1
|
Kortekaas Krohn I, Callewaert C, Belasri H, De Pessemier B, Diez Lopez C, Mortz CG, O'Mahony L, Pérez-Gordo M, Sokolowska M, Unger Z, Untersmayr E, Homey B, Gomez-Casado C. The influence of lifestyle and environmental factors on host resilience through a homeostatic skin microbiota: An EAACI Task Force Report. Allergy 2024. [PMID: 39485000 DOI: 10.1111/all.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Human skin is colonized with skin microbiota that includes commensal bacteria, fungi, arthropods, archaea and viruses. The composition of the microbiota varies at different anatomical locations according to changes in body temperature, pH, humidity/hydration or sebum content. A homeostatic skin microbiota is crucial to maintain epithelial barrier functions, to protect from invading pathogens and to interact with the immune system. Therefore, maintaining homeostasis holds promise to be an achievable goal for microbiome-directed treatment strategies as well as a prophylactic strategy to prevent the development of skin diseases, as dysbiosis or disruption of homeostatic skin microbiota is associated with skin inflammation. A healthy skin microbiome is likely modulated by genetic as well as environmental and lifestyle factors. In this review, we aim to provide a complete overview of the lifestyle and environmental factors that can contribute to maintaining the skin microbiome healthy. Awareness of these factors could be the basis for a prophylactic strategy to prevent the development of skin diseases or to be used as a therapeutic approach.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Chris Callewaert
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Hafsa Belasri
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Britta De Pessemier
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Celia Diez Lopez
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Charlotte G Mortz
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Liam O'Mahony
- APC Microbiome Ireland, School of Microbiology, and Department of medicine, University College Cork, Cork, Ireland
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Zsofia Unger
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
2
|
Epitaux J, Sekarski N, Bressieux-Degueldre S. Kawasaki disease before and during the COVID-19 pandemic: a single-center comparative study in Switzerland. BMC Pediatr 2024; 24:637. [PMID: 39379864 PMCID: PMC11460099 DOI: 10.1186/s12887-024-05115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Kawasaki disease is a rare systemic inflammatory syndrome that mainly affects children under five years of age and is the first cause of pediatric acquired cardiovascular disease. The pathogenesis is complex and a viral trigger is suspected, as well as genetic susceptibility. Multiple studies around the world have shown a decrease in the incidence of Kawasaki disease and have hypothesized that the different sanitary measures enforced in each country during the pandemic period could be responsible to a certain extent. The aim of this study is to evaluate the effects of the COVID-19 pandemic on the disease's incidence, defining characteristics, coronary artery outcomes and management in a tertiary center in Switzerland. METHODS This study is a retrospective analysis of children who have been diagnosed with Kawasaki disease that compares clinical, laboratory, SARS-CoV-2 exposure, and echocardiographic data as well as treatments before (January 1st 2017 to February 24th 2020) and during (February 25th 2020 to December 31st 2022) the COVID-19 pandemic in Switzerland. Statistical significance of differences in the compared parameters was assessed. RESULTS Of the 90 patients included, 31 belonged to the first group and 59 belonged to the second group. There was a statistically significant (p < 0.05) increase in incidence during the pandemic period (5.91/100,000 children) of 88% compared to the pre-pandemic period (3.14/100,000 children). A lesser seasonal variation was observed during the pandemic. 30% of the patients in the pandemic group had an exposure to SARS-CoV-2. There was no other notable difference in demographic factors, clinical presentation, coronary outcome or administered treatment. CONCLUSIONS To the best of our knowledge, this is the first prolonged European study comparing Kawasaki disease before and during the COVID-19 pandemic. There was a significant increase in incidence in Kawasaki disease during the COVID-19 pandemic. In contrast, studies done in Japan, South Korea and the USA have shown a decrease in incidence. Differences in methodologies, genetics, ethnicities, environments, microbiome-altering behaviors, sanitary measures and SARS-CoV-2 spread are factors that should be considered. Further studies analyzing the differences between countries with increased incidence of Kawasaki disease could help better understand the relevance of such factors and provide more insight into the etiologies of this particular disease.
