1
|
Bai YY, Tian R, Qian Y, Zhao CB, Yan YG, Zhang L, Yue SJ, Zhang Q, Wang YW, Tang YP. Integrated gut microbiota and serum pharmacochemistry reveal the mechanisms of wine steaming in alleviating rhubarb diarrhea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156105. [PMID: 39368337 DOI: 10.1016/j.phymed.2024.156105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Long-term use of rhubarb (RH) can cause adverse gastrointestinal reactions (such as diarrhea), whereas RH steaming with wine (PRH) can alleviate RH-induced diarrhea. However, the potential material basis and mechanisms by which wine steaming alleviates diarrhea caused by RH remain unclear. PURPOSE To reveal the potential material basis and underlying mechanisms of wine steaming in alleviating diarrhea caused by RH from the perspective of small intestinal flora and immune function. METHODS The major anthraquinone/anthrone components were detected using high-performance liquid chromatography (HPLC). Constipation model mice were replicated using loperamide hydrochloride and were administered RH and PRH for six consecutive weeks. Histopathological observation (duodenum, jejunum, and ileum) was performed using hematoxylin-eosin (HE) staining, and the serum levels of inflammatory cytokines, immunoglobulin G (IgG), and immunoglobulin A (IgA) were examined. CD4+, CD8+, and Treg cells counts in peripheral blood were determined using flow cytometry; The protein expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) was determined using immunohistochemistry (IHC) and western blot (WB). The small intestine contents and feces were analyzed by 16 S rRNA sequencing and the contents of short chain fatty acids (SCFAs) in feces were determined using gas chromatography-mass spectrometry (GC-MS). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the blood absorption compounds and endogenous metabolites. RESULTS The levels of the major anthraquinone/anthrone components were decreased in PRH. RH and PRH both increased the wet fecal weight at 12 h (WFW-12) and fecal water rate (FWR), alleviated the dry and black fecal morphology, and relieved small intestine injuries in the second week. In the fourth week, although RH and PRH alleviated the abnormal levels of indicators in the model mice (fecal water rate, immune cells percentage, and TLR4/NF-κB expression), minor small intestinal damage was observed. Compared to that at the fourth week, RH and PRH increased the levels of WFW-12, FWR, inflammatory cytokines, and TLR4/NF-κB expression, and decreased the levels of IgG/IgA and immune cells with extended administration (sixth week). Further, damage to the small intestine worsened (severe ileal damage) and different degrees of loose stools were observed in RH- and PRH-administered mice in the sixth week. Compared with those in the control group, the levels of WFW-12, FWR, inflammatory cytokines, TLR4/NF-κB expression, IgG/IgA, and immune cell percentage were significantly different in the RH-H and PRH-H mice at the sixth week (except for CD8+in PRH-H). Further, RH and PRH disturbed the gut microbiota (GM) (Lactobacillus and Dubosiella decreased, Aerococcus and Corynebacterium increased) and obviously reduced the content of SCFAs (acetic acid, butyric acid, and isobutyric acid). However, almost all the results indicated a lower impact of PRH than that of RH. Metabolic pathways mainly involved in glycerophospholipid metabolism were identified along with a total of 21 blood absorption components, including anthraquinones, anthrones, flavanols, and tannins. The correlation analysis showed a positive correlation of pathogenic bacteria (Aerococcus and Corynebacterium) with inflammatory cytokines, TLR4/NF-κB, LysoPC(20:0/0:0), and PE (16:0/20:4(8Z,11Z,14Z,17Z)) and a negative correlation with immune cells and SCFAs (acetic acid and isobutyric acid); however, the opposite results were observed for beneficial bacteria (Lactobacillus and Dubosiella). CONCLUSION Overall, PRH can alleviate RH-induced diarrhea by recovering the GM imbalance and abnormal levels of GM-mediated SCFAs, alleviating the decrease in cellular immune function and abnormal expression of TLR4/NF-κB, thereby suppressing the release of inflammatory factors, possibly, through its lower content of anthraquinones. This study explored for the first time the processing mechanism of wine steaming in alleviating RH-induced diarrhea from the aspects of small intestinal flora and small intestinal immune function.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou 215000, Jiangsu Province, China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
2
|
