1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2024; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Han B, Tang D, Lv X, Fan J, Li S, Zhu H, Zhang J, Xu S, Xu X, Huang Z, Huang Z, Lin G, Zhan L, Lv X. Integrated multi-omics reveal gut microbiota-mediated bile acid metabolism alteration regulating immunotherapy responses to anti-α4β7-integrin in Crohn's disease. Gut Microbes 2024; 16:2310894. [PMID: 38312103 PMCID: PMC10854365 DOI: 10.1080/19490976.2024.2310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Gut microbiota and related metabolites are both crucial factors that significantly influence how individuals with Crohn's disease respond to immunotherapy. However, little is known about the interplay among gut microbiota, metabolites, Crohn's disease, and the response to anti-α4β7-integrin in current studies. Our research utilized 2,4,6-trinitrobenzene sulfonic acid to induce colitis based on the humanized immune system mouse model and employed a combination of whole-genome shotgun metagenomics and non-targeted metabolomics to investigate immunotherapy responses. Additionally, clinical cases with Crohn's disease initiating anti-α4β7-integrin therapy were evaluated comprehensively. Particularly, 16S-rDNA gene high-throughput sequencing and targeted bile acid metabolomics were conducted at weeks 0, 14, and 54. We found that anti-α4β7-integrin therapy has shown significant potential for mitigating disease phenotypes in remission-achieving colitis mice. Microbial profiles demonstrated that not only microbial composition but also microbially encoded metabolic pathways could predict immunotherapy responses. Metabonomic signatures revealed that bile acid metabolism alteration, especially elevated secondary bile acids, was a determinant of immunotherapy responses. Especially, the remission mice significantly enriched the proportion of the beneficial Lactobacillus and Clostridium genera, which were correlated with increased gastrointestinal levels of BAs involving lithocholic acid and deoxycholic acid. Moreover, most of the omics features observed in colitis mice were replicated in clinical cases. Notably, anti-α4β7 integrin provided sustained therapeutic benefits in clinical remitters during follow-up, and long-lasting remission was linked to persistent changes in the microbial-related bile acids. In conclusion, gut microbiota-mediated bile acid metabolism alteration could play a crucial role in regulating immunotherapy responses to anti-α4β7-integrin in Crohn's disease. Therefore, the identification of prognostic microbial signals facilitates the advancement of targeted probiotics that activate anti-inflammatory bile acid metabolic pathways, thereby improving immunotherapy responses. The integrated multi-omics established in our research provide valuable insights into potential mechanisms that impact treatment responses in complex diseases.
Collapse
Affiliation(s)
- Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Daiyuan Tang
- Postgraduate College, Kunming Medical University, Kunming, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhu
- Department of Microbiology, Guangxi Medical University, Nanning, China
| | - Jiatong Zhang
- Postgraduate College, Guangxi Medical University, Nanning, China
| | - Shang Xu
- Postgraduate College, Guangxi Medical University, Nanning, China
| | - Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Iaquinto G, Aufiero VR, Mazzarella G, Lucariello A, Panico L, Melina R, Iaquinto S, De Luca A, Sellitto C. Pathogens in Crohn's Disease: The Role of Adherent Invasive Escherichia coli. Crit Rev Eukaryot Gene Expr 2024; 34:83-99. [PMID: 38305291 DOI: 10.1615/critreveukaryotgeneexpr.2023050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Division, S. Rita Hospital, Atripalda, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope," 80100, Naples, Italy
| | - Luigi Panico
- Pathological Anatomy and Histology Unit, Monaldi Hospital, Napoli, Italy
| | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | | | - Antonio De Luca
- Department of Mental Health and Physics, Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | |
Collapse
|
4
|
Evidence for a Causal Role for Escherichia coli Strains Identified as Adherent-Invasive (AIEC) in Intestinal Inflammation. mSphere 2023; 8:e0047822. [PMID: 36883813 PMCID: PMC10117065 DOI: 10.1128/msphere.00478-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.