Collapse
Affiliation(s)
- Justine Epitaux
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, Lausanne, 1011, Switzerland
| | - Nicole Sekarski
- Department of woman-mother-child, Unit of Pediatric Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, Lausanne, 1011, Switzerland
| | - Sabrina Bressieux-Degueldre
- Department of woman-mother-child, Unit of Pediatric Cardiology, Lausanne University Hospital, Rue du Bugnon 21, Lausanne, 1011, Switzerland.
| |
Collapse
|
3
|
Strout N, Pasic L, Hicks C, Chua XY, Tashvighi N, Butler P, Liu Z, El-Assaad F, Holmes E, Susic D, Samaras K, Craig ME, Davis GK, Henry A, Ledger WL, El-Omar EM. The MothersBabies Study, an Australian Prospective Cohort Study Analyzing the Microbiome in the Preconception and Perinatal Period to Determine Risk of Adverse Pregnancy, Postpartum, and Child-Related Health Outcomes: Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6736. [PMID: 37754596 PMCID: PMC10531411 DOI: 10.3390/ijerph20186736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
The microbiome has emerged as a key determinant of human health and reproduction, with recent evidence suggesting a dysbiotic microbiome is implicated in adverse perinatal health outcomes. The existing research has been limited by the sample collection and timing, cohort design, sample design, and lack of data on the preconception microbiome. This prospective, longitudinal cohort study will recruit 2000 Australian women, in order to fully explore the role of the microbiome in the development of adverse perinatal outcomes. Participants are enrolled for a maximum of 7 years, from 1 year preconception, through to 5 years postpartum. Assessment occurs every three months until pregnancy occurs, then during Trimester 1 (5 + 0-12 + 6 weeks gestation), Trimester 2 (20 + 0-24 + 6 weeks gestation), Trimester 3 (32 + 0-36 + 6 weeks gestation), and postpartum at 1 week, 2 months, 6 months, and then annually from 1 to 5 years. At each assessment, maternal participants self-collect oral, skin, vaginal, urine, and stool samples. Oral, skin, urine, and stool samples will be collected from children. Blood samples will be obtained from maternal participants who can access a study collection center. The measurements taken will include anthropometric, blood pressure, heart rate, and serum hormonal and metabolic parameters. Validated self-report questionnaires will be administered to assess diet, physical activity, mental health, and child developmental milestones. Medications, medical, surgical, obstetric history, the impact of COVID-19, living environments, and pregnancy and child health outcomes will be recorded. Multiomic bioinformatic and statistical analyses will assess the association between participants who developed high-risk and low-risk pregnancies, adverse postnatal conditions, and/or childhood disease, and their microbiome for the different sample types.
Collapse
Affiliation(s)
- Naomi Strout
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Lana Pasic
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Chloe Hicks
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Xin-Yi Chua
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Niki Tashvighi
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Phoebe Butler
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Zhixin Liu
- UNSW Stats Central, Biological Sciences South Building (E26), Level 2 Kensington, UNSW Sydney, Sydney, NSW 2052, Australia
- Healthdirect Australia, Level 4, 477 Pitt Street, Sydney, NSW 2000, Australia
| | - Fatima El-Assaad
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| | - Elaine Holmes
- The Australian National Phenome Centre, Harry Perkins Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Daniella Susic
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Katherine Samaras
- Complex Diseases Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- Department of Endocrinology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical Campus, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Gregory K. Davis
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Amanda Henry
- Department of Women’s and Children’s Health, St George Hospital, Kogarah, NSW 2217, Australia; (G.K.D.); (A.H.)
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - William L. Ledger
- Discipline of Women’s Health, School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia; (M.E.C.); (W.L.L.)
| | - Emad M. El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW 2052, Australia; (N.S.); (L.P.); (C.H.); (X.-Y.C.); (F.E.-A.); (D.S.)
| |
Collapse
|
4
|
Querdasi FR, Vogel SC, Thomason ME, Callaghan BL, Brito NH. A comparison of the infant gut microbiome before versus after the start of the covid-19 pandemic. Sci Rep 2023; 13:13289. [PMID: 37587195 PMCID: PMC10432475 DOI: 10.1038/s41598-023-40102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
The COVID-19 pandemic and resulting public health directives led to many changes in families' social and material environments. Prior research suggests that these changes are likely to impact composition of the gut microbiome, particularly during early childhood when the gut microbiome is developing most rapidly. Importantly, disruption to the gut microbiome during this sensitive period can have potentially long-lasting impacts on health and development. In the current study, we compare gut microbiome composition among a socioeconomically and racially diverse group of 12-month old infants living in New York City who provided stool samples before the pandemic (N = 34) to a group who provided samples during the first 9-months of the pandemic (March-December 2020; N = 20). We found that infants sampled during the pandemic had lower alpha diversity of the microbiome, lower abundance of Pasteurellaceae and Haemophilus, and significantly different beta diversity based on unweighted Unifrac distance than infants sampled before the pandemic. Exploratory analyses suggest that gut microbiome changes due to the pandemic occurred relatively quickly after the start of the pandemic and were sustained. Our results provide evidence that pandemic-related environmental disruptions had an impact on community-level taxonomic diversity of the developing gut microbiome, as well as abundance of specific members of the gut bacterial community.
