-elute to flow-through mode for the streamlined Process B. Multi-column chromatography was developed for Protein A capture, and an integrated AEX-CEX pool-less polishing steps allowed semi-continuous Process C with increased productivity as well as reductions in resin requirements, buffer consumption, and processing times. A cost-of-goods analysis on consumables showed 6.7–10.1 fold cost reduction from the conventional Process A to the intensified Process C. The hybrid-intensified process described here is easy to implement in manufacturing and lays a good foundation to develop a fully continuous manufacturing with even higher productivity in the future.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Chao Huang
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - James Angelo
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | | | - Mengmeng Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xia Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Deniz Temel
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| |
Collapse
|
27
|
Li Y, Chang A, Beattie D, Remington KM. Novel spiking methods developed for anion exchange chromatography operating in a continuous process. Biotechnol Bioeng 2020; 117:3379-3389. [PMID: 32667685 DOI: 10.1002/bit.27500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
Many manufacturers of biopharmaceuticals are moving from batch to continuous processing. While this approach offers advantages over batch processing, demonstration of viral clearance for continuous processes is challenging. Fluctuating output from a continuous process chromatography column results in a nonhomogeneous load for the subsequent column and must be considered when designing viral clearance studies. One approach to clearance studies is to downscale the connected unit operations and introduce virus by in-line spiking. This is challenging to be implemented at the contract research organization performing the clearance study given the complexity of systems and level of expertise required. Alternately, each unit operation could be evaluated in traditional batch mode but the spiking and loading conditions be modified to mimic the variance introduced by the transition between two connected columns. Using a standard chromatography system, we evaluated a flow-through anion exchange chromatography step in a monoclonal antibody (mAb) manufacturing process using five different methods to introduce the virus to the column. Our data show that whether the virus or the mAbs were introduced in concentrated peaks, or as a homogeneous batch, the clearance of mouse minute virus was similar. This study introduces an alternative way to evaluate viral clearance in a continuous process and demonstrates the robustness of anion exchange chromatography unit operating in continuous processing.
Collapse
Affiliation(s)
- Ying Li
- MilliporeSigma, Process Solutions Bioprocessing, Bedford, Massachusetts
| | - Audrey Chang
- MilliporeSigma, Process Solutions Services, Rockville, Maryland
| | - David Beattie
- MilliporeSigma, Process Solutions Bioprocessing, Bedford, Massachusetts
| | | |
Collapse
|
28
|
Hasegawa S, Chen CS, Yoshimoto N, Yamamoto S. Optimization of Flow-Through Chromatography of Proteins. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumiko Hasegawa
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Chyi-Shin Chen
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Noriko Yoshimoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Shuichi Yamamoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| |
Collapse
|
29
|
Hasegawa S, Chen CS, Yoshimoto N, Yamamoto S. Accelerated Method for Designing Flow-Through Chromatography of Proteins. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumiko Hasegawa
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Chyi-Shin Chen
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Noriko Yoshimoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Shuichi Yamamoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| |
Collapse
|
30
|
Sencar J, Hammerschmidt N, Jungbauer A. Modeling the Residence Time Distribution of Integrated Continuous Bioprocesses. Biotechnol J 2020; 15:e2000008. [DOI: 10.1002/biot.202000008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jure Sencar
- Austria Centre for Industrial Biotechnology Muthgasse 11 Vienna A‐1190 Austria
| | | | - Alois Jungbauer
- Austria Centre for Industrial Biotechnology Muthgasse 11 Vienna A‐1190 Austria
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 Vienna A‐1190 Austria
| |
Collapse
|
31
|
Santos MPF, Silva JF, Costa Ilhéu Fontan R, Bonomo RCF, Santos LS, Veloso CM. New insight about the relationship between the main characteristics of precursor materials and activated carbon properties using multivariate analysis. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Josiane F. Silva
- Process Engineering LaboratoryState University of Southwest Bahia Itapetinga Brazil
| | | | - Renata C. F. Bonomo
- Process Engineering LaboratoryState University of Southwest Bahia Itapetinga Brazil
| | - Leandro S. Santos
- Laboratory of Packaging and Agro‐Industrial ProjectsState University of Southwest Bahia Itapetinga Brazil
| | - Cristiane M. Veloso
- Process Engineering LaboratoryState University of Southwest Bahia Itapetinga Brazil
| |
Collapse
|
32
|
Design space and robustness analysis of batch and counter-current frontal chromatography processes for the removal of antibody aggregates. J Chromatogr A 2020; 1619:460943. [PMID: 32061360 DOI: 10.1016/j.chroma.2020.460943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Increasing molecular diversity and market competition requires biopharmaceutical manufacturers to intensify their processes. In this respect, frontal chromatography on cation exchange resins has shown its potential to effectively remove aggregates. However, yield losses during the wash step need to be accepted in order to ensure robust product quality. In this work, we present a novel counter-current frontal chromatography process called Flow2, which uses inline dilution during an interconnected wash phase to allow high monomer recovery without contaminating the product pool with impurities. Its model-based design spaces under purity and yield constraints are compared with those corresponding to traditional batch processes in terms of size and process attributes yield and productivity. The Flow2 process shows the largest extent of feasible operating points independent of feed conditions. Thereby, it allows the implementation of higher ionic strength wash, thus widening the range of operating conditions resulting in yields above 95% compared to batch processes. Productivities of batch and counter-current processes are the same at short regeneration times and equal residence time. However, long regeneration times, while influencing the size of the Flow2 design space, are not detrimental for its productivity resulting in twice as high values as obtained for the batch process. Furthermore, process robustness is evaluated by the ability of the process to maintain the required product quality when subjected to process parameter perturbations. It is found that the Flow2 process is able to retain a larger design space associated also with higher yields showing its ability to improve process attributes without sacrificing robustness at the same time.