Collapse
|
5
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
6
|
Nag D, Farr D, Raychaudhuri S, Withey JH. An adult zebrafish model for adherent-invasive Escherichia coli indicates protection from AIEC infection by probiotic E. coli Nissle. iScience 2022; 25:104572. [PMID: 35769878 PMCID: PMC9234234 DOI: 10.1016/j.isci.2022.104572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is an opportunistic pathogen associated with major inflammatory bowel disease, Crohn disease, and ulcerative colitis. Unfavorable conditions push commensal AIEC to induce gut inflammation, sometimes progressing to inflammation-induced colon cancer. Recently, zebrafish have emerged as a useful model to study human intestinal pathogens. Here, a zebrafish model to study AIEC infection was developed. Bath inoculation with AIEC resulted in colonization and tissue disruption in the zebrafish intestine. Gene expression of pro-inflammatory markers including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), interferon-γ (IFNγ), and S100A-10b (akin to human calprotectin) in the zebrafish intestine was significantly induced by AIEC infection. The probiotic E. coli Nissle 1917 (EcN) was tested as a therapeutic and prophylactic against AIEC infection and reduced AIEC colonization, tissue damage, and pro-inflammatory responses in zebrafish. Furthermore, EcN diminished the propionic-acid-augmented hyperinfection of AIEC in zebrafish. Thus, this study shows the efficacy of EcN against AIEC in an AIEC-zebrafish model. AIEC can colonize, invade, and induce inflammation in the zebrafish gut Probiotic E. coli Nissle can protect zebrafish from AIEC infection EcN is effective both prophylactically and therapeutically against AIEC-induced IBD
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dustin Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Corresponding author
| |
Collapse
|
7
|
Lucchini V, Sivignon A, Pieren M, Gitzinger M, Lociuro S, Barnich N, Kemmer C, Trebosc V. The Role of OmpR in Bile Tolerance and Pathogenesis of Adherent-Invasive Escherichia coli. Front Microbiol 2021; 12:684473. [PMID: 34262546 PMCID: PMC8273539 DOI: 10.3389/fmicb.2021.684473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota dysbiosis toward adherent-invasive Escherichia coli (AIEC) plays an important role in Crohn's disease (CD). The OmpR transcriptional regulator is required for the AIEC LF82 prototype strain to adhere and invade intestinal epithelial cells. In this study, we explored the role of OmpR in AIEC pathogenesis using a panel of eight Escherichia coli strains isolated from CD patients and identified as AIEC. The deletion of ompR together with the implementation of two cell-based assays revealed that the role of OmpR in adhesion in vitro was not conserved in AIEC clinical strains. Nevertheless, we showed that OmpR was required for robust gut colonization of transgenic mice expressing human CEACAM receptors, suggesting that OmpR is involved in alternative virulence mechanisms in AIEC strains. We found that deletion of ompR compromised the ability of AIEC strains to cope with the stress induced by bile salts, which may be key for AIEC pathogenesis. More specifically, we demonstrated that OmpR was involved in a tolerance mechanism toward sodium deoxycholate (DOC), one of bile salts main component. We showed that the misregulation of OmpF or the loss of outer membrane integrity are not the drivers of OmpR-mediated DOC tolerance, suggesting that OmpR regulates a specific mechanism enhancing AIEC survival in the presence of DOC. In conclusion, the newly discovered role of OmpR in AIEC bile tolerance suggests that OmpR inhibition would interfere with different aspects of AIEC virulence arsenal and could be an alternative strategy for CD-treatment.
Collapse
Affiliation(s)
- Valentina Lucchini
- BioVersys AG, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | |
Collapse
|
8
|
Xie F, Liu Z, Liu M, Chen L, Ding W, Zhang H. Amino Acids Regulate Glycolipid Metabolism and Alter Intestinal Microbial Composition. Curr Protein Pept Sci 2021; 21:761-765. [PMID: 32072901 DOI: 10.2174/1389203721666200219100216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Amino acids (AAs) and their metabolites regulate key metabolic pathways that are necessary for growth, reproduction, immunity and metabolism of the body. It has been convinced that metabolic diseases are closely related to disorders of glycolipid metabolism. A growing number of studies have shown that AAs are closely related to energy metabolism. This review focuses on the effects of amino acids (arginine, branched-chain amino acids, glutamine) and their metabolites (short chain fatty acids) on glycolipid metabolism by regulating PI3K/AKT/mTOR and AMPK signaling pathways and GPCRs receptors, reducing intestinal Firmicutes/Bacteroidetes ratio associated with obesity.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Zhengqun Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Ming Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Wei Ding
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| |
Collapse
|
9
|
Jia M, Zhang Y, Gao Y, Ma X. Effects of Medium Chain Fatty Acids on Intestinal Health of Monogastric Animals. Curr Protein Pept Sci 2021; 21:777-784. [PMID: 31889482 DOI: 10.2174/1389203721666191231145901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.