Collapse
|
5
|
Zhang J, Zhang Y, Xia Y, Sun J. Microbiome and intestinal pathophysiology in post-acute sequelae of COVID-19. Genes Dis 2023; 11:S2352-3042(23)00223-4. [PMID: 37362775 PMCID: PMC10278891 DOI: 10.1016/j.gendis.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/28/2023] Open
Abstract
Long COVID, also known for post-acute sequelae of COVID-19, describes the people who have the signs and symptoms that continue or develop after the acute COVID-19 phase. Long COVID patients suffer from an inflammation or host responses towards the virus approximately 4 weeks after initial infection with the SARS CoV-2 virus and continue for an uncharacterized duration. Anyone infected with COVID-19 before could experience long-COVID conditions, including the patients who were infected with SARS CoV-2 virus confirmed by tests and those who never knew they had an infection early. People with long COVID may experience health problems from different types and combinations of symptoms over time, such as fatigue, dyspnea, cognitive impairments, and gastrointestinal (GI) symptoms (e.g., nausea, vomiting, diarrhea, decreased or loss of appetite, abdominal pain, and dysgeusia). The critical role of the microbiome in these GI symptoms and long COVID were reported in clinical patients and experimental models. Here, we provide an overall view of the critical role of the GI tract and microbiome in the development of long COVID, including the clinical GI symptoms in patients, dysbiosis, viral-microbiome interactions, barrier function, and inflammatory bowel disease patients with long COVID. We highlight the potential mechanisms and possible treatment based on GI health and microbiome. Finally, we discuss challenges and future direction in the long COVID clinic and research.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
- UIC Cancer Center, Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2023; 20:323-337. [PMID: 36271144 PMCID: PMC9589856 DOI: 10.1038/s41575-022-00698-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the 'gut-lung axis'. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.
Collapse
Affiliation(s)
- Fen Zhang
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qin Liu
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qi Su
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
| |
Collapse
|
7
|
The Potential Role of Microorganisms on Enteric Nervous System Development and Disease. Biomolecules 2023; 13:biom13030447. [PMID: 36979382 PMCID: PMC10046024 DOI: 10.3390/biom13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The enteric nervous system (ENS), the inherent nervous system of the gastrointestinal (GI) tract is a vast nervous system that controls key GI functions, including motility. It functions at a critical interface between the gut luminal contents, including the diverse population of microorganisms deemed the microbiota, as well as the autonomic and central nervous systems. Critical development of this axis of interaction, a key determinant of human health and disease, appears to occur most significantly during early life and childhood, from the pre-natal through to the post-natal period. These factors that enable the ENS to function as a master regulator also make it vulnerable to damage and, in turn, a number of GI motility disorders. Increasing attention is now being paid to the potential of disruption of the microbiota and pathogenic microorganisms in the potential aetiopathogeneis of GI motility disorders in children. This article explores the evidence regarding the relationship between the development and integrity of the ENS and the potential for such factors, notably dysbiosis and pathogenic bacteria, viruses and parasites, to impact upon them in early life.
Collapse
|
8
|
The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms231810306. [PMID: 36142219 PMCID: PMC9499685 DOI: 10.3390/ijms231810306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother−neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.
