1
|
Cardero Y, Aguirre-Calvo TR, Valenzuela LM, Matiacevich S, Santagapita PR. Design of an antioxidant powder additive based on carvacrol encapsulated into a multilayer chitosan-alginate-maltodextrin emulsion. Int J Biol Macromol 2024; 274:133039. [PMID: 38866285 DOI: 10.1016/j.ijbiomac.2024.133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTS•+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.
Collapse
Affiliation(s)
- Yaniel Cardero
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Loreto M Valenzuela
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvia Matiacevich
- Food Properties Research Group, Food Science and Technology Department, Facultad Tecnológica, Universidad de Santiago de Chile, Chile.
| | - Patricio Román Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Sepúlveda F, Puente-Diaz L, Ortiz-Viedma J, Rodríguez A, Char C. Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity. Foods 2024; 13:2032. [PMID: 38998538 PMCID: PMC11241658 DOI: 10.3390/foods13132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many studies have suggested that the encapsulation of natural antimicrobials increases their antimicrobial activity. In this sense, the objective was to study the inactivation of microorganisms with encapsulated cinnamaldehyde and vanillin (E-CIN and E-VN), in comparison with the unencapsulated antimicrobials (CIN and VN) in protein beverages. Additionally, the microbial response was quantified through mathematical modeling. Cinnamaldehyde and vanillin were encapsulated using whey protein concentrate (WPC) as the encapsulating agent. The effectiveness at inactivating Escherichia coli, Listeria innocua, and Saccharomyces cerevisiae was evaluated in a protein-apple juice beverage during storage (4 °C). Encapsulation increased the effectiveness of cinnamaldehyde, reaching reductions of 1.8, 3.3, and 5.3 log CFU/mL in E. coli, L. innocua, and S. cerevisiae, respectively, while vanillin encapsulation had little effect on antimicrobial activity, reducing by 0.5, 1.4, and 1.1 log cycles, respectively. The combined treatments (E-CIN + E-VN) had an additive effect in reducing E. coli and a synergistic effect against S. cerevisiae. The Gompertz model was more versatile and better described the biphasic curves, whereas the Weibull model complemented the information regarding the spectrum of resistances within the microbial population. In conclusion, the encapsulation of cinnamaldehyde with WPC enhanced its activity. However, further studies are necessary to improve the antimicrobial activity of vanillin.
Collapse
Affiliation(s)
- Francisco Sepúlveda
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Luis Puente-Diaz
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jaime Ortiz-Viedma
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Alicia Rodríguez
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Cielo Char
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| |
Collapse
|
3
|
Orizano-Ponce E, Char C, Sepúlveda F, Ortiz-Viedma J. Heat sensitization of Escherichia coli by the natural antimicrobials vanillin and emulsified citral in blended carrot-orange juice. Food Microbiol 2022; 107:104058. [DOI: 10.1016/j.fm.2022.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
|
4
|
Shin H, Kwon CW, Lee MW, Yu H, Chang PS. Antibacterial characterization of erythorbyl laurate against Geobacillus stearothermophilus spores. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
6
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Chávez-González ML, Aguilar CN. Encapsulated Food Products as a Strategy to Strengthen Immunity Against COVID-19. Front Nutr 2021; 8:673174. [PMID: 34095193 PMCID: PMC8175800 DOI: 10.3389/fnut.2021.673174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
In December 2019, the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)-a novel coronavirus was identified which was quickly distributed to more than 100 countries around the world. There are currently no approved treatments available but only a few preventive measures are available. Among them, maintaining strong immunity through the intake of functional foods is a sustainable solution to resist the virus attack. For this, bioactive compounds (BACs) are delivered safely inside the body through encapsulated food items. Encapsulated food products have benefits such as high stability and bioavailability, sustained release of functional compounds; inhibit the undesired interaction, and high antimicrobial and antioxidant activity. Several BACs such as ω-3 fatty acid, curcumin, vitamins, essential oils, antimicrobials, and probiotic bacteria can be encapsulated which exhibit immunological activity through different mechanisms. These encapsulated compounds can be recommended for use by various researchers, scientists, and industrial peoples to develop functional foods that can improve immunity to withstand the coronavirus disease 2019 (COVID-19) outbreak in the future. Encapsulated BACs, upon incorporation into food, offer increased functionality and facilitate their potential use as an immunity booster. This review paper aims to target various encapsulated food products and their role in improving the immunity system. The bioactive components like antioxidants, minerals, vitamins, polyphenols, omega (ω)-3 fatty acids, lycopene, probiotics, etc. which boost the immunity and may be a potential measure to prevent COVID-19 outbreak were comprehensively discussed. This article also highlights the potential mechanisms; a BAC undergoes, to improve the immune system.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Ami R. Patel
- Division of Dairy and Food Microbiology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| | - Cristobal N. Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| |
Collapse