Collapse
Affiliation(s)
- Manyi Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuqi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
10
|
Zhang K, Wang N, Lu L, Ma X. Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms. Curr Protein Pept Sci 2021; 21:807-811. [PMID: 32048966 DOI: 10.2174/1389203721666200212095902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Dietary protein is linked to the intestinal microorganisms. The decomposition of dietary protein can provide nutrients for microbial growth, which in turn can ferment protein to produce some metabolites. This review elaborates that the effects of different protein levels and types on intestinal microorganisms and their metabolites fermented by intestinal microorganisms, as well as the effects of these metabolites on organisms. It is well known that intestinal microbial imbalance can cause some diseases. Dietary protein supplementation can alter the composition of intestinal microorganisms and thus regulates the body health. However, protein can also produce some harmful metabolites. Therefore, how to rationally supplement protein is particularly important.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
Beijing 100193, China
| | - Nan Wang
- China Institute of Veterinary Drug Control, Beijing 100081,China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
Beijing 100193, China
| |
Collapse
|
11
|
Peng XP, Ding W, Ma JM, Zhang J, Sun J, Cao Y, Lei LH, Zhao J, Li YF. Effect of Escherichia Coli Infection on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci 2021; 21:772-776. [PMID: 31724511 DOI: 10.2174/1389203720666191113144049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.
Collapse
Affiliation(s)
- Xiao-Pei Peng
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Wei Ding
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University, China
| | - Jian-Min Ma
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Yun Cao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Li-Hui Lei
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Shandong, China
| | - Yun-Fu Li
- Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
12
|
Peng XP, Nie C, Guan WY, Qiao LD, Lu L, Cao SJ. Regulation of Probiotics on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci 2021; 21:766-771. [PMID: 31713481 DOI: 10.2174/1389203720666191111112941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/07/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Proteins are indispensable components of living organisms, which are derived mainly from diet through metabolism. Dietary proteins are degraded by endogenous digestive enzymes to di- or tripeptides and free amino acids (AAs) in the small intestine lumen and then absorbed into blood and lymph through intestinal epithelial cells via diverse transporters. Microorganisms are involved not only in the proteins' catabolism, but also the AAs, especially essential AAs, anabolism. Probiotics regulate these processes by providing exogenous proteases and AAs and peptide transporters, and reducing hazardous substances in the food and feed. But the core mechanism is modulating of the composition of intestinal microorganisms through their colonization and exclusion of pathogens. The other effects of probiotics are associated with normal intestinal morphology, which implies that the enterocytes secrete more enzymes to decompose dietary proteins and absorb more nutrients.
Collapse
Affiliation(s)
- Xiao-Pei Peng
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wen-Yi Guan
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Li-Dong Qiao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shou-Jun Cao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
13
|
Ren C, Wang Y, Lin X, Song H, Zhou Q, Xu W, Shi K, Chen J, Song J, Chen F, Zhang S, Guan W. A Combination of Formic Acid and Monolaurin Attenuates Enterotoxigenic Escherichia coli Induced Intestinal Inflammation in Piglets by Inhibiting the NF-κB/MAPK Pathways with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4155-4165. [PMID: 32202779 DOI: 10.1021/acs.jafc.0c01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study determined the potential of formic acid plus monolaurin (FA + ML) as an alternative to antibiotics in diet when piglets are challenged with ETEC. Piglets fed the FA + ML diet had lower fecal score and rectal temperature after the ETEC challenge. In addition, FA + ML supplementation induced lower plasma TNF-α, IL-6, and IL-1β concentration postchallenge, downregulated the mRNA expression of TNF-α, IL-1β, IL-6, and TLR4 in the ileum and TLR4 and CFTR in the jejunum. Phosphorylation levels of NF-κB p65 and MAPK p38 were reduced in the ileum of piglets fed FA + ML diet. Supplementation of FA + ML increased the relative abundance of genera Lactobacillus especially Lactobacillus amylovorus species and decreased the genus abundances of Actinobacillus, unidentified Enterobacteriaceae, Moraxella. Collectively, the combination of formic acid and monolaurin in diets have the potential to be an antibiotic alternative to mitigate inflammatory response in piglets challenged with ETEC.
