1
|
Li M, Sun G, Zhao J, Pu S, Lv Y, Wang Y, Li Y, Zhao X, Wang Y, Yang S, Cheng T, Cheng H. Small extracellular vesicles derived from acute myeloid leukemia cells promote leukemogenesis by transferring miR-221-3p. Haematologica 2024; 109:3209-3221. [PMID: 38450521 PMCID: PMC11443396 DOI: 10.3324/haematol.2023.284145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEV) transfer cargos between cells and participate in various physiological and pathological processes through their autocrine and paracrine effects. However, the pathological mechanisms employed by sEV-encapsulated microRNA (miRNA) in acute myeloid leukemia (AML) are still obscure. In this study, we aimed to investigate the effects of AML cell-derived sEV (AML-sEV) on AML cells and delineate the underlying mechanisms. We initially used high-throughput sequencing to identify miR-221-3p as the miRNA prominently enriched in AML-sEV. Our findings revealed that miR-221-3p promoted AML cell proliferation and leukemogenesis by accelerating cell cycle entry and inhibiting apoptosis. Furthermore, Gbp2 was confirmed as a target gene of miR-221-3p by dual luciferase reporter assays and rescue experiments. Additionally, AML-sEV impaired the clonogenicity, particularly the erythroid differentiation ability, of hematopoietic stem and progenitor cells. Taken together, our findings reveal how sEV-delivered miRNA contribute to AML pathogenesis, which can be exploited as a potential therapeutic target to attenuate AML progression.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Proliferation
- Apoptosis/genetics
- Cell Line, Tumor
- Mice
- Animals
- Gene Expression Regulation, Leukemic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Jinlian Zhao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming
| | - Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematologyand Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Celland Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming.
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| |
Collapse
|
2
|
Ortiz Rojas CA, Pereira-Martins DA, Bellido More CC, Sternadt D, Weinhäuser I, Hilberink JR, Coelho-Silva JL, Thomé CH, Ferreira GA, Ammatuna E, Huls G, Valk PJ, Schuringa JJ, Rego EM. A 4-gene prognostic index for enhancing acute myeloid leukaemia survival prediction. Br J Haematol 2024; 204:2287-2300. [PMID: 38651345 DOI: 10.1111/bjh.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Despite advancements in utilizing genetic markers to enhance acute myeloid leukaemia (AML) outcome prediction, significant disease heterogeneity persists, hindering clinical management. To refine survival predictions, we assessed the transcriptome of non-acute promyelocytic leukaemia chemotherapy-treated AML patients from five cohorts (n = 975). This led to the identification of a 4-gene prognostic index (4-PI) comprising CYP2E1, DHCR7, IL2RA and SQLE. The 4-PI effectively stratified patients into risk categories, with the high 4-PI group exhibiting TP53 mutations and cholesterol biosynthesis signatures. Single-cell RNA sequencing revealed enrichment for leukaemia stem cell signatures in high 4-PI cells. Validation across three cohorts (n = 671), including one with childhood AML, demonstrated the reproducibility and clinical utility of the 4-PI, even using cost-effective techniques like real-time quantitative polymerase chain reaction. Comparative analysis with 56 established prognostic indexes revealed the superior performance of the 4-PI, highlighting its potential to enhance AML risk stratification. Finally, the 4-PI demonstrated to be potential marker to reclassified patients from the intermediate ELN2017 category to the adverse category. In conclusion, the 4-PI emerges as a robust and straightforward prognostic tool to improve survival prediction in AML patients.
