1
|
Xie P, Chen J, Dan A, Lin Z, He Y, Cai Z. Long-term exposure to triclocarban induces splenic injuries in mice: Insights from spatial metabolomics and lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136370. [PMID: 39486321 DOI: 10.1016/j.jhazmat.2024.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Triclocarban (TCC) is a widely used antimicrobial agent and known endocrine-disrupting chemical found in various products. While its potential toxicities on endocrine-related organs have been highlighted in previous studies, the effects of TCC on non-endocrine organs, particularly the spleen, remain largely unknown. Here, we employed a novel approach combining long-term TCC exposure in a mouse model with spatial metabolomics and lipidomics to investigate the effects of TCC on the spleen. Our results showed that TCC exposure significantly altered the splenic organ weight and coefficient and induced obvious pathological alterations. Omic analysis revealed that TCC exposure disrupted the splenic homeostasis, as indicated by the upregulation of glutathione metabolism, ceramide-to-sphingomyelin signaling and biosynthesis of glycerophospholipids. Notably, the data of mass spectrometry imaging (MSI) revealed that TCC accumulated in the red pulp of the mouse spleen, while its metabolites concentrated in the white pulp. Further MSI analyses identified region-specific metabolic disruptions, including upregulated ceramide signaling in the red pulp, indicating localized inflammation, and upregulated glutathione metabolism throughout the spleen, suggesting widespread oxidative damage. Our findings provide crucial insights into the spatial distribution and biochemical impact of TCC on mice spleens, highlighting the potential risks of long-term TCC exposure to immune function.
Collapse
Affiliation(s)
- Peisi Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Sirbu F, Ion AC, Ion I. Study of the Optical and Acoustic Parameters and Surface Tensions of 3,4,4'-Trichlorodiphenylurea in Binary Mixtures with Different Organic Solvents between (293.15 and 323.15) K. Molecules 2024; 29:4521. [PMID: 39407451 PMCID: PMC11477502 DOI: 10.3390/molecules29194521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
In the present investigations, the density, refractive index and speed of sound for pure organic solvents and binary liquid mixtures of 3,4,4'-Trichlorodiphenylurea between (293.15 and 323.15) K temperatures have been measured up to the solubility limit. From these experimental results, the acoustic impedance, the isentropic compressibility coefficient, the space-filling factor, the specific refraction, the relaxation strength, the intermolecular free length, the surface tension, the solubility and the solvation number of triclocarban in six organic solvents, namely ethyl alcohol, n-Propyl alcohol, n-Butyl alcohol, Tetrahydrofuran, N,N-Dimethylformamide and N,N-Dimethylacetamide have been computed. The studied acoustic and optical parameters and surface tension behavior versus temperature in pure solvents and binary mixtures were useful in understanding the nature and the extent of interaction between the solute and solvent molecules. The results also show the presence of higher degree of interaction between triclocarban and nitrogen-containing solvents in comparison with other solvents. The distribution of triclocarban in water/organic solvent mixtures is frequently encountered in wastewater treatment plants.
Collapse
Affiliation(s)
- Florinela Sirbu
- “Ilie Murgulescu” Institute of Physical Chemistry of Romanian Academy, Department of Chemical Thermodynamics, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
| | - Alina Catrinel Ion
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| | - Ion Ion
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| |
Collapse
|
3
|
Estevinho MM, Midya V, Cohen-Mekelburg S, Allin KH, Fumery M, Pinho SS, Colombel JF, Agrawal M. Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms. Gut 2024:gutjnl-2024-332523. [PMID: 39179372 DOI: 10.1136/gutjnl-2024-332523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Epidemiological and translational data increasingly implicate environmental pollutants in inflammatory bowel disease (IBD). Indeed, the global incidence of IBD has been rising, particularly in developing countries, in parallel with the increased use of chemicals and synthetic materials in daily life and escalating pollution levels. Recent nationwide and ecological studies have reported associations between agricultural pesticides and IBD, particularly Crohn's disease. Exposure to other chemical categories has also been linked with an increased risk of IBD. To synthesise available data and identify knowledge gaps, we conducted a systematic review of human studies that reported on the impact of environmental pollutants on IBD risk and outcomes. Furthermore, we summarised in vitro data and animal studies investigating mechanisms underlying these associations. The 32 included human studies corroborate that heavy and transition metals, except zinc, air pollutants, per- and polyfluorinated substances, and pesticides are associated with an increased risk of IBD, with exposure to air pollutants being associated with disease-related adverse outcomes as well. The narrative review of preclinical studies suggests several overlapping mechanisms underlying these associations, including increased intestinal permeability, systemic inflammation and dysbiosis. A consolidated understanding of the impact of environmental exposures on IBD risk and outcomes is key to the identification of potentially modifiable risk factors and to inform strategies towards prediction, prevention and mitigation of IBD.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirley Cohen-Mekelburg