Collapse
Affiliation(s)
- Chunxiao Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yijiang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanqing Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wan Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kui Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junshuai Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Ormsby MJ, Johnson SA, Carpena N, Meikle LM, Goldstone RJ, McIntosh A, Wessel HM, Hulme HE, McConnachie CC, Connolly JPR, Roe AJ, Hasson C, Boyd J, Fitzgerald E, Gerasimidis K, Morrison D, Hold GL, Hansen R, Walker D, Smith DGE, Wall DM. Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Rep 2020; 30:2297-2305.e5. [PMID: 32075765 PMCID: PMC7034058 DOI: 10.1016/j.celrep.2020.01.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/09/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Propionic acid (PA) is a bacterium-derived intestinal antimicrobial and immune modulator used widely in food production and agriculture. Passage of Crohn's disease-associated adherent-invasive Escherichia coli (AIEC) through a murine model, in which intestinal PA levels are increased to mimic the human intestine, leads to the recovery of AIEC with significantly increased virulence. Similar phenotypic changes are observed outside the murine model when AIEC is grown in culture with PA as the sole carbon source; such PA exposure also results in AIEC that persists at 20-fold higher levels in vivo. RNA sequencing identifies an upregulation of genes involved in biofilm formation, stress response, metabolism, membrane integrity, and alternative carbon source utilization. PA exposure also increases virulence in a number of E. coli isolates from Crohn's disease patients. Removal of PA is sufficient to reverse these phenotypic changes. Our data indicate that exposure to PA results in AIEC resistance and increased virulence in its presence.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Síle A Johnson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Lynsey M Meikle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert J Goldstone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Anne McIntosh
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah M Wessel
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Heather E Hulme
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Ceilidh C McConnachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Conor Hasson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Joseph Boyd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Eamonn Fitzgerald
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
16
|
Montassier E, Al-Ghalith GA, Mathé C, Le Bastard Q, Douillard V, Garnier A, Guimon R, Raimondeau B, Touchefeu Y, Duchalais E, Vince N, Limou S, Gourraud PA, Laplaud DA, Nicot AB, Soulillou JP, Berthelot L. Distribution of Bacterial α1,3-Galactosyltransferase Genes in the Human Gut Microbiome. Front Immunol 2020; 10:3000. [PMID: 31998300 PMCID: PMC6970434 DOI: 10.3389/fimmu.2019.03000] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Because of a loss-of-function mutation in the GGTA1 gene, humans are unable to synthetize α1,3-Galactose (Gal) decorated glycans and develop high levels of circulating anti-α1,3-Galactose antibodies (anti-Gal Abs). Anti-Gal Abs have been identified as a major obstacle of organ xenotransplantation and play a role in several host-pathogen relationships including potential susceptibility to infection. Anti-Gal Abs are supposed to stem from immunization against the gut microbiota, an assumption derived from the observation that some pathogens display α1,3-Gal and that antibiotic treatment decreases the level of anti-Gal. However, there is little information to date concerning the microorganisms producing α1,3-Gal in the human gut microbiome. Here, available α1,3-Galactosyltransferase (GT) gene sequences from gut bacteria were selectively quantified for the first time in the gut microbiome shotgun sequences of 163 adult individuals from three published population-based metagenomics analyses. We showed that most of the gut microbiome of adult individuals contained a small set of bacteria bearing α1,3-GT genes. These bacteria belong mainly to the Enterobacteriaceae family, including Escherichia coli, but also to Pasteurellaceae genera, Haemophilus influenza and Lactobacillus species. α1,3-Gal antigens and α1,3-GT activity were detected in healthy stools of individuals exhibiting α1,3-GT bacterial gene sequences in their shotgun data.