|
7
|
Dávila-Rodríguez M, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía MT. Essential oils microemulsions prepared with high-frequency ultrasound: physical properties and antimicrobial activity. Journal of Food Science and Technology 2020; 57:4133-4142. [PMID: 33071334 DOI: 10.1007/s13197-020-04449-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2019] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
Abstract
Essential oils (EOs) have demonstrated antimicrobial activity against bacteria due to the effects of their major components. The direct application of EOs may present a rapid volatilization of its components and can decrease their effectiveness. Encapsulation by means of emulsification can provide protection to lipid compounds on a microscale. The aim of this study was to characterize microemulsions of cinnamon essential oil (CEO), oregano essential oil (OEO), and rosemary essential oil (REO) prepared by high-frequency ultrasound and evaluate their antimicrobial activities against Escherichia coli and Listeria monocytogenes. The microemulsions (oil-in-water, O/W) of EOs were prepared using high-frequency ultrasound, applying a wave amplitude of 84 µm for 15 min (REO and CEO) or 30 min (OEO). The antimicrobial activity was determined by inoculating 108 CFU/mL of bacteria. Nonsurvival of the bacteria was confirmed by plate count in tryptic soy agar, determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The microemulsions exhibited droplet size diameters of 1.98 to 5.46 µm, showing high encapsulation efficiencies (79.91-81.97%) and low separation rates (2.50-6.67%). The MIC and MBC for the microemulsions for both bacteria were 20-75% less than values obtained for the non-encapsulated EOs. This study demonstrates that high-frequency ultrasound is a suitable technique for obtaining stable microemulsions to deliver natural antimicrobials that can be applied to control bacteria of high relevance in food safety.
Collapse
Affiliation(s)
- M Dávila-Rodríguez
- Chemical, Food and Environmental Engineering Department, Universidad de Las Américas Puebla, Ex-Hacienda Sta. Catarina Mártir S/N, San Andrés, Cholula, 72810 Puebla, Mexico
| | - A López-Malo
- Chemical, Food and Environmental Engineering Department, Universidad de Las Américas Puebla, Ex-Hacienda Sta. Catarina Mártir S/N, San Andrés, Cholula, 72810 Puebla, Mexico
| | - E Palou
- Chemical, Food and Environmental Engineering Department, Universidad de Las Américas Puebla, Ex-Hacienda Sta. Catarina Mártir S/N, San Andrés, Cholula, 72810 Puebla, Mexico
| | - N Ramírez-Corona
- Chemical, Food and Environmental Engineering Department, Universidad de Las Américas Puebla, Ex-Hacienda Sta. Catarina Mártir S/N, San Andrés, Cholula, 72810 Puebla, Mexico
| | - M T Jiménez-Munguía
- Chemical, Food and Environmental Engineering Department, Universidad de Las Américas Puebla, Ex-Hacienda Sta. Catarina Mártir S/N, San Andrés, Cholula, 72810 Puebla, Mexico
| |
Collapse
|
8
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: An overview. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Halla N, Fernandes IP, Heleno SA, Costa P, Boucherit-Otmani Z, Boucherit K, Rodrigues AE, Ferreira ICFR, Barreiro MF. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018; 23:E1571. [PMID: 29958439 PMCID: PMC6099538 DOI: 10.3390/molecules23071571] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cosmetics, like any product containing water and organic/inorganic compounds, require preservation against microbial contamination to guarantee consumer’s safety and to increase their shelf-life. The microbiological safety has as main goal of consumer protection against potentially pathogenic microorganisms, together with the product’s preservation resulting from biological and physicochemical deterioration. This is ensured by chemical, physical, or physicochemical strategies. The most common strategy is based on the application of antimicrobial agents, either by using synthetic or natural compounds, or even multifunctional ingredients. Current validation of a preservation system follow the application of good manufacturing practices (GMPs), the control of the raw material, and the verification of the preservative effect by suitable methodologies, including the challenge test. Among the preservatives described in the positive lists of regulations, there are parabens, isothiasolinone, organic acids, formaldehyde releasers, triclosan, and chlorhexidine. These chemical agents have different mechanisms of antimicrobial action, depending on their chemical structure and functional group’s reactivity. Preservatives act on several cell targets; however, they might present toxic effects to the consumer. Indeed, their use at high concentrations is more effective from the preservation viewpoint being, however, toxic for the consumer, whereas at low concentrations microbial resistance can develop.
Collapse
Affiliation(s)
- Noureddine Halla
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000 Saida, Algeria.
| | - Isabel P Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Patrícia Costa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Maria Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| |
Collapse
|
10
|
Speranza B, Petruzzi L, Bevilacqua A, Gallo M, Campaniello D, Sinigaglia M, Corbo MR. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives. J Food Sci 2017; 82:1291-1301. [DOI: 10.1111/1750-3841.13727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Mariangela Gallo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Italy
| |
Collapse
|
11
|
Torres-Alvarez C, Núñez González A, Rodríguez J, Castillo S, Leos-Rivas C, Báez-González JG. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1220021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|