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Mathurin Fumery
- Department of Gastroenterology, CHU Amiens and PériTox, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Salome S Pinho
- i3S, Institute for Research and Innovation in Health, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Song Y, Lei H, Cao Z, Zhang C, Chen C, Wu M, Zhang H, Du R, Lijun L, Chen X, Zhang L. Long-Term Triclocarban Exposure Induced Enterotoxicity by Triggering Intestinal AhR-Mediated Inflammation and Disrupting Microbial Community in Mice. Chem Res Toxicol 2024; 37:658-668. [PMID: 38525689 DOI: 10.1021/acs.chemrestox.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Exposure to triclocarban (TCC), a commonly used antibacterial agent, has been shown to induce significant intestine injuries and colonic inflammation in mice. However, the detailed mechanisms by which TCC exposure triggered enterotoxicity remain largely unclear. Herein, intestinal toxicity effects of long-term and chronic TCC exposure were investigated using a combination of histopathological assessments, metagenomics, targeted metabolomics, and biological assays. Mechanically, TCC exposure caused induction of intestinal aryl hydrocarbon receptor (AhR) and its transcriptional target cytochrome P4501A1 (Cyp1a1) leading to dysfunction of the gut barrier and disruption of the gut microbial community. A large number of lipopolysaccharides (LPS) are released from the gut lumen into blood circulation owing to the markedly increased permeability and gut leakage. Consequently, toll-like receptor-4 (TLR4) and NF-κB signaling pathways were activated by high levels of LPS. Simultaneously, classic macrophage phenotypes were switched by TCC, shown with marked upregulation of macrophage M1 and downregulation of macrophage M2 that was accompanied by striking upregulation of proinflammatory factors such as Il-1β, Il-6, Il-17, and Tnf-α in the intestinal lamina propria. These findings provide new evidence for the TCC-induced enterotoxicity.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, Guangxi, China
| | - Huabao Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Lijun
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, Guangxi, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang QY, Zhong MT, Gi M, Chen YK, Lai MQ, Liu JY, Liu YM, Wang Q, Xie XL. Inulin alleviates perfluorooctanoic acid-induced intestinal injury in mice by modulating the PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123090. [PMID: 38072026 DOI: 10.1016/j.envpol.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used industrial compound that has been found to induce intestinal toxicity. However, the underlying mechanisms have not been fully clarified and effective interventions are rarely developed. Inulin, a prebiotic, has been used as a supplement in human daily life as well as in gastrointestinal diseases and metabolic disorders. In this study, male mice were exposed to PFOA with or without inulin supplementation to investigate the enterotoxicity and potential intervention effects of inulin. Mice were administered PFOA at 1 mg/kg/day, PFOA with inulin at 5 g/kg/day, or Milli-Q water for 12 weeks. Histopathological analysis showed that PFOA caused colon shortening, goblet cell reduction, and inflammatory cell infiltration. The expression of the tight junction proteins ZO-1, occludin and claudin5 significantly decreased, indicating impaired barrier function. According to the RNA-sequencing analysis, PFOA exposure resulted in 917 differentially expressed genes, involving 39 significant pathways, such as TNF signaling and cell cycle pathways. In addition, the protein expression of TNF-α, IRG-47, cyclinB1, and cyclinB2 increased, while Gadd45γ, Lzip, and Jam2 decreased, suggesting the involvement of the TNF signaling pathway, cell cycle, and cell adhesion molecules in PFOA-associated intestinal injury. Inulin intervention alleviated PFOA-induced enterotoxicity by activating the PI3K/AKT/mTOR signaling pathway and increasing the protein expression of Wnt1, β-catenin, PI3K, Akt3, and p62, while suppressing MAP LC3β, TNF-α, and CyclinE expression. These findings suggested that PFOA-induced intestinal injury, including inflammation and tight junction disruption, was mitigated by inulin through modifying the PI3K/AKT/mTOR signaling pathways. Our study provides valuable insights into the enterotoxic effects of PFOA and highlights the potential therapeutic role of inulin.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Jing-Yi Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China; The 2019 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yi-Ming Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China; The 2019 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
6
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
7
|
Sun Q, Liu B, Lan Q, Su Z, Fu Q, Wang L, Deng Y, Li C, Xue VW, Liu S, Chen X, Yang G, Lu D. Antimicrobial agent chloroxylenol targets β‑catenin‑mediated Wnt signaling and exerts anticancer activity in colorectal cancer. Int J Oncol 2023; 63:121. [PMID: 37681484 PMCID: PMC10546378 DOI: 10.3892/ijo.2023.5569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on β‑catenin‑mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/β‑catenin signaling pathway by decreasing the nuclear translocation of β‑catenin and disrupting β‑catenin/T‑cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine‑rich G protein‑coupled receptor‑5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient‑derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti‑tumor activities in colorectal cancer by targeting the Wnt/β‑catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.