Collapse
|
9
|
Valentino MS, Esposito C, Colosimo S, Caprio AM, Puzone S, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Gut microbiota and COVID-19: An intriguing pediatric perspective. World J Clin Cases 2022; 10:8076-8087. [PMID: 36159525 PMCID: PMC9403663 DOI: 10.12998/wjcc.v10.i23.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) involvement has been reported in approximately 50% of patients with coronavirus disease 2019 (COVID-19), which is due to the pathogenic role of inflammation and the intestinal function of the angiotensin-converting enzyme 2 and its receptor. Accumulating adult data has pointed out that gut dysbiosis might occur in these patients with a potential impact on the severity of the disease, however the role of gut microbiota in susceptibility and severity of COVID-19 disease in children is still poorly known. During the last decades, the crosstalk between gut and lung has been largely recognized resulting in the concept of “gut-lung axis” as a central player in modulating the development of several diseases. Both organs are involved in the common mucosal immune system (including bronchus-associated and gut-associated lymphoid tissues) and their homeostasis is crucial for human health. In this framework, it has been found that the role of GI dysbiosis is affecting the homeostasis of the gut-liver axis. Of note, a gut microbiome imbalance has been linked to COVID-19 severity in adult subjects, but it remains to be clarified. Based on the increased risk of inflammatory diseases in children with COVID-19, the potential correlation between gut microbiota dysfunction and COVID-19 needs to be studied in this population. We aimed to summarize the most recent evidence on this striking aspect of COVID-19 in childhood.
Collapse
Affiliation(s)
- Maria Sole Valentino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Claudia Esposito
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Angela Maria Caprio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simona Puzone
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
10
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
The Concept of Intrauterine Programming and the Development of the Neonatal Microbiome in the Prevention of SARS-CoV-2 Infection. Nutrients 2022; 14:nu14091702. [PMID: 35565670 PMCID: PMC9104449 DOI: 10.3390/nu14091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
The process of intrauterine programming is related to the quality of the microbiome formed in the fetus and the newborn. The implementation of probiotics, prebiotics, and psychobiotics shows immunomodulatory potential towards the organism, especially the microbiome of the pregnant woman and her child. Nutrigenomics, based on the observation of pregnant women and the developing fetus, makes it possible to estimate the biological effects of active dietary components on gene expression or silencing. Nutritional intervention for pregnant women should consider the nutritional status of the patient, biological markers, and the potential impact of dietary intervention on fetal physiology. The use of a holistic model of nutrition allows for appropriately targeted and effective dietary prophylaxis that can impact the physical and mental health of both the mother and the newborn. This model targets the regulation of the immune response of the pregnant woman and the newborn, considering the clinical state of the microbiota and the pathomechanism of the nervous system. Current scientific reports indicate the protective properties of immunobiotics (probiotics) about the reduction of the frequency of infections and the severity of the course of COVID-19 disease. The aim of this study was to test the hypothesis that intrauterine programming influences the development of the microbiome for the prevention of SARS-CoV-2 infection based on a review of research studies.
Collapse
|
12
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022; 14:nu14071405. [PMID: 35406018 PMCID: PMC9002905 DOI: 10.3390/nu14071405] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
The second and third trimesters of pregnancy are crucial for the anatomical and functional development of the gastrointestinal (GI) tract. If premature birth occurs, the immaturity of the digestive and absorptive processes and of GI motility represent a critical challenge to meet adequate nutritional needs, leading to poor extrauterine growth and to other critical complications. Knowledge of the main developmental stages of the processes involved in the digestion and absorption of proteins, carbohydrates, and lipids, as well as of the maturational phases underlying the development of GI motility, may aid clinicians to optimize the nutritional management of preterm infants. The immaturity of these GI systems and functions may negatively influence the patterns of gut colonization, predisposing to an abnormal microbiome. This, in turn, further contributes to alter the functional, immune, and neural development of the GI tract and, especially in preterm infants, has been associated with an increased risk of severe GI complications, such as necrotizing enterocolitis. Deeper understanding of the physiological colonization patterns in term and preterm infants may support the promotion of these patterns and the avoidance of microbial perturbations associated with the development of several diseases throughout life. This review aims to provide a global overview on the maturational features of the main GI functions and on their implications following preterm birth. We will particularly focus on the developmental differences in intestinal digestion and absorption functionality, motility, gut–brain axis interaction, and microbiomes.