Collapse
Affiliation(s)
- Emmanuel Montassier
- Microbiota Hosts Antibiotics and bacterial Resistances (MiHAR), Université de Nantes, Nantes, France.,Laboratoire EA3826 Thérapeutiques cliniques et expérimentales des infections IRS2 Nantes Biotech, Université de Nantes, Nantes, France.,Department of Emergency Medicine, CHU de Nantes, Nantes, France
| | - Gabriel A Al-Ghalith
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
| | - Camille Mathé
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Quentin Le Bastard
- Microbiota Hosts Antibiotics and bacterial Resistances (MiHAR), Université de Nantes, Nantes, France.,Department of Emergency Medicine, CHU de Nantes, Nantes, France
| | - Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France.,CHU de Nantes, CIC 1413, Pôle Hospitalo-Universitaire 11 Santé Publique, Clinique des données, Nantes, France
| | - Abel Garnier
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France.,CHU de Nantes, CIC 1413, Pôle Hospitalo-Universitaire 11 Santé Publique, Clinique des données, Nantes, France
| | - Rémi Guimon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France.,CHU de Nantes, CIC 1413, Pôle Hospitalo-Universitaire 11 Santé Publique, Clinique des données, Nantes, France
| | - Bastien Raimondeau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Yann Touchefeu
- Institut des Maladies de l'Appareil Digestif, CHU Nantes, Nantes, France.,INSERM U1235, Nantes, France
| | - Emilie Duchalais
- Institut des Maladies de l'Appareil Digestif, CHU Nantes, Nantes, France.,INSERM U1235, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France.,CHU de Nantes, CIC 1413, Pôle Hospitalo-Universitaire 11 Santé Publique, Clinique des données, Nantes, France
| | - David A Laplaud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Neurology department, CIC Neurology, CHU de Nantes, Nantes, France
| | - Arnaud B Nicot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| |
Collapse
|
17
|
The Crohn's disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog 2019; 15:e1008123. [PMID: 31725806 PMCID: PMC6855411 DOI: 10.1371/journal.ppat.1008123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
Adherent Invasive Escherichia coli (AIEC) strains recovered from Crohn's disease lesions survive and multiply within macrophages. A reference strain for this pathovar, AIEC LF82, forms microcolonies within phagolysosomes, an environment that prevents commensal E. coli multiplication. Little is known about the LF82 intracellular growth status, and signals leading to macrophage intra-vacuolar multiplication. We used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular LF82. We found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections.
Collapse
|
18
|
The Unique Lifestyle of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. J Mol Biol 2019; 431:2970-2981. [PMID: 31029703 DOI: 10.1016/j.jmb.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Escherichia coli is one of the most genetically and phenotypically diverse species of bacteria. This remarkable diversity produces a plethora of clinical outcomes following infection and has informed much of what we currently know about host-pathogen interactions for a wide range of bacteria-host relationships. In studying the role of microbes in disease, adherent-invasive E. coli (AIEC) has emerged as having a strong association with Crohn's disease (CD). Thus, there has been an equally strong effort to uncover the root origins of AIEC, to appreciate how AIEC differs from other well-known pathogenic E. coli variants, and to understand its connection to disease. Emerging from a growing body of research on AIEC is the understanding that AIEC itself is remarkably diverse, both in phylogenetic origins, genetic makeup, and behavior in the host setting. Here, we describe the unique lifestyle of CD-associated AIEC and review recent research that is uncovering the inextricable link between AIEC and its host in the context of CD.
Collapse
|
19
|
Elhenawy W, Tsai CN, Coombes BK. Host-Specific Adaptive Diversification of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Host Microbe 2019; 25:301-312.e5. [PMID: 30683582 DOI: 10.1016/j.chom.2018.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease influenced by bacteria. Adherent-invasive E. coli (AIEC) is associated with CD, yet the adaptations facilitating AIEC gut colonization are unknown. AIEC isolates exhibit high genetic diversity, suggesting strains evolve independently across different gut environments. We tracked the adaptive evolution of AIEC in a murine model of chronic colonization across multiple hosts and transmission events. We detected evolved lineages that outcompeted the ancestral strain in the host through independent mechanisms. One lineage was hypermotile because of a mobile insertion sequence upstream of the master flagellar regulator, flhDC, which enhanced AIEC invasion and establishment of a mucosal niche. Another lineage outcompeted the ancestral strain through improved use of acetate, a short-chain fatty acid in the gut. The presence of hypermotile and acetate-consuming lineages discriminated E. coli isolated from CD patients from healthy controls, suggesting an evolutionary trajectory that distinguishes AIEC from commensal E. coli.
Collapse
Affiliation(s)
- Wael Elhenawy
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Caressa N Tsai
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Hamilton, ON, Canada.
| |
Collapse
|