Collapse
Affiliation(s)
- Cesar Alexander Ortiz Rojas
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego Antonio Pereira-Martins
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Candy Christie Bellido More
- Department of Pediatrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dominique Sternadt
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Isabel Weinhäuser
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacobien R Hilberink
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Juan Luiz Coelho-Silva
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thomé
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Germano Aguiar Ferreira
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emanuele Ammatuna
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J Valk
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Eduardo Magalhães Rego
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Ratajczak MZ, Ratajczak J. Leukemogenesis occurs in a microenvironment enriched by extracellular microvesicles/exosomes: recent discoveries and questions to be answered. Leukemia 2024; 38:692-698. [PMID: 38388648 PMCID: PMC10997496 DOI: 10.1038/s41375-024-02188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
In single-cell organisms, extracellular microvesicles (ExMVs) were one of the first cell-cell communication platforms that emerged very early during evolution. Multicellular organisms subsequently adapted this mechanism. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that may be encrusted by ligands and receptors interacting with target cells and harboring inside a cargo comprising RNA species, proteins, bioactive lipids, signaling nucleotides, and even entire organelles "hijacked" from the cells of origin. ExMVs are secreted by normal cells and at higher levels by malignant cells, and there are some differences in their cargo. On the one hand, ExMVs secreted from malignant cells interact with cells in the microenvironment, and in return, they are exposed by a "two-way mechanism" to ExMVs secreted by non-leukemic cells. Therefore, leukemogenesis occurs and progresses in ExMVs enriched microenvironments, and this biological fact has pathologic, diagnostic, and therapeutic implications. We are still trying to decipher this intriguing cell-cell communication language better. We will present a current point of view on this topic and review some selected most recent discoveries and papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Chen Y, Chen J, Zou Z, Xu L, Li J. Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia. Cell Death Discov 2024; 10:46. [PMID: 38267416 PMCID: PMC10808206 DOI: 10.1038/s41420-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML), a prevalent form of leukemia in adults, is often characterized by low response rates to chemotherapy, high recurrence rates, and unfavorable prognosis. A critical barrier in managing refractory or recurrent AML is the resistance to chemotherapy. Increasing evidence indicates that tumor cell metabolism plays a crucial role in AML progression, survival, metastasis, and treatment resistance. Autophagy, an essential regulator of cellular energy metabolism, is increasingly recognized for its role in the metabolic reprogramming of AML. Autophagy sustains leukemia cells during chemotherapy by not only providing energy but also facilitating rapid proliferation through the supply of essential components such as amino acids and nucleotides. Conversely, the metabolic state of AML cells can influence the activity of autophagy. Their mutual coordination helps maintain intrinsic cellular homeostasis, which is a significant contributor to chemotherapy resistance in leukemia cells. This review explores the recent advancements in understanding the interaction between autophagy and metabolism in AML cells, emphasizing their roles in cell survival and drug resistance. A comprehensive understanding of the interplay between autophagy and leukemia cell metabolism can shed light on leukemia cell survival strategies, particularly under adverse conditions such as chemotherapy. This insight may also pave the way for innovative targeted treatment strategies.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - Jia Chen
- School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, 542005, Liuzhou, Guangxi, China.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, 637000, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Mondal SK, Haas D, Han J, Whiteside TL. Small EV in plasma of triple negative breast cancer patients induce intrinsic apoptosis in activated T cells. Commun Biol 2023; 6:815. [PMID: 37542121 PMCID: PMC10403597 DOI: 10.1038/s42003-023-05169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Small extracellular vesicles (sEV) in TNBC patients' plasma promote T cell dysfunction and tumor progression. Here we show that tumor cell-derived exosomes (TEX) carrying surface PDL-1, PD-1, Fas, FasL, TRAIL, CTLA-4 and TGF-β1 induce apoptosis of CD8+T and CD4+T cells but spare B and NK cells. Inhibitors blocking TEX-induce receptor/ligand signals and TEX pretreatments with proteinase K or heat fail to prevent T cell apoptosis. Cytochalasin D, Dynosore or Pit Stop 2, partly inhibit TEX uptake but do not prevent T cell apoptosis. TEX entry into T cells induces cytochrome C and Smac release from mitochondria and caspase-3 and PARP cleavage in the cytosol. Expression of survival proteins is reduced in T cells undergoing apoptosis. Independently of external death receptor signaling, TEX entry into T cells induces mitochondrial stress, initiating relentless intrinsic apoptosis, which is responsible for death of activated T cells in the tumor-bearing hosts. The abundance of TEX in cancer plasma represents a danger for adoptively transferred T cells, limiting their therapeutic potential.
