1
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Rajeev S, Li S, Leon-Coria A, Wang A, Kraemer L, Wang SJ, Boim A, Flannigan K, Shute A, Baggio CH, Callejas BE, MacNaughton WK, Finney CAM, McKay DM. Enteric tuft cells coordinate timely expulsion of the tapeworm Hymenolepis diminuta from the murine host by coordinating local but not systemic immunity. PLoS Pathog 2024; 20:e1012381. [PMID: 39083533 PMCID: PMC11290655 DOI: 10.1371/journal.ppat.1012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Kraemer
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Susan Joanne Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Annaliese Boim
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Kyle Flannigan
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Shute
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H. Baggio
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E. Callejas
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Constance A. M. Finney
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Li C, Liu Y, Liu X, Bai X, Jin X, Xu F, Chen H, Zhang Y, Vallee I, Liu M, Yang Y. The gut microbiota contributes to changes in the host immune response induced by Trichinella spiralis. PLoS Negl Trop Dis 2023; 17:e0011479. [PMID: 37585413 PMCID: PMC10431649 DOI: 10.1371/journal.pntd.0011479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
The gut microbiota plays an important role in parasite-host interactions and the induction of immune defense responses. Trichinella spiralis is an important zoonotic parasite that can directly or indirectly interact with the host in the gut. Changes in the gut microbiota following infection with T. spiralis and the role of the gut microbiota in host immune defense against T. spiralis infection were investigated in our study. 16S rRNA sequencing analysis revealed that infection with T. spiralis can reduce the diversity of the gut microbiota and alter the structure of the gut microbiota during early infection, which was restored when the worm left the gut. Antibiotic treatment (ABX) and fecal bacterial transplantation (FMT) were used to investigate the role of the gut microbiota in the host expulsion response during infection with T. spiralis. We found that ABX mice had a higher burden of parasites, and the burden of parasites decreased after fecal bacterial transplantation. The results of flow cytometry and qPCR revealed that the disturbance of the gut microbiota affects the proportion of CD4+ T cells and the production of IL-4, which weakens Th2 responses and makes expulsion difficult. In addition, as the inflammatory response decreased with the changes of the microbiota, the Th1 response also decreased. The metabolomic results were in good agreement with these findings, as the levels of inflammatory metabolites such as ceramides were reduced in the ABX group. In general, T. spiralis infection can cause changes in the gut microbiota, and the presence or absence of microbes may also weaken intestinal inflammation and the expulsion of T. spiralis by affecting the immune response of the host.
Collapse
Affiliation(s)
- Chengyao Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyan Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Isabelle Vallee
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yong Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- School of Basic Medical Science, Shan Xi Medical University, Taiyuan, China
| |
Collapse
|
4
|
The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens 2022; 11:pathogens11121439. [PMID: 36558772 PMCID: PMC9784563 DOI: 10.3390/pathogens11121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The tapeworm Hymenolepis diminuta is a common parasite of the small intestine in rodents but it can also infect humans. Due to its characteristics and ease of maintenance in the laboratory, H. diminuta is also an important model species in studies of cestodiasis, including the search for new drugs, treatments, diagnostics and biochemical processes, as well as its host-parasite interrelationships. A great deal of attention has been devoted to the immune response caused by H. diminuta in the host, and several studies indicate that infection with H. diminuta can reduce the severity of concomitant disease. Here, we present a critical review of the experimental research conducted with the use of H. diminuta as a model organism for over more than two decades (in the 21st century). The present review evaluates the tapeworm H. diminuta as a model organism for studying the molecular biology, biochemistry and immunology aspects of parasitology, as well as certain clinical applications. It also systematizes the latest research on this species. Its findings may contribute to a better understanding of the biology of tapeworms and their adaptation to parasitism, including complex correlations between H. diminuta and invertebrate and vertebrate hosts. It places particular emphasis on its value for the further development of modern experimental parasitology.
Collapse
|
5
|
Kapczuk P, Kosik-Bogacka D, Kupnicka P, Kopytko P, Tarnowski M, Kolasa A, Chlubek D, Baranowska-Bosiacka I. Hymenolepis diminuta Infection Affects Apoptosis in the Small and Large Intestine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9753. [PMID: 35955110 PMCID: PMC9368115 DOI: 10.3390/ijerph19159753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The rat tapeworm Hymenolepis diminuta has been shown to cause alterations in gastrointestinal tissues. Since hymenolepiasis induces a number of reactions in the host, it is reasonable to assume that it may also be involved in the mechanisms of apoptosis in the intestines. Individual research tasks included an examination of the effect of H. diminuta infection on; (i) the cellular localization of the expression of pro-apoptotic protein Bax and anti-apoptotic protein Bcl-2, as well as caspase-3 and caspase-9, and (ii) the effects of the infection on the expression of Bcl-2, Bax, Cas-3 and Cas-9, at the mRNA and protein levels. Molecular tests (including mRNA (qRT PCR) and the protein (Western blot) expression of Bax, Bcl-2, and caspases-3, -9) and immunohistochemical tests were performed during the experiment. They showed that H. diminuta infection activates the intrinsic apoptosis pathway in the small and large intestine of the host. H. diminuta infection triggered the apoptosis via the activation of the caspase cascade, including Cas-3 and Cas-9. Hymenolepiasis enhanced apoptosis in the small and large intestine of the host by increasing the expression of the pro-apoptotic gene and protein Bax and by decreasing the expression of the anti-apoptotic gene and protein Bcl-2.