Collapse
|
33
|
Masuda Y, Ogino Y, Yamaichi K, Takahashi Y, Nonaka K, Wakamatsu K. The prevention of an anomalous chromatographic behavior and the resulting successful removal of viruses from monoclonal antibody with an asymmetric charge distribution by using a membrane adsorber in highly efficient, anion-exchange chromatography in flow-through mode. Biotechnol Prog 2020; 36:e2955. [PMID: 31894893 DOI: 10.1002/btpr.2955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
Abstract
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI - 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions.
Collapse
Affiliation(s)
- Yumiko Masuda
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Ohra-gun, Gunma, Japan.,Graduate School of Science and Technology, Gunma University, Kiryu-shi, Gunma, Japan
| | - Yuka Ogino
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Ohra-gun, Gunma, Japan
| | - Kozo Yamaichi
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Ohra-gun, Gunma, Japan
| | - Yusuke Takahashi
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Ohra-gun, Gunma, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, Ohra-gun, Gunma, Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, Kiryu-shi, Gunma, Japan
| |
Collapse
|
34
|
Vogg S, Pfeifer F, Ulmer N, Morbidelli M. Process intensification by frontal chromatography: Performance comparison of resin and membrane adsorber for monovalent antibody aggregate removal. Biotechnol Bioeng 2019; 117:662-672. [PMID: 31788778 DOI: 10.1002/bit.27235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023]
Abstract
Aggregates are amongst the most important product-related impurities to be removed during the downstream processing of antibodies due to their potential immunogenicity. Traditional operations use cation-exchange resins in bind-elute mode for their separation. However, frontal analysis is emerging as an alternative. In this study, a three-step process development for a membrane adsorber and a resin material is carried out, allowing the comparison between the stationary phases. Based on a screening study, optimal loading conditions are determined, which show that weak binding is favored on the membrane and strong binding on the resin. Transfer of these findings to breakthrough experiments shows that at 99% pool purity the yield is higher for the membrane, while the resin can be loaded twice as high, exceeding yields of 85%. For the investigated antibody and based on a given regeneration protocol, the productivity of the two phases is similar, ranging around 200 g/(L·h). Due to the higher loading, the resin requires about one-third less buffer than the membrane. Furthermore, the implementation of a wash step after loading allows to further increase yield by about 5%. In comparison to a generic bind-elute process, productivity and buffer consumption are improved by an order of magnitude.
Collapse
Affiliation(s)
- Sebastian Vogg
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Felix Pfeifer
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Nicole Ulmer
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Burgstaller D, Jungbauer A, Satzer P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol Bioeng 2019; 116:1053-1065. [PMID: 30636284 PMCID: PMC6667901 DOI: 10.1002/bit.26922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Continuous precipitation is a new unit operation for the continuous capture of antibodies. The capture step is based on continuous precipitation with PEG6000 and Zn++ in a tubular reactor integrated with a two‐stage continuous tangential flow filtration unit. The precipitate cannot be separated with centrifugation, because a highly compressed sediment results in poor resolubilization. We developed a new two‐stage tangential flow microfiltration method, where part of the concentrated retentate of the first stage was directly fed to the second stage, together with the wash buffer. Thus, the precipitate was concentrated and washed in a continuous process. We obtained 97% antibody purity, a 95% process yield during continuous operation, and a fivefold reduction in pre‐existing high‐molecular‐weight impurities. For other unit operations, surge tanks are often required, due to interruptions in the product mass flow out of the unit operation (e.g., the bind/elute mode in periodic counter‐current chromatography). Our setup required no surge tanks; thus, it provided a truly continuous antibody capture operation with uninterrupted product mass flow. Continuous virus inactivation and other flow‐through unit operations can be readily integrated downstream of the capture step to create truly continuous, integrated, downstream antibody processing without the need for hold tanks.
Collapse
Affiliation(s)
- Daniel Burgstaller
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| |
Collapse
|
36
|
Vogg S, Müller-Späth T, Morbidelli M. Current status and future challenges in continuous biochromatography. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Ichihara T, Ito T, Gillespie C. Polishing approach with fully connected flow-through purification for therapeutic monoclonal antibody. Eng Life Sci 2018; 19:31-36. [PMID: 32624953 DOI: 10.1002/elsc.201800123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022] Open
Abstract
The biopharmaceutical industry is evolving toward process intensification that can offer increased productivity and improved economics without sacrificing process robustness. A semi-continuous downstream process linking purification/polishing unit operations in series can reduce or eliminate intermediate holding tanks and reduce overall processing time. Accordingly, we have developed a therapeutic monoclonal antibody polishing template comprised of a connected flow-through polishing technologies that include activated carbon, cation exchange, and anion-exchange chromatography. In this report, we evaluated fully-connected pool-less polishing with three flow-through technologies, operating as a single skid to streamline and improve an mAb purification platform. Laboratory-scale pool-less processing was achieved without utilizing in-line pH adjustment and conductivity dilution based on the previously optimized single process parameter. Two connected flow-through configurations of polishing steps were evaluated: a two-step process using anion exchange and cation exchange and a three step process using activated carbon, anion exchange and cation exchange chromatography. Laboratory-scale proof of concept studies showed comparable performance between the batch purification process and the pool-less process configuration. Three step polishing highly intensified the processes and provided higher process loading and achieved bulk drug specification with higher impurity clearance (>95%) and high overall mAb yield (>95%).
Collapse
Affiliation(s)
| | - Takao Ito
- Process Solutions Merck Ltd. Tokyo Japan
| | | |
Collapse
|