Muñoz RA, Ramos AA, Miranda FJ, De La Rosa JE, Muñoz AE, Ramírez AA, Chavez EP, Gallardo G, Pizarro S. Cholecystectomy Is a Risk Factor for Proximal Colon Cancer That May Also Relate to its Aggressiveness. J Surg Res 2024; 304:152-161. [PMID: 39547064 DOI: 10.1016/j.jss.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION There are studies with mixed conclusions about the role cholecystectomy plays as a risk factor for proximal colorectal cancer (CRC). METHODS We performed a multicenter retrospective cohort study where the records of patients with CRC were reviewed. Data was collected regarding affected colon subsegment (cecum, ascending, transverse, descending, sigmoid, or rectum, which were also combined into proximal or distal colon), history and time since cholecystectomy, histopathology reports (TNM classification and clinical stage), and KRAS, NRAS, and BRAF mutation analysis. Univariate and multivariate analysis adjusting for age, smoking history, body mass index, sex, and family history of cancer were performed. Logistical regression for statistical analysis was used to estimate the odds ratio for the association between cholecystectomy and tumor location. RESULTS Four hundred four cases were obtained, of which 52 previously had cholecystectomy. The date of surgery was recorded in 43 patients, with a 5 y median and an interquartile range of 1.5-14 y prior to CRC diagnosis. Both crude and adjusted odds ratio (2.86 and 2.42, respectively) confirmed an associated risk for developing proximal CRC after cholecystectomy. When proximal CRC cases with previous cholecystectomy were directly compared against proximal CRC without cholecystectomy and distal CRC cases, the former had a higher distribution of prevalence for T3, T4b, N1b, M1a, and M1c. KRAS mutation also presented its highest prevalence in this group with 33%. CONCLUSIONS Cholecystectomy was related to the development of proximal CRC in all its subsegments, seemingly associated with higher stages at diagnosis. Close surveillance should be considered in patients who undergo cholecystectomy.
Collapse
Affiliation(s)
- Raymundo A Muñoz
- Department of Research and Medical Education, Hospital Angeles Chihuahua, Chihuahua, Mexico; Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua (UACH), Chihuahua, Mexico.
| | - Andrei A Ramos
- Department of General Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - Francisco J Miranda
- Department of Oncologic Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - José E De La Rosa
- Medical Program Coordination Office, Faculty of Medicine and Biomedical Sciences, UACH, Chihuahua, Mexico
| | - Alfonzo E Muñoz
- College Of Science, University of Texas at El Paso (UTEP), El Paso, Texas
| | - Aáron A Ramírez
- Department of General Surgery, Christus Muguerza Hospital del Parque, Chihuahua, Mexico
| | - Eva P Chavez
- Plastic Surgery, Private Practice, El Paso, Texas
| | - Guillermo Gallardo
- Department of General Surgery & Endoscopy, Hospital Angeles Chihuahua, Chihuahua, Mexico
| | - Salvador Pizarro
- Department of Rheumatology, Hospital Angeles Chihuahua, Chihuahua, Mexico
| |
Collapse
|
3
|
Lai Y, Lan X, Qin Y, Wei Y, Li X, Feng J, Jiang J. Polysaccharides of natural products alleviate antibiotic-associated diarrhea by regulating gut microbiota: a review. Arch Microbiol 2024; 206:461. [PMID: 39508892 DOI: 10.1007/s00203-024-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is diarrhea caused by disturbances in intestinal microbiota and metabolism following inappropriate use of antibiotics. With the over-reliance on antibiotics, the incidence of AAD is increasing worldwide. Recently, the role of probiotics and prebiotic preparations in the prevention and treatment of AAD has received increasing attention. Various prebiotics can not only reduce the incidence of AAD, but also effectively shorten the course of the disease and alleviate the symptoms. Notably, many polysaccharides derived from plants and fungi are a class of biologically active and rich prebiotics with great potential to alleviate AAD. Therefore, this review aims to summarize the latest research on natural product polysaccharides to alleviate antibiotic-associated diarrhea by modulating the gut microbiota. It provides a theoretical basis for exploring the mechanism of natural product modulation of gut microbiota to alleviate AAD, and provides a reference for further development of active prebiotics.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yahui Qin
- The Fourth Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuankui Wei
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junping Jiang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
4