Collapse
Affiliation(s)
- Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Boxin Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Quanxue Lan
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, Guangdong 518100, P.R. China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiuxia Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Lian Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Yingying Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Chuanli Li
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Xianxiong Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
8
|
Cao W, Guan S, Yuan Y, Wang Y, Mst Nushrat Y, Liu Y, Tong Y, Yu S, Hua X. The digestive behavior of pectin in human gastrointestinal tract: a review on fermentation characteristics and degradation mechanism. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 37665605 DOI: 10.1080/10408398.2023.2253547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pectin is widely spread in nature and it develops an extremely complex structure in terms of monosaccharide composition, glycosidic linkage types, and non-glycosidic substituents. As a non-digestible polysaccharide, pectin exhibits resistance to human digestive enzymes, however, it is easily utilized by gut microbiota in the large intestine. Currently, pectin has been exploited as a novel functional component with numerous physiological benefits, and it shows a promising prospect in promoting human health. In this review, we introduce the regulatory effects of pectin on intestinal inflammation and metabolic syndromes. Subsequently, the digestive behavior of pectin in the upper gastrointestinal tract is summarized, and then it will be focused on pectin's fermentation characteristics in the large intestine. The fermentation selectivity of pectin by gut bacteria and the effects of pectin structure on intestinal microecology were discussed to highlight the interaction between pectin and bacterial community. Meanwhile, we also offer information on how gut bacteria orchestrate enzymes to degrade pectin. All of these findings provide insights into pectin digestion and advance the application of pectin in human health.
Collapse
Affiliation(s)
- Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Stuttgart, Germany
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Zhang J, Yang J, Duval CN, Edin ML, Williams A, Lei L, Tu M, Pourmand E, Song R, Graves JP, DeGraff LM, Wong JJL, Wang Y, Sun Q, Sanidad KZ, Wong S, Han Y, Zhang Z, Lee KSS, Park Y, Xiao H, Liu Z, Decker EA, Cui W, Zeldin DC, Zhang G. CYP eicosanoid pathway mediates colon cancer-promoting effects of dietary linoleic acid. FASEB J 2023; 37:e23009. [PMID: 37273180 PMCID: PMC10283155 DOI: 10.1096/fj.202300786r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Caroline N. Duval
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Lei Lei
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Elham Pourmand
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Yige Wang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Katherine Z. Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Siu Wong
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenhua Liu
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eric A. Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| |
Collapse
|
10
|
Qin M, Lei H, Song Y, Wu M, Chen C, Cao Z, Zhang C, Du R, Zhang C, Wang X, Zhang L. Triclocarban exposure aggravates dextran sulfate sodium-induced colitis by deteriorating the gut barrier function and microbial community in mice. Food Chem Toxicol 2023; 178:113908. [PMID: 37385329 DOI: 10.1016/j.fct.2023.113908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Triclocarban (TCC) is an antibacterial component widely used in personal care products with potential toxicity possessing public health issues. Unfortunately, enterotoxicity mechanisms of TCC exposure remain largely unknown. Using a combination of 16S rRNA gene sequencing, metabolomics, histopathological and biological examinations, this study systematically explored the deteriorating effects of TCC exposure on a dextran sulfate sodium (DSS)-induced colitis mouse model. We found that TCC exposure at different doses significantly aggravated colitis phenotypes including shortened colon length and altered colonic histopathology. Mechanically, TCC exposure further disrupted intestinal barrier function, manifested by significant downregulation of the number of goblet cells, mucus layer thickness and expression of junction proteins (MUC-2, ZO-1, E-cadherin and Occludin). The gut microbiota composition and its metabolites such as short-chain fatty acids (SCFAs) and tryptophan metabolites were also markedly altered in DSS-induced colitis mice. Consequently, TCC exposure markedly exacerbated colonic inflammatory status of DSS-treated mice by activating NF-κB pathway. These findings provided new evidence that TCC could be an environmental hazards for development of IBD or even colon cancer.