Collapse
Affiliation(s)
- Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Relevance of Helminth-Microbiota Interplay in the Host Immune Response. Cell Immunol 2022; 374:104499. [DOI: 10.1016/j.cellimm.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
|
7
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
8
|
Shute A, Callejas BE, Li S, Wang A, Jayme TS, Ohland C, Lewis IA, Layden BT, Buret AG, McKay DM. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. MICROBIOME 2021; 9:186. [PMID: 34517928 PMCID: PMC8438845 DOI: 10.1186/s40168-021-01146-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/30/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Studies on the inhibition of inflammation by infection with helminth parasites have, until recently, overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the composition of their host's microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling enteric inflammation. METHODS Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis. RESULTS Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H. diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2-/- mice. Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the il-10-receptor and butyrate transporters. CONCLUSION Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H. diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of the patient's immunological and microbiological response to the helminth.
Collapse
Affiliation(s)
- Adam Shute
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy S Jayme
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christina Ohland
- International Microbiome Center, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - André G Buret
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Rajeev S, Sosnowski O, Li S, Allain T, Buret AG, McKay DM. Enteric Tuft Cells in Host-Parasite Interactions. Pathogens 2021; 10:pathogens10091163. [PMID: 34578195 PMCID: PMC8467374 DOI: 10.3390/pathogens10091163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Enteric tuft cells are chemosensory epithelial cells gaining attention in the field of host-parasite interactions. Expressing a repertoire of chemosensing receptors and mediators, these cells have the potential to detect lumen-dwelling helminth and protozoan parasites and coordinate epithelial, immune, and neuronal cell defenses against them. This review highlights the versatility of enteric tuft cells and sub-types thereof, showcasing nuances of tuft cell responses to different parasites, with a focus on helminths reflecting the current state of the field. The role of enteric tuft cells in irritable bowel syndrome, inflammatory bowel disease and intestinal viral infection is assessed in the context of concomitant infection with parasites. Finally, the review presents pertinent questions germane to understanding the enteric tuft cell and its role in enteric parasitic infections. There is much to be done to fully elucidate the response of this intriguing cell type to parasitic-infection and there is negligible data on the biology of the human enteric tuft cell—a glaring gap in knowledge that must be filled.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
| | - Olivia Sosnowski
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shuhua Li
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
| | - Thibault Allain
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - André G. Buret
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Correspondence: ; Tel.: +1-403-220-7362
| |
Collapse
|
10
|
Li S, Rajeev S, Wang A, McKay DM. Infection with Hymenolepis diminuta Blocks Colitis and Hastens Recovery While Colitis Has Minimal Impact on Expulsion of the Cestode from the Mouse Host. Pathogens 2021; 10:pathogens10080994. [PMID: 34451458 PMCID: PMC8401575 DOI: 10.3390/pathogens10080994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Two experimental paradigms were adopted to explore host-helminth interactions involved in the regulation of colitis and to understand if colitis affects the outcome of helminth infection. First, male BALB/c mice infected with H. diminuta were challenged 4 days later with dinitrobenzene sulphonic acid (DNBS) and necropsied 3 days later. Second, mice were infected with H. diminuta 3 days after DNBS treatment and necropsied 11 or 14 days post-DNBS. Mice were assessed for colitic disease severity and infectivity with H. diminuta upon necropsy. Supporting the concept of helminth therapy, mice are protected from DNBS-colitis when infected with H. diminuta only 4 days previously, along with parallel increases in splenic production of Th2 cytokines. In the treatment regimen, H. diminuta infection produced a subtle, statistically significant, enhanced recovery from DNBS. Mice regained body weight quicker, had normalized colon lengths, and showed no overt signs of disease, in comparison to the DNBS-only mice, some of which displayed signs of mild disease at 14 days post-DNBS. Unexpectedly, colitis did not affect the hosts' anti-worm response. The impact of inflammatory disease on helminth infection is deserving of study in a variety of models as auto-inflammatory diseases emerge in world regions where parasitic helminths are endemic.
Collapse
|
11
|
Zaini A, Good-Jacobson KL, Zaph C. Context-dependent roles of B cells during intestinal helminth infection. PLoS Negl Trop Dis 2021; 15:e0009340. [PMID: 33983946 PMCID: PMC8118336 DOI: 10.1371/journal.pntd.0009340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim L. Good-Jacobson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Jirků M, Lhotská Z, Frgelecová L, Kadlecová O, Petrželková KJ, Morien E, Jirků-Pomajbíková K. Helminth Interactions with Bacteria in the Host Gut Are Essential for Its Immunomodulatory Effect. Microorganisms 2021; 9:microorganisms9020226. [PMID: 33499240 PMCID: PMC7910914 DOI: 10.3390/microorganisms9020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Colonization by the benign tapeworm, Hymenolepis diminuta, has been associated with a reduction in intestinal inflammation and changes in bacterial microbiota. However, the role of microbiota in the tapeworm anti-inflammatory effect is not yet clear, and the aim of this study was to determine whether disruption of the microflora during worm colonization can affect the course of intestinal inflammation. We added a phase for disrupting the intestinal microbiota using antibiotics to the experimental design for which we previously demonstrated the protective effect of H. diminuta. We monitored the immunological markers, clinical parameters, bacterial microbiota, and histological changes in the colon of rats. After a combination of colonization, antibiotics, and colitis induction, we had four differently affected experimental groups. We observed a different course of the immune response in each group, but no protective effect was found. Rats treated with colonization and antibiotics showed a strong induction of the Th2 response as well as a significant change in microbial diversity. The microbial results also revealed differences in the richness and abundance of some bacterial taxa, influenced by various factors. Our data suggest that interactions between the tapeworm and bacteria may have a major impact on its protective effect.
Collapse
Affiliation(s)
- Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| | - Zuzana Lhotská
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic;
| | - Oldřiška Kadlecová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
| | - Klára Judita Petrželková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná, 8603 65 Brno, Czech Republic
| | - Evan Morien
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada;
| | - Kateřina Jirků-Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| |
Collapse
|