|
Teng F, Tang Y, Lu Z, Chen K, Chen Z. Investigating causal links between gallstones, cholecystectomy, and 33 site-specific cancers: a Mendelian randomization post-meta-analysis study. BMC Cancer 2024; 24:1192. [PMID: 39333915 PMCID: PMC11437614 DOI: 10.1186/s12885-024-12906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND AIM The association between gallstones/cholecystectomy and cancer remains inconclusive in the current literature. This study aimed to explore the causal connections between gallstones/cholecystectomy and cancer risk by utilizing a bidirectional two-sample multivariable Mendelian randomization approach with Genome-Wide Association Studies data. METHODS Utilizing Genome-Wide Association Studies data from the UK Biobank and FinnGen, this research employed multivariable Mendelian randomization analyses to explore the impact of gallstones and cholecystectomy on the risk of 33 distinct cancer types. Instrumental variables for gallstones and cholecystectomy were carefully selected to ensure robust analyses, and sensitivity and heterogeneity tests were conducted to verify the findings' validity. RESULTS Multivariable Mendelian randomization analysis, incorporating data from more than 450,000 individuals for gallstones and cholecystectomy, revealed nuanced associations with cancer risk. Cholecystectomy was associated with a significantly increased risk of nonmelanoma skin cancer (OR = 1.59, 95% CI: 1.21 to 2.10, P = 0.001), while gallstones were linked to a decreased risk of the same cancer type (OR = 0.63, 95% CI: 0.47 to 0.84, P = 0.002). Interestingly, the analysis also suggested that cholecystectomy may lower the risk of small intestine tumors (OR = 0.18, 95% CI: 0.043 to 0.71, P = 0.015), with gallstones showing an inverse relationship, indicating an increased risk (OR = 6.41, 95% CI: 1.48 to 27.80, P = 0.013). CONCLUSIONS The multivariable Mendelian randomization analysis highlights the differential impact of gallstones and cholecystectomy on cancer risk, specifically for nonmelanoma skin cancer and small intestine tumors. These results underscore the importance of nuanced clinical management strategies and further research to understand the underlying mechanisms and potential clinical implications of gallstone disease and cholecystectomy on cancer risk.
Collapse
Affiliation(s)
- Fei Teng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Youyin Tang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Zhangyu Lu
- West China School of Medicine, Sichuan University, No. 17 South Renming Road, Chengdu, 610094, China
| | - Kefei Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Zheyu Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
5
|
Fan MY, Jiang QL, Cui MY, Zhao MQ, Wang JJ, Lu YY. Alteration of ascending colon mucosal microbiota in patients after cholecystectomy. World J Gastrointest Surg 2024; 16:2436-2450. [PMID: 39220062 PMCID: PMC11362947 DOI: 10.4240/wjgs.v16.i8.2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Cholecystectomy is a successful treatment option for gallstones, although the incidence of colorectal cancer (CRC) has notably increased in post-cholecystectomy (PC) patients. However, it remains uncertain whether the altered mucosal microbiota in the ascending colon is related. AIM To investigate the potential correlation between gut microbiota and the surgical procedure of cholecystectomy. METHODS In total, 30 PC patients and 28 healthy controls underwent colonoscopies to collect mucosal biopsy samples. PC patients were divided based on their clinical features. Then, 16S-rRNA gene sequencing was used to analyze the amplicon, alpha diversity, beta diversity, and composition of the bacterial communities. Additionally, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) database, sourced from the Kyoto Encyclopedia of Genes and Genomes, was used to predict the functional capabilities of the bacteria. RESULTS PC patients were comparable with healthy controls. However, PC patients older than 60 years had a distinct composition compared to those under 60 years old. Bacteroidetes richness was considerably higher at the phylum level in PC patients. Bacteroides, Parabacteroides, and Bilophila were more abundant in the PC group than in the control group. Furthermore, PC patients exhibited greater enrichment in metabolic pathways, specifically those related to lipopolysaccharide biosynthesis and vancomycin group antibiotic production, than controls. CONCLUSION This study indicated that the mucosal microbiota in PC patients was altered, perhaps offering new perspectives on the treatment possibilities for CRC and diarrhea following cholecystectomy.