Collapse
Affiliation(s)
- Mengyu Qin
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Zhang H, Sanidad KZ, Zhang J, Wang G, Zhang R, Hu C, Lin Y, Haggerty TD, Parsonnet J, Zheng Y, Zhang G, Cai Z. Microbiota-mediated reactivation of triclosan oxidative metabolites in colon tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130509. [PMID: 36463744 PMCID: PMC10187939 DOI: 10.1016/j.jhazmat.2022.130509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 05/18/2023]
Abstract
Triclosan (TCS) is a widespread antimicrobial agent that is associated with many adverse health outcomes. Its gut toxicity has been attributed to the molecular modifications mediated by commensal microbes, but microbial transformations of TCS derivatives in the gut lumen are still largely unknown. Aromatic hydroxylation is the predominant oxidative metabolism of TCS that linked to its toxicological effects in host tissues. Here, we aimed to reveal the biological fates of hydroxyl-TCS (OH-TCS) in the colon, where intestinal microbes mainly reside. Unlike the profiles generated via host metabolism, OH-TCS species remain unconjugated in human stools from a cohort study. Through tracking molecular compositions in mouse intestinal tract, elevated abundance of free-form OH-TCS while reduced abundance of conjugated forms was observed in the colon digesta and mucosa. Using antibiotic-treated and germ-free mice, as well as in vitro approaches, we demonstrate that gut microbiota-encoded enzymes efficiently convert glucuronide/sulfate-conjugated OH-TCS, which are generated from host metabolism, back to their bioactive free-forms in colon tissues. Thus, host-gut microbiota metabolic interactions of TCS derivatives were proposed. These results shed light on the crucial roles of microbial metabolism in TCS toxicity, and highlight the importance of incorporating gut microbial transformations in health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rong Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chengchen Hu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science and Technology, National University of Singapore, Singapore.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Meng Z, Yan Z, Sun W, Bao X, Feng W, Gu Y, Tian S, Wang J, Chen X, Zhu W. Azoxystrobin Disrupts Colonic Barrier Function in Mice via Metabolic Disorders Mediated by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:789-801. [PMID: 36594455 DOI: 10.1021/acs.jafc.2c05543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The widespread use of azoxystrobin (AZO) over the past few decades has drawn great attention to its environmental health effects. The objective of the present study was to explore the effects of AZO on intestinal barrier function in mice from the perspective of gut microbiota. Specifically, exposure to AZO could cause colonic barrier dysfunction in mice. Meanwhile, AZO could also cause dysbiosis of gut microbiota. Further studies revealed that the metabolic profile of the microbiota was significantly disturbed with AZO exposure. Last but not least, we confirmed that the gut microbiota played a central role in AZO-induced colonic barrier dysfunction through the gut microbiota transplantation experiment. Gut microbiota mediated colonic barrier dysfunction induced by AZO via inducing dysbiosis of the microbiota metabolic profile. The findings of this study strongly support a new insight that the gut microbiota can be a key target of health risks of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wenjing Feng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Nowak-Lange M, Niedziałkowska K, Lisowska K. Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? Int J Mol Sci 2022; 23:14495. [PMID: 36430973 PMCID: PMC9692320 DOI: 10.3390/ijms232214495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, personal care products (PCPs) have surfaced as a novel class of pollutants due to their release into wastewater treatment plants (WWTPs) and receiving environments by sewage effluent and biosolid-augmentation soil, which poses potential risks to non-target organisms. Among PCPs, there are preservatives that are added to cosmetics for protection against microbial spoilage. This paper presents a review of the occurrence in different environmental matrices, toxicological effects, and mechanisms of microbial degradation of four selected preservatives (triclocarban, chloroxylenol, methylisothiazolinone, and benzalkonium chloride). Due to the insufficient removal from WWTPs, cosmetic preservatives have been widely detected in aquatic environments and sewage sludge at concentrations mainly below tens of µg L-1. These compounds are toxic to aquatic organisms, such as fish, algae, daphnids, and rotifers, as well as terrestrial organisms. A summary of the mechanisms of preservative biodegradation by micro-organisms and analysis of emerging intermediates is also provided. Formed metabolites are often characterized by lower toxicity compared to the parent compounds. Further studies are needed for an evaluation of environmental concentrations of preservatives in diverse matrices and toxicity to more species of aquatic and terrestrial organisms, and for an understanding of the mechanisms of microbial degradation. The research should focus on chloroxylenol and methylisothiazolinone because these compounds are the least understood.