Collapse
|
14
|
Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Exp Physiol 2022; 107:415-421. [PMID: 35041771 PMCID: PMC9305283 DOI: 10.1113/ep089919] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
New Findings What is the topic of this review? The importance of the early life gut microbiome, with a focus on preterm infants and microbially related diseases. Current techniques to study the preterm gut microbiome are appraised, and the potential of recent methodological advancements is discussed. What advances does it highlight? Recent findings in the field achieved by the application of advanced technologies, the applicability of intestinally derived organoid models to study host–microbiome interactions in the preterm gut, and recent developments in enhancing the physiological relevance of such models. Preterm intestinally derived organoids may provide novel insights into the mechanisms underlying preterm disease, as well as diagnosis and treatment opportunities. These models have huge translational potential, offering a step towards precision medicine.
Abstract Accumulating evidence affirms the importance of the gut microbiome in both health and disease. In early life, there exists a critical period in which the composition of gut microbes is particularly malleable and subject to a wide range of influencing factors. Disturbances to microbial communities during this time may be beneficial or detrimental to short and long‐term health outcomes. For infants born prematurely, naïve immune systems, immature gastrointestinal tracts and additional clinical needs put this population at high risk of abnormal microbial colonisation, resulting in increased susceptibility to diseases including necrotising enterocolitis (NEC) and late‐onset sepsis (LOS). Traditional cell culture methods, gnotobiotic animals, molecular sequencing techniques (16S rRNA gene sequencing and metagenomics) and advanced ‘omics’ technologies (transcriptomics, proteomics and metabolomics) have been fundamental in exploring the associations between diet, gut microbes, microbial functions and disease. Despite significant investment and ongoing research efforts, prevention and treatment strategies in NEC and LOS remain limited. Recent endeavours have focused on searching for new, more physiologically relevant models to simulate the preterm intestine. Preterm intestinally derived organoids represent a promising in vitro approach in the study of host–microbiome interactions in the preterm infant gut, offering new and exciting possibilities in this field.
Collapse
Affiliation(s)
- Sinead Ahearn-Ford
- Clinical and Translational Research Institute, Newcastle University, Newcastle, NE2 4HH, UK
| | - Janet E Berrington
- Clinical and Translational Research Institute, Newcastle University, Newcastle, NE2 4HH, UK.,Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, NE1 4LP, UK
| | - Christopher J Stewart
- Clinical and Translational Research Institute, Newcastle University, Newcastle, NE2 4HH, UK
| |
Collapse
|
15
|
Romano-Keeler J, Sun J. The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. NEWBORN (CLARKSVILLE, MD.) 2022; 1:219-226. [PMID: 36237439 PMCID: PMC9555117 DOI: 10.5005/jp-journals-11002-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early life microbial colonization is critical for the development of the immune system, postnatal growth, and long-term health and disease. The dynamic and nascent microbiomes of children are highly individualized and are characterized by low bacterial diversity. Any disruptions in microbial colonization can contribute to shifts in normal microbial colonization that persist past the first 1000 days of life and result in intestinal dysbiosis. Here, we focus on microbiome-host interactions during fetal, newborn, and infant microbiome development. We summarize the roles of bacterial communities in fetal development and adverse health outcomes due to dysbiosis. We also discuss how internal and external factors program the microbiome's metabolic machinery as it evolves into an adult-like microbiome. Finally, we discuss the limits of current studies and future directions. Studies on the early-life microbiome will be critical for a better understanding of childhood health and diseases, as well as restorative methods for the prevention and treatment of diseases in adulthood.