Collapse
Affiliation(s)
- Miao-Yan Fan
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qiao-Li Jiang
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Meng-Yan Cui
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meng-Qi Zhao
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jing-Jing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
6
|
Liu S, Gou H, Wei H, Chen S, Zhuo S, Luo M, Qin S, Zhang M, Chen J, Huang Z, Xia X, Yang X, He K. Cholecystohepatic shunt pathway reduces secondary bile acid accumulation to enhance natural killer T cell-mediated anti-hepatocellular carcinoma immunity. J Gastroenterol Hepatol 2024; 39:1684-1694. [PMID: 38747068 DOI: 10.1111/jgh.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND AIM The impact of cholecystectomy, which blocks the cholecystohepatic shunt pathway (CHSP), on the prognosis of patients with hepatocellular carcinoma (HCC) is unclear. Hepatic secondary bile acids (BAs) inhibit natural killer T (NKT) cell-mediated immunity against HCC, and the regulation of homeostasis of hepatic secondary BAs is controlled by the CHSP. However, the influence of CHSP on NKT cell-mediated immunity against HCC remains unclear. METHODS The clinical data of hospitalized patients undergoing HCC resection were collected. Meanwhile, an in situ HCC mouse model was established, and the CHSP was augmented using oleanolic acid (OA). RESULTS After 1:1 propensity score matching, Cox regression analysis revealed that cholecystectomy was an independent risk factor for HCC recurrence after hepatectomy (P = 0.027, hazard ratio: 1.599, 95% confidence interval: 1.055-2.422). Experimentally, when OA enhanced CHSP, a significant decrease was observed in the accumulation of secondary BAs in the livers of mice. Additionally, a significant increase was observed in the levels of C-X-C ligand 16 and interferon γ in the serum and tumor tissues. Further, the percentage of C-X-C receptor 6 (+) NKT cells in the tumor tissues increased significantly, and the growth of liver tumors was inhibited. CONCLUSIONS This clinical study revealed that cholecystectomy promoted the recurrence after radical hepatectomy in patients with HCC. Preserving the normal-functioning gallbladder as much as possible during surgery may be beneficial to the patient's prognosis. Further investigation into the mechanism revealed that CHSP enhanced NKT cell-mediated immunity against HCC by reducing the hepatic accumulation of secondary BAs.
Collapse
Affiliation(s)
- Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Haoxian Gou
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Wei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shengdeng Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shijie Zhuo
- Department of Hepatopancreatobiliary Surgery, Zizhong County People's Hospital, Neijiang, Sichuan, China
| | - Ming Luo
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shu Qin
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengyu Zhang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianming Xia
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Kai He
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Amaral Raposo M, Sousa Oliveira E, Dos Santos A, Guadagnini D, El Mourabit H, Housset C, Lemoinne S, Abdalla Saad MJ. Impact of cholecystectomy on the gut-liver axis and metabolic disorders. Clin Res Hepatol Gastroenterol 2024; 48:102370. [PMID: 38729564 DOI: 10.1016/j.clinre.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.
Collapse
Affiliation(s)
- Mariana Amaral Raposo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Emília Sousa Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Andrey Dos Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sara Lemoinne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil.
| |
Collapse
|
8
|
Nonogaki K, Kaji T. The GLP-1 Receptor Agonist Liraglutide Decreases Primary Bile Acids and Serotonin in the Colon Independently of Feeding in Mice. Int J Mol Sci 2024; 25:7784. [PMID: 39063026 PMCID: PMC11277076 DOI: 10.3390/ijms25147784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide remarkably decreased the expression of apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/β, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Division of Diabetes and Nutrition, RARiS, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Miyagi, Japan;
| | | |
Collapse
|
9
|
Kandalgaonkar MR, Kumar V, Vijay‐Kumar M. Digestive dynamics: Unveiling interplay between the gut microbiota and the liver in macronutrient metabolism and hepatic metabolic health. Physiol Rep 2024; 12:e16114. [PMID: 38886098 PMCID: PMC11182692 DOI: 10.14814/phy2.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.