Collapse
Affiliation(s)
- Marta Nowak-Lange
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łódź, Poland
| | | | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łódź, Poland
| |
Collapse
|
14
|
Sanidad KZ, Wang G, Panigrahy A, Zhang G. Triclosan and triclocarban as potential risk factors of colitis and colon cancer: Roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156776. [PMID: 35724794 DOI: 10.1016/j.scitotenv.2022.156776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent decades there has been a dramatic increase in the incidence and prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disease of the intestinal tissues and a major risk factor of developing colon cancer. While accumulating evidence supports that the rapid increase of IBD is mainly caused by exposure to environmental risk factors, the identities of the risk factors, as well as the mechanisms connecting environmental exposure with IBD, remain largely unknown. Triclosan (TCS) and triclocarban (TCC) are high-volume chemicals that are used as antimicrobial ingredients in consumer and industrial products. They are ubiquitous contaminants in the environment and are frequently detected in human populations. Recent studies showed that exposure to TCS/TCC, at human exposure-relevant doses, increases the severity of colitis and exacerbates colon tumorigenesis in mice, suggesting that they could be risk factors of IBD and associated diseases. The gut toxicities of these compounds require the presence of gut microbiota, since they fail to induce colonic inflammation in mice lacking the microbiota. Regarding the functional roles of the microbiota involved, gut commensal microbes and specific microbial β-glucuronidase (GUS) enzymes mediate colonic metabolism of TCS, leading to metabolic reactivation of TCS in the colon and contributing to its subsequent gut toxicity. Overall, these results support that these commonly used compounds could be environmental risk factors of IBD and associated diseases through gut microbiota-dependent mechanisms.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Song Y, Zhang C, Lei H, Qin M, Chen G, Wu F, Chen C, Cao Z, Zhang C, Wu M, Chen X, Zhang L. Characterization of triclosan-induced hepatotoxicity and triclocarban-triggered enterotoxicity in mice by multiple omics screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156570. [PMID: 35690209 DOI: 10.1016/j.scitotenv.2022.156570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether, TCS) and triclocarban (3,4,4'-trichloro-carbanilide, TCC) are two antimicrobial agents commonly used for personal care products. Previous studies primarily focused on respective harmful effects of TCS and TCC. In terms of their structural similarities and differences, however, the structure-toxicity relationships on health effects of TCS and TCC exposure remain unclear. Herein, global 1H NMR-based metabolomics was employed to screen the changes of metabolic profiling in various biological matrices including liver, serum, urine, feces and intestine of mice exposed to TCS and TCC at chronic and acute dosages. Metagenomics was also applied to analyze the gut microbiota modulation by TCS and TCC exposure. Targeted MS-based metabolites quantification, histopathological examination and biological assays were subsequently conducted to supply confirmatory information on respective toxicity of TCS and TCC. We found that oral administration of TCS mainly induced significant liver injuries accompanied with inflammation and dysfunction, hepatic steatosis fatty acids and bile acids metabolism disorders; while TCC exposure caused marked intestine injuries leading to striking disruption of colonic morphology, inflammatory status and intestinal barrier integrity, intestinal bile acids metabolism and microbial community. These comparative results provide novel insights into structure-dependent mechanisms of TCS-induced hepatotoxicity and TCC-triggered enterotoxicity in mice.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Mengyu Qin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xiaoyu Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region (Guangxi Academy of Medical Sciences), Nanning, Guangxi 530021, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
16
|
Yan Z, Du J, Zhang T, Sun Q, Sun B, Zhang Y, Li S. Impairment of the gut health in Danio rerio exposed to triclocarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155025. [PMID: 35390376 DOI: 10.1016/j.scitotenv.2022.155025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Triclocarban (TCC) is the principal component in personal and health care products because it is a highly effective, broad-spectrum, and safe antibacterial agent. TCC has recently been discovered in aquatic creatures and has been shown to constitute a health danger to aquatic animals. Although several studies have looked into the toxicological effects of TCC on a variety of aquatic animals from algae to fish, the possible gut-toxicity molecular pathway in zebrafish has never been thoroughly explored. We investigated the gut-toxic effects of TCC on zebrafish by exposing them to different TCC concentrations (100 and 1000 μg/L) for 21 days. We discovered for the first time that the MAPK and TLR signaling pathways related to gut diseases were significantly altered, and inflammation (up-regulation of TNF-α, IL-6, and IL-1β) caused by TCC was confirmed to be largely mediated by the aryl hydrocarbon receptor (AHR) and its related cytokines. This was found using the results of qPCR, a transcriptome analysis, and molecular docking (AHR, AHRR, CYP1A1 and CYP1B1). Furthermore, high-throughput 16S rDNA sequencing demonstrated that TCC exposure reduced the bacterial diversity and changed the gut microbial composition, with the primary phyla Fusobacteria and Proteobacteria, as well as the genera Cetobacterium and Rhodobacteraceae, being the most affected. TCC exposure also caused damage to the gut tissue, including an increase in the number of goblet cells and a reduction in the height of the columnar epithelium and the thickness of the muscular layer, as shown by hematoxylin and eosin staining. Our findings will aid in understanding of the mechanism TCC-induced aquatic toxicity in aquatic species.
Collapse
Affiliation(s)
- Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jinzhe Du
- Marine Science and Technology College, Qingdao Agricultural University, Qingdao 266109, China Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Binbin Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China.