Collapse
Affiliation(s)
- Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, University of Illinois, Chicago, Illinois, United States of America
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, Illinois, United States of America; University of Illinois Cancer Center, Chicago, Illinois, United States of America; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Etti M, Alger J, Salas SP, Saggers R, Ramdin T, Endler M, Gemzell-Danielsson K, Alfvén T, Ahmed Y, Callejas A, Eskenazi D, Khalil A, Le Doare K. Global research priorities for COVID-19 in maternal, reproductive and child health: Results of an international survey. PLoS One 2021; 16:e0257516. [PMID: 34559827 PMCID: PMC8462675 DOI: 10.1371/journal.pone.0257516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The World Health Organization's "Coordinated Global Research Roadmap: 2019 Novel Coronavirus" outlined the need for research that focuses on the impact of COVID-19 on pregnant women and children. More than one year after the first reported case significant knowledge gaps remain, highlighting the need for a coordinated approach. To address this need, the Maternal, Newborn and Child Health Working Group (MNCH WG) of the COVID-19 Clinical Research Coalition conducted an international survey to identify global research priorities for COVID-19 in maternal, reproductive and child health. METHOD This project was undertaken using a modified Delphi method. An electronic questionnaire was disseminated to clinicians and researchers in three different languages (English, French and Spanish) via MNCH WG affiliated networks. Respondents were asked to select the five most urgent research priorities among a list of 17 identified by the MNCH WG. Analysis of questionnaire data was undertaken to identify key similarities and differences among respondents according to questionnaire language, location and specialty. Following elimination of the seven lowest ranking priorities, the questionnaire was recirculated to the original pool of respondents. Thematic analysis of final questionnaire data was undertaken by the MNCH WG from which four priority research themes emerged. RESULTS Questionnaire 1 was completed by 225 respondents from 29 countries. Questionnaire 2 was returned by 49 respondents. The four priority research themes which emerged from the analysis were 1) access to healthcare during the COVID-19 pandemic, 2) the direct and 3) indirect effects of COVID-19 on pregnant and breastfeeding women and children and 4) the transmission of COVID-19 and protection from infection. CONCLUSION The results of these questionnaires indicated a high level of concordance among continents and specialties regarding priority research themes. This prioritized list of research uncertainties, developed to specifically highlight the most urgent clinical needs as perceived by healthcare professionals and researchers, could help funding organizations and researchers to answer the most pressing questions for clinicians and public health professionals during the pandemic. It is hoped that these identified priority research themes can help focus the discussion regarding the allocation of limited resources to enhance COVID-19 research in MNCH globally.
Collapse
Affiliation(s)
- Melanie Etti
- Makerere University Johns Hopkins University Research Collaboration, Kampala, Uganda
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Jackeline Alger
- Faculty of Medical Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Sofía P. Salas
- Center for Bioethics, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Las Condes, Chile
| | - Robin Saggers
- Charlotte Maxeke Johannesburg Academic Hospital, University of the Witswatersrand, Johannesburg, South Africa
| | - Tanusha Ramdin
- Charlotte Maxeke Johannesburg Academic Hospital, University of the Witswatersrand, Johannesburg, South Africa
| | - Margit Endler
- Department of Children’s and Women’s Health, Karolinska Institutet, Solna, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Children’s and Women’s Health, Karolinska Institutet, Solna, Sweden
- Karolinska University Hospital, Solna, Sweden
| | - Tobias Alfvén
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Yusuf Ahmed
- Levy Mwanawasa Medical University, Lusaka, Zambia
| | | | - Deborah Eskenazi
- Universidad Peruana de Ciencias Aplicadas & Clínica Delgado, Lima, Peru
| | - Asma Khalil
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Kirsty Le Doare
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- MRC/UVRI@LSHTM, Entebbe, Uganda
| | | |
Collapse
|
17
|
Piccolo V, Mazzatenta C, Russo T, Morandi F, Bassi A, Argenziano G, Valerio E, Grimalt R, Cutrone M. Late-onset pustular skin eruption in a healthy neonate born from COVID-positive mother: a coincidence or a new skin sign of the infection? J Eur Acad Dermatol Venereol 2021; 35:e850-e852. [PMID: 34363639 DOI: 10.1111/jdv.17579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023]
Affiliation(s)
- V Piccolo
- Dermatology Unit University of Campania, Naples, Italy
| | - C Mazzatenta
- UO Dermatology- Azienda USL Toscana Nord Ovest, Lucca, Italy
| | - T Russo
- Dermatology Unit University of Campania, Naples, Italy
| | - F Morandi
- UOC Pediatrics- San Leopoldo Mandic Hospital, ASST Lecco, Merate, Italy
| | - A Bassi
- UO Dermatology- Azienda USL Toscana Nord Ovest, Lucca, Italy
| | - G Argenziano
- Dermatology Unit University of Campania, Naples, Italy
| | - E Valerio
- Neonatal intensive care unit, University of Padova, Padova, Italy
| | - R Grimalt
- International University of Catalunya, Barcelona, Spain
| | - M Cutrone
- Pediatric Dermatology, Ospedale dell'Angelo Venezia, Ospedale San Bortolo, Vicenza, Italy
| |
Collapse
|
18
|
Rupp J, Härtel C. COVID-19 Pandemic and Its Effects on the Development of Immunity in Infancy. Neonatology 2021; 118:734-735. [PMID: 34515184 PMCID: PMC8450837 DOI: 10.1159/000518658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein/Campus Lübeck, Lübeck, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|