Collapse
Affiliation(s)
- Mrunmayee R. Kandalgaonkar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Virender Kumar
- College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Matam Vijay‐Kumar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
10
|
He G, Zhang B, Yi K, Chen T, Shen C, Cao M, Wang N, Zong J, Wang Y, Liu K, Chang F, Chen X, Chen L, Luo Y, Meng Y, Li C, Zhou X. Heat stress-induced dysbiosis of the gut microbiota impairs spermatogenesis by regulating secondary bile acid metabolism in the gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173305. [PMID: 38777056 DOI: 10.1016/j.scitotenv.2024.173305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Heat stress (HS) poses a substantial challenge to livestock. Studies have demonstrated that HS reduces fertility and leads to gut microbiota dysbiosis in bulls. However, the impact of the gut microbiota on fertility in bulls during HS is still unclear. Our research revealed that HS exposure decreased semen quality in bulls, and fecal microbiota transplantation (FMT) from heat-stressed bulls to recipient mice resulted in a significant decrease in number of testicular germ cells and epididymal sperm. Untargeted metabolomics methodology and 16S rDNA sequencing conjoint analysis revealed that Akkermansia muciniphila (A. muciniphila) seemed to be a key bacterial regulator of spermatogenesis after HS exposure. Moreover, the research indicated that A. muciniphila regulated secondary bile acid metabolism by promoting the colonization of bile salt hydrolase (BSH)-metabolizing bacteria, leading to increase of retinol absorption in the host gut and subsequently elevation of testicular retinoic acid level, thereby improving spermatogenesis. This study sheds light on the relationship between HS-induced microbiota dysbiosis and spermatogenesis, offering a potential therapeutic approach for addressing bull spermatogenic dysfunction triggered by HS exposure.
Collapse
Affiliation(s)
- Guitian He
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kangle Yi
- Grassland and Herbivore Research Laboratory, Hunan Animal Husbandry and Veterinary Research Institute, Changsha, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yueying Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Fuqiang Chang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Jeong JJ, Jin YJ, Ganesan R, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Sharma SP, Jang YJ, Min U, Lim JH, Na KM, Choi J, Han SH, Ham YL, Lee DY, Kim BY, Suk KT. Multistrain Probiotics Alleviate Diarrhea by Modulating Microbiome-Derived Metabolites and Serotonin Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10232-4. [PMID: 38467925 DOI: 10.1007/s12602-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - You Jin Jang
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Kyeong Min Na
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea
| | - Sang Hak Han
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College Jecheon, Jecheon, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea.
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea.
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea.
| |
Collapse
|
12
|
Pan J, Wu J, Zhang S, Wang K, Ji G, Zhou W, Dang Y. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117568. [PMID: 38092317 DOI: 10.1016/j.jep.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1β, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1β, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.