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
17
|
Different Dose of Sucrose Consumption Divergently Influences Gut Microbiota and PPAR-γ/MAPK/NF-κB Pathway in DSS-Induced Colitis Mice. Nutrients 2022; 14:nu14132765. [PMID: 35807944 PMCID: PMC9268685 DOI: 10.3390/nu14132765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Sugar reduction and sugar control are advocated and gaining popularity around the world. Sucrose, as the widely consumed ingredient in our daily diet, has been reported a relation to gastrointestinal diseases. However, the role of sucrose in inflammatory bowel disease remains controversial. Hence, our study aimed to elucidate the potential role of three doses of sucrose on DSS-induced colitis in C57BL/6 mice and the underlying mechanisms. The results showed that low-dose sucrose intervention alleviated colitis in mice, reducing the expression of inflammatory cytokines and repairing mucosal damages. In contrast, high-dose sucrose intervention exacerbated colitis. Furthermore, three doses of sucrose administration markedly altered gut microbiota composition. Notably, the low-dose sucrose restored microbial dysfunction and enhanced the production of short chain fatty acids (SCFAs). Specifically, the abundance of SCFAs-producing bacteria Faecalibaculum, Bacteroides, and Romboutsia were increased significantly in the LOW group. Consistently, PPAR-γ, activated by SCFAs, was elevated in the LOW group, thereby inhibiting the MAPK/NF-κB pathway. Together, our study demonstrates the differential effects of sucrose on colitis at different doses, providing a scientific basis for measuring and modifying the safe intake level of sugar and providing favorable evidence for implementing sugar reduction policies.
Collapse
|
18
|
Li F, Han Y, Wu X, Cao X, Gao Z, Sun Y, Wang M, Xiao H. Gut Microbiota-Derived Resveratrol Metabolites, Dihydroresveratrol and Lunularin, Significantly Contribute to the Biological Activities of Resveratrol. Front Nutr 2022; 9:912591. [PMID: 35634412 PMCID: PMC9131081 DOI: 10.3389/fnut.2022.912591] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Although resveratrol (RES) is barely detectable in the plasma and tissues upon oral consumption, collective evidence reveals that RES presents various bioactivities in vivo, including anti-inflammation and anti-cancer. This paradox necessitates further research on profiling and characterizing the biotransformation of RES, as its metabolites may contribute profound biological effects. After 4-week oral administration, 11 metabolites of RES were identified and quantified in mice by HPLC-MS/MS, including dihydro-resveratrol (DHR), lunularin (LUN), and conjugates (sulfates and glucuronides) of RES, DHR and LUN. Importantly, DHR, LUN, and their conjugates were much more abundantly distributed in tissues, gastrointestinal tract (GIT), and biological fluids compared to RES and its conjugates. Moreover, we established that DHR and LUN were gut bacteria-derived metabolites of RES, as indicated by their depletion in antibiotic-treated mice. Furthermore, the biological activities of RES, DHR, and LUN were determined at physiologically relevant levels. DHR and LUN exhibited stronger anti-inflammatory and anti-cancer effects than RES at the concentrations found in mouse tissues. In summary, our study profiled the tissue distribution of the metabolites of RES after its oral administration in mice and uncovered the important role of gut microbial metabolites of RES in the biological activities of RES in vivo.
Collapse
Affiliation(s)
- Fang Li
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Xian Wu
- Department of Kinesiology and Health, Miami University, Oxford, OH, United States
| | - Xiaoqiong Cao
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Yue Sun
- Department of Tea and Food Science, Anhui Agricultural University, Hefei, China
| | - Minqi Wang
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
- *Correspondence: Hang Xiao
| |
Collapse
|
19
|
Zhang J, Walker ME, Sanidad KZ, Zhang H, Liang Y, Zhao E, Chacon-Vargas K, Yeliseyev V, Parsonnet J, Haggerty TD, Wang G, Simpson JB, Jariwala PB, Beaty VV, Yang J, Yang H, Panigrahy A, Minter LM, Kim D, Gibbons JG, Liu L, Li Z, Xiao H, Borlandelli V, Overkleeft HS, Cloer EW, Major MB, Goldfarb D, Cai Z, Redinbo MR, Zhang G. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat Commun 2022; 13:136. [PMID: 35013263 PMCID: PMC8748916 DOI: 10.1038/s41467-021-27762-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Morgan E Walker
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ermin Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | | | - Vladimir Yeliseyev
- Massachusetts Host-Microbiota Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Joshua B Simpson
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet V Beaty
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - LinShu Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, and Department of Otolaryngology, Washington University, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Institute for Informatics, Washington University, St. Louis, MO, USA
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Meng Z, Sun W, Liu W, Wang Y, Jia M, Tian S, Chen X, Zhu W, Zhou Z. A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118477. [PMID: 34763016 DOI: 10.1016/j.envpol.2021.118477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota-dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Department of Plant Protection, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Wan Liu
- Department of Digestive, The Traditional Chinese Medicine Hospital of Xuzhou City Affiliated to Nanjing University of Chinese, Xuzhou, 221003, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xiaojun Chen
- Department of Plant Protection, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Zhang Y, Wu S, Liu Y, Ma J, Li W, Xu X, Wang Y, Luo Y, Cheng K, Zhuang R. Acute Cold Water-Immersion Restraint Stress Induces Intestinal Injury and Reduces the Diversity of Gut Microbiota in Mice. Front Cell Infect Microbiol 2021; 11:706849. [PMID: 34722327 PMCID: PMC8551804 DOI: 10.3389/fcimb.2021.706849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023] Open
Abstract
Growing evidence has demonstrated that stress triggers gastrointestinal (GI) disorders. This study aimed to investigate how the acute cold water-immersion restraint (CWIR) stress affects intestinal injury and gut microbiota (GM) distribution. Male C57BL/6 mice were used to establish a CWIR animal model. Hematoxylin–eosin and periodic acid–Schiff staining were performed to assess intestinal histopathological changes. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and immunofluorescence staining were used to evaluate the expression of inflammatory cytokines and immune cell infiltration in the intestinal tissues. The gut permeability and intestinal occludin protein expression were determined through fluorescein isothiocyanate-dextran detection and western blot, respectively. GM profiles were analyzed via high-throughput sequencing of the fecal bacterial 16S rRNA genes. Results showed that CWIR induced more severe intestinal mucosal injury compared to the control, leading to a significant increase in tumor necrosis factor-α expression, but no infiltration of neutrophil and T cells. CWIR also resulted in GI disruption and increased the permeability of the intestinal mucosa. GM profiles showed that CWIR reduced GM diversity of mice compared with the control group. Specifically, aerobic and gram-negative bacteria significantly increased after CWIR, which was associated with the severity of gut injury under stress. Therefore, acute CWIR leads to severe intestinal damage with inflammation and disrupts the GM homeostasis, contributing to decreased GM diversity. Our findings provide the theoretical basis for the further treatment of intestinal disorders induced by CWIR.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuexue Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yanling Luo
- Library of Fourth Military Medical University, Xi'an, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Wang G, Zhang H, Zhang J, Sanidad KZ, Yeliseyev V, Parsonnet J, Haggerty TD, Yang H, Ai L, Xie M, Cai Z, Zhang G. Metabolic fate of environmental chemical triclocarban in colon tissues: roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147677. [PMID: 34004538 PMCID: PMC8192447 DOI: 10.1016/j.scitotenv.2021.147677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 05/06/2023]
Abstract
Metabolic transformations play critical roles in the bioavailability and toxicities of environmental pollutants and toxicants. However, most previous research has focused on the metabolic reactions in host tissues, the gut microbiota-mediated biotransformation of environmental compounds is understudied. Using triclocarban (TCC) as a model environmental compound, here we study the metabolic fate of TCC in gut tissues and determine the roles of gut microbiota involved. We find that compared with other tissues, the colon tissue has a unique metabolic profile of TCC, with high abundance of the parent compound TCC and its free-form metabolites. Using a variety of approaches including antibiotic-mediated suppression of gut bacteria in vivo, germ-free mice, and in vitro culture of fecal bacteria, we found that the unique metabolic profile of TCC in the colon is mediated by the actions of gut microbiota. Overall, our findings support that gut microbiota plays important roles in colonic metabolism of TCC, highlighting the importance to consider the contributions of gut microbiota in toxicology evaluation of environmental compounds.
Collapse
Affiliation(s)
- Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Minhao Xie
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
23
|
Ji Y, Tao T, Zhang J, Su A, Zhao L, Chen H, Hu Q. Comparison of effects on colitis-associated tumorigenesis and gut microbiota in mice between Ophiocordyceps sinensis and Cordyceps militaris. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153653. [PMID: 34330600 DOI: 10.1016/j.phymed.2021.153653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Gut microbiota plays an indispensable role in the treatment of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). As traditional medicinal fungi, previous studies have shown that Ophiocordyceps sinensis could better maintain intestinal health via promoting the growth of probiotics in vitro compared with Cordyceps militaris. However, the detailed pharmacological activities and clinical efficacy of O. sinensis and C. militaris are still elusive. PURPOSE We aimed to evaluate the different actions of O. sinensis and C. militaris on colitis-associated tumorigenesis in Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-treated mice and explore the potential gut microbiota-dependent mechanisms. METHODS C57BL/6 mice (Male, 4 weeks old) were used to construct the AOM/DSS-induced CAC mice model. The mice were administered with 0.6 mg/g/d O. sinensis or C. militaris for 12 weeks. It's worth noting that fecal microbiota transplantation (FMT) and antibiotic treatment were used to investigated the complex interactions between the medicinal fungi, gut microbiota and colonic tumorigenesis. RESULTS O. sinensis treatment significantly increased the body weight and survival rate, reduced the number of colon tumors, improved the damage of colon epithelial tissue, restored the crypt structure and alleviate the colonic inflammation in AOM/DSS-treated mice. RT-qPCR results indicated that O. sinensis partly regulated the Wnt/β-catenin signaling via alleviating the overexpression of β-catenin, TCF4 and c-Myc genes in adjacent noncancerous tissues. Compared with C. militaris, O. sinensis showed better anti-tumor activity. Gut microbiota analysis revealed that O. sinensis reversed the decline of gut microbiota diversity and the structural disorder induced by AOM/DSS. Spearman's correlation analysis showed that O. sinensis promoted the growth of Parabacteroides goldsteinii and Bifidobacterium pseudolongum PV8-2, which were positively correlated with the anti-tumor activity and the production of SCFAs. FMT combined with antibiotic treatment showed that horizontal fecal transfer derived from O. sinensis-treated mice improved the intestinal inflammation and alleviated the colitis-associated tumorigenesis, which was consistent with the direct ingestion of O. sinensis. CONCLUSION O. sinensis could better attenuate colitis-associated tumorigenesis compared with C. militaris. These effects might be at least partially due to the increased abundance of probiotics, especially P. goldsteinii and B. pseudolongum PV8-2.