Collapse
Affiliation(s)
- Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jiaxuan Wu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
13
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
14
|
Zhao J, Tian L, Xia B, Mi N, He Q, Yang M, Wang D, Wu S, Li Z, Zhang S, Zhang X, Yue P, Lin Y, Zhao H, Zhang B, Ma Z, Jiang N, Li M, Yuan J, Nie P, Lu L, Meng W. Cholecystectomy is associated with a higher risk of irritable bowel syndrome in the UK Biobank: a prospective cohort study. Front Pharmacol 2023; 14:1244563. [PMID: 38143491 PMCID: PMC10749201 DOI: 10.3389/fphar.2023.1244563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Recent studies have shown that bile acids are essential in irritable bowel syndrome (IBS) pathology, and cholecystectomy has direct effects on bile acid metabolism. However, whether cholecystectomy increases the risk of IBS remains unclear. We aimed to investigate the association between cholecystectomy and IBS risk in the UK Biobank (UKB). Methods: This study is a prospective analysis of 413,472 participants who were free of IBS, inflammatory bowel disease, cancer, or common benign digestive tract diseases. We identified incidents of IBS through self-reporting or links to primary healthcare and hospitalization data. We evaluated hazard ratios (HRs) adjusted for sociodemographic characteristics, health behaviours, comorbidities, and medications. Results: During a median follow-up period of 12.7 years, we observed 15,503 new cases of IBS. Participants with a history of cholecystectomy had a 46% higher risk of IBS than those without (HR = 1.46, 95% CI: 1.32-1.60), and further subtype analysis showed that the risk of IBS with diarrhoea was significantly higher than the risk of IBS without diarrhoea (HR = 1.71, 95% CI: 1.30-2.25 vs. HR = 1.42, 95% CI: 1.28-1.58). The overall covariate-adjusted HRs for IBS were similar between the group with both cholecystectomy and gallstones (HR = 1.45, 95% CI: 1.32-1.58) and the group with cholecystectomy without gallstones (HR = 1.50, 95% CI: 1.36-1.67) when the group without both cholecystectomy and gallstones was used as a reference. The overall covariate-adjusted HR was not significantly different in the group without cholecystectomy with gallstones (HR = 1.18, 95% CI: 0.95-1.47). The positive association of cholecystectomy with IBS risk did not change when stratifying the data based on age, sex, BMI, smoking, alcohol consumption, healthy diet, quality sleep, physical activity, type 2 diabetes, hypertension, hyperlipidaemia, mental illness, NSAID intake, or acid inhibitor intake. Sensitivity analyses, including propensity score matching analysis and lagging the exposure for two or four years, indicated that the effects were robust. Conclusion: Cholecystectomy was associated with a higher risk of IBS, especially IBS with diarrhoea. Additional prospective randomized controlled and experimental studies are warranted to further validate the association and to explore the relevant biological mechanisms.
Collapse
Affiliation(s)
- Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bin Xia
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ningning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiangsheng He
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Man Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Danni Wang
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Siqing Wu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zijun Li
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Shiyong Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xianzhuo Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haitong Zhao
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zelong Ma
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinqiu Yuan
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Nie
- Department of Gastric Surgery, Gansu Wuwei Tumour Hospital, Wuwei Academy of Medical Science, Wuwei, Gansu, China
| | - Linzhi Lu
- Wuwei Oncology Hospital, Wuwei, Gansu, China
| | - Wenbo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Xu F, Chen R, Zhang C, Wang H, Ding Z, Yu L, Tian F, Chen W, Zhou Y, Zhai Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023; 15:4399. [PMID: 37892474 PMCID: PMC10609985 DOI: 10.3390/nu15204399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Zhijie Ding
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yongping Zhou
- Department of Hepatobiliary, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, China; (H.W.); (Z.D.)
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (R.C.); (C.Z.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Noh CK, Jung W, Yang MJ, Kim WH, Hwang JC. Alteration of the fecal microbiome in patients with cholecystectomy: potential relationship with postcholecystectomy diarrhea - before and after study. Int J Surg 2023; 109:2585-2597. [PMID: 37288587 PMCID: PMC10498850 DOI: 10.1097/js9.0000000000000518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bile acid (BA) is a crucial determinant of the gut microbiome, and cholecystectomy can alter the physiology of BA. Physiological changes in BA resulting from cholecystectomy can also influence the gut microbiome. We aimed to identify the specific taxa associated with perioperative symptoms, including postcholecystectomy diarrhea (PCD), and to evaluate the effect of cholecystectomy on the microbiome by investigating the fecal microbiome of patients with gallstones. METHODS We analyzed the fecal samples of 39 patients with gallstones (GS group) and 26 healthy controls (HC group) to evaluate their gut microbiome. We also collected fecal samples from GS group 3 months postcholecystectomy. Symptoms of patients were evaluated before and after cholecystectomy. Further, 16S ribosomal RNA amplification and sequencing were performed to determine the metagenomic profile of fecal samples. RESULTS The microbiome composition of GS differed from that of HC; however, the alpha diversity was not different. No significant microbiome alterations were observed before and after cholecystectomy. Moreover, GS group showed a significantly lower Firmicutes to Bacteroidetes ratio before and after cholecystectomy than the HC group (6.2, P< 0.05). The inter-microbiome relationship was lower in GS than in HC and tended to recover 3 months after surgery. Furthermore, ~28.1% ( n =9) of patients developed PCD after surgery. The most prominent species among PCD (+) patients was Phocaeicola vulgatus. Compared with the preoperative state, Sutterellaceae , Phocaeicola , and Bacteroidals were the most dominant taxa among PCD (+) patients. CONCLUSION GS group showed a different microbiome from that of HC; however, their microbiomes were not different 3 months after cholecystectomy. Our data revealed taxa-associated PCD, highlighting the possibility of symptom relief by restoring the gut microbiome.