Collapse
Affiliation(s)
- Yang Ji
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tianyi Tao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Junmiao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Anxiang Su
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Chen
- Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
24
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
25
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Xie M, Zhang H, Wang W, Sherman HL, Minter LM, Cai Z, Zhang G. Triclocarban Exposure Exaggerates Spontaneous Colonic Inflammation in Il-10-/- Mice. Toxicol Sci 2021; 174:92-99. [PMID: 31868902 DOI: 10.1093/toxsci/kfz248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triclocarban (3,4,4'-trichlorocarbanilide, TCC) is a high-volume chemical used as an antimicrobial ingredient in many consumer and personal care products. In 2016, the Food and Drug Administration removed TCC from over-the-counter hand washing products. However, TCC remains approved to use in many other products and is a ubiquitous contaminant in the environment; furthermore, many common food crops can efficiently accumulate environmental TCC, resulting in potential human exposure through oral ingestion of contaminated food products. Therefore, human exposure to TCC could be a long-lasting and serious problem. A better understanding of its impact on human health could lead to important impact for public health and regulatory policy. Using a spontaneous colonic inflammation model in Il-10-/- mice, here we demonstrate that exposure to TCC, at doses relevant to human exposure, exaggerates spontaneous colonic inflammation in Il-10-/- mice, with reduced colon length, increase fecal concentration of lipocalin 2, enhanced gene expression of Il-6 and Ifn-γ in the colon, and exaggerated crypt damage in the colon. Collectively, these results support that TCC could be a potential environmental risk factor of colitis and associated gut diseases.
Collapse
Affiliation(s)
- Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.,Department of Food Science, University of Massachusetts, Amherst 01003, Massachusetts
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst 01003, Massachusetts
| | | | - Lisa M Minter
- Department of Veterinary and Animal Sciences.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003, Massachusetts
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst 01003, Massachusetts.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003, Massachusetts
| |
Collapse
|
27
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
28
|
Zhang H, Liang Y, Wu P, Shi X, Zhang G, Cai Z. Continuous Dermal Exposure to Triclocarban Perturbs the Homeostasis of Liver-Gut Axis in Mice: Insights from Metabolic Interactions and Microbiome Shifts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5117-5127. [PMID: 33691405 DOI: 10.1021/acs.est.0c08273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Humans are constantly exposed to antimicrobial triclocarban (TCC) via direct skin contact with personal care and consumer products, but the safety of long-term dermal exposure to TCC remains largely unknown. Herein, we used a mouse model to evaluate the potential health risks from the continuous dermal application of TCC at human-relevant concentrations. After percutaneous absorption, TCC circulated in the bloodstream and largely entered the liver-gut axis for metabolic disposition. Nontargeted metabolomics approach revealed that TCC exposure perturbed mouse liver homeostasis, as evidenced by the increased oxidative stress and impaired methylation capacity, leading to oxidative damage and enhancement of upstream glycolysis and folate-dependent one-carbon metabolism. Meanwhile, TCC was transformed in the liver through hydroxylation, dechlorination, methylation, glucuronidation, sulfation, and glutathione conjugation. TCC-derived xenobiotics were subsequently excreted into the gut, and glucuronide and sulfate metabolites could be further deconjugated by the gut microbiota into their active free forms. In addition, microbial community analysis showed that the composition of gut microbiome was altered in response to TCC exposure, indicating the perturbation of gut homeostasis. Together, through tracking the xenobiotic-biological interactions in vivo, this study provides novel insights into the underlying impacts of dermally absorbed TCC on the liver and gut microenvironments.
Collapse
Affiliation(s)
- Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianru Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Guodong Zhang
- Department of Food Science and Molecular and Cellular Biology Program, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
29
|
Li X, Tan CP, Liu YF, Xu YJ. Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14728-14738. [PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|