Collapse
Affiliation(s)
| | - Woohyun Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Wook Hwan Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | |
Collapse
|
17
|
Xu F, Yu Z, Liu Y, Du T, Yu L, Tian F, Chen W, Zhai Q. A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients 2023; 15:3829. [PMID: 37686860 PMCID: PMC10489946 DOI: 10.3390/nu15173829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with post-cholecystectomy (PC) often experience adverse gastrointestinal conditions, such as PC syndrome, colorectal cancer (CRC), and non-alcoholic fatty liver disease (NAFLD), that accumulate over time. An epidemiological survey further revealed that the risk of cholecystectomy is associated with high-fat and high-cholesterol (HFHC) dietary intake. Mounting evidence suggests that cholecystectomy is associated with disrupted gut microbial homeostasis and dysregulated bile acids (BAs) metabolism. However, the effect of an HFHC diet on gastrointestinal complications after cholecystectomy has not been elucidated. Here, we aimed to investigate the effect of an HFHC diet after cholecystectomy on the gut microbiota-BA metabolic axis and elucidate the association between this alteration and the development of intestinal inflammation. In this study, a mice cholecystectomy model was established, and the levels of IL-Iβ, TNF-α, and IL-6 in the colon were increased in mice fed an HFHC diet for 6 weeks. Analysis of fecal BA metabolism showed that an HFHC diet after cholecystectomy altered the rhythm of the BA metabolism by upregulating liver CPY7A1, CYP8B1, and BSEP and ileal ASBT mRNA expression levels, resulting in increased fecal BA levels. In addition, feeding an HFHC diet after cholecystectomy caused a significant dysbiosis of the gut microbiota, which was characterized by the enrichment of the metabolic microbiota involved in BAs; the abundance of pro-inflammatory gut microbiota and related pro-inflammatory metabolite levels was also significantly higher. In contrast, the abundance of major short-chain fatty acid (SCFA)-producing bacteria significantly decreased. Overall, our study suggests that an HFHC diet after cholecystectomy promotes intestinal inflammation by exacerbating the gut microbiome and BA metabolism dysbiosis in cholecystectomy. Our study also provides useful insights into the maintenance of intestinal health after cholecystectomy through dietary or probiotic intervention strategies.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Yu
- Wuxi People’s Hospital Afliated to Nanjing Medical University, Wuxi 214023, China;
| | - Yaru Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ting Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Jiang T, Zhang H, Yin X, Cai Z, Zhao Z, Mu M, Liu B, Shen C, Zhang B, Yin Y. The necessity and safety of simultaneous cholecystectomy during gastric surgery for patients with asymptomatic cholelithiasis. Expert Rev Gastroenterol Hepatol 2023; 17:1053-1060. [PMID: 37795528 DOI: 10.1080/17474124.2023.2264782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES The incidence of cholelithiasis is higher among individuals who have undergone gastric surgery. The benefits of concomitant gallbladder removal in asymptomatic gallstone patients remain uncertain. The aim was to investigate the necessity and safety of simultaneous cholecystectomy in this particular patient population. METHODS We performed a systematic review and meta-analysis to assess the incidence of asymptomatic cholelithiasis converting to symptomatic after gastric surgery and the complication rate associated with simultaneous cholecystectomy. PubMed, Embase, and the Cochrane Library were searched for relevant articles published until 10 March 202210 March 2022. RESULTS Patients with asymptomatic cholelithiasis after gastric surgery were at a higher risk of developing symptomatic cholelithiasis compared to those without cholelithiasis (relative risk [RR] 2.28, 95% confidence interval [CI] 1.23-4.25) and those with unknown gallbladder conditions (RR 2.70, 95% CI 1.54-4.73). Additionally, patients who underwent simultaneous cholecystectomy did not face a higher risk of complications compared to those who only underwent gastric surgery (RR 0.86, 95% CI 0.48-1.53). CONCLUSIONS Simultaneous cholecystectomy is both necessary and safe for patients with asymptomatic cholelithiasis undergoing gastric surgery. It is crucial to assess the gallbladder's condition before gastric surgery, and if the gallbladder status is unknown, simultaneous cholecystectomy should be avoided.
Collapse
Affiliation(s)
- Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Haidong Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Xiaonan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Zhou Zhao
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Mingchun Mu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Baike Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Chaoyong Shen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Yuan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| |
Collapse
|
19
|
Sun H, Zhang Q, Xu C, Mao A, Zhao H, Chen M, Sun W, Li G, Zhang T. Different Diet Energy Levels Alter Body Condition, Glucolipid Metabolism, Fecal Microbiota and Metabolites in Adult Beagle Dogs. Metabolites 2023; 13:metabo13040554. [PMID: 37110212 PMCID: PMC10143615 DOI: 10.3390/metabo13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diet energy is a key component of pet food, but it is usually ignored during pet food development and pet owners also have limited knowledge of its importance. This study aimed to explore the effect of diet energy on the body condition, glucolipid metabolism, fecal microbiota and metabolites of adult beagles and analyze the relation between diet and host and gut microbiota. Eighteen healthy adult neutered male beagles were selected and randomly divided into three groups. Diets were formulated with three metabolizable energy (ME) levels: the low-energy (Le) group consumed a diet of 13.88 MJ/kg ME; the medium-energy (Me) group consumed a diet of 15.04 MJ/kg ME; and the high-energy (He) group consumed a diet of 17.05 MJ/kg ME. Moreover, the protein content of all these three diets was 29%. The experiment lasted 10 weeks, with a two-week acclimation period and an eight-week test phase. Body weight, body condition score (BCS), muscle condition score (MCS) and body fat index (BFI) decreased in the Le group, and the changes in these factors in the Le group were significantly higher than in the other groups (p < 0.05). The serum glucose and lipid levels of the Le and He groups changed over time (p < 0.05), but those of the Me group were stable (p > 0.05). The fecal pH of the Le and He groups decreased at the end of the trial (p < 0.05) and we found that the profiles of short-chain fatty acids (SCFAs) and bile acids (BAs) changed greatly, especially secondary BAs (p < 0.05). As SCFAs and secondary BAs are metabolites of the gut microbiota, the fecal microbiota was also measured. Fecal 16S rRNA gene sequencing found that the Me group had higher α-diversity indices (p < 0.05). The Me group had notably higher levels of gut probiotics, such as Faecalibacterium prausnitzii, Bacteroides plebeius and Blautia producta (p < 0.05). The diet-host-fecal microbiota interactions were determined by network analysis, and fecal metabolites may help to determine the best physical condition of dogs, assisting pet food development. Overall, feeding dogs low- or high-energy diets was harmful for glucostasis and promoted the relative abundance of pathogenic bacteria in the gut, while a medium-energy diet maintained an ideal body condition. We concluded that dogs that are fed a low-energy diet for an extended period may become lean and lose muscle mass, but diets with low energy levels and 29% protein may not supply enough protein for dogs losing weight.
Collapse
Affiliation(s)
- Haoran Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiaoru Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hui Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Miao Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Weili Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|