Collapse
Affiliation(s)
- Sujan Kumar Mondal
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Derick Haas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
7
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Lei L, Wang Y, Liu R, Feng J, Tang J, Gou J, Guan F, Li X. Transfer of miR-4755-5p through extracellular vesicles and particles induces decitabine resistance in recipient cells by targeting CDKN2B. Mol Carcinog 2023; 62:743-753. [PMID: 36825759 DOI: 10.1002/mc.23521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Decitabine (5-aza-2-deoxycytidine, DAC), a DNA-hypomethylating agent, has been one of the frontline therapies for clonal hematopoietic stem cell disorders, such as myelodysplastic syndrome and acute myeloid leukemia, but DAC-resistance often occurs and leads to treatment failure. Therefore, elucidating the mechanisms of DAC resistance is important for improving its therapeutic efficacy. The extracellular vesicles and particles (EVPs) have been reported to be involved in mediating drug resistance by transporting diverse bioactive components. In this study, we established the DAC-resistant cell line (KG1a-DAC) from its parental human leukemia-derived cell line KG1a and observed that EVPs released from KG1a-DAC can promote DAC-resistant in KG1a cells. Moreover, treatment with KG1a-DAC EVPs reduced the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) in KG1a cells. miRNA-Seq analysis revealed that miR-4755-5p is overexpressed in EVPs from KG1a-DAC. Dual-luciferase reporter assay and flow cytometry analysis confirmed that miR-4755-5p rendered KG1a cells resistant to the DAC by targeting CDKN2B gene. Taken together, miR-4755-5p in EVPs released from the DAC-resistant cells plays an essential role in inducing DAC-resistance, and is a potential therapeutic target for suppression of DAC resistance.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Rui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Spoerl S, Gerken M, Fischer R, Spoerl S, Kirschneck C, Wolf S, Taxis J, Ludwig N, Biermann N, Reichert TE, Spanier G. Statin Use Ameliorates Survival in Oral Squamous Cell Carcinoma-Data from a Population-Based Cohort Study Applying Propensity Score Matching. Biomedicines 2023; 11:biomedicines11020369. [PMID: 36830906 PMCID: PMC9952960 DOI: 10.3390/biomedicines11020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-cancer properties of statins have attracted much attention recently, but little is known about the prognostic role of statins in oral squamous cell carcinoma (OSCC). In a retrospective approach, we analyzed a population-based cohort of 602 OSCC patients with primary curative tumor resection to negative margins and concomitant neck dissection between 2005-2017. Long-term medication with statins was correlated with overall survival (OAS) as well as recurrence-free survival (RFS) using uni- and multivariable Cox regression. Additionally, propensity score matching was applied to adjust for confounders. Statin use was present in 96 patients (15.9%) at a median age of 65.7 years. Statin treatment correlated with ameliorated survival in multivariable Cox regression in the complete cohort (OAS: HR 0.664; 95% CI 0.467-0.945, p = 0.023; RFS: HR 0.662; 95% CI 0.476-0.920, p = 0.014) as well as matched-pair cohort of OSCC patients (OAS: HR 0.691; 95% CI 0.479-0.997, p = 0.048; RFS: HR 0.694; 95% CI 0.493-0.976, p = 0.036) when compared to patients not taking statins at time of diagnosis. These findings were even more pronounced by sub-group analysis in the matched-pair cohort (age < 70 years). These data indicate that statin use might ameliorate the oncological outcome in primarily resected OSCC patients, but prospective clinical trials are highly recommended.
Collapse
Affiliation(s)
- Steffen Spoerl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Michael Gerken
- Tumor Center, Institute for Quality Management and Health Services Research, University of Regensburg, 93053 Regensburg, Germany
| | - René Fischer
- Department of Otorhinolaryngology, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Stefanie Wolf
- Department of Otorhinolaryngology, St. Elisabeth Hospital Straubing, 94315 Straubing, Germany
| | - Juergen Taxis
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Nils Ludwig
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Niklas Biermann
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Torsten E. Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93042 Regensburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
11
|
Xiao Q, Lin C, Peng M, Ren J, Jing Y, Lei L, Tao Y, Huang J, Yang J, Sun M, Wu J, Yang Z, Yang Z, Zhang L. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front Oncol 2022; 12:1033143. [PMID: 36276083 PMCID: PMC9585262 DOI: 10.3389/fonc.2022.1033143] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomal long non-coding RNAs (lncRNAs) have emerged as a cell-free biomarker for clinical evaluation of cancers. However, the potential clinical applications of exosomal lncRNAs in acute myeloid leukemia (AML) remain unclear. Herein, we attempted to identify plasma exosomal lncRNAs as prospective biomarkers for AML. In this study, plasma exosomes were first successfully extracted from AML patients and healthy donors (HD). Subsequently, the downregulated plasma exosomal lncRNAs (LINC00265, LINC00467, and UCA1) and the upregulated plasma exosomal lncRNA (SNHG1) were identified in AML patients (n=65) compared to HD (n=20). Notably, individual exosomal LINC00265, LINC00467, UCA1, or SNHG1 had a capability for discriminating AML patients from HD, and their combination displayed better efficiency. Furthermore, exosomal LINC00265 and LINC00467 were increased expressed in patients achieving complete remission after chemotherapy. Importantly, there was upregulation of exosomal LINC00265 and downregulation of exosomal SNHG1 upon allogeneic hematopoietic stem cell transplantation. Additionally, these lncRNAs were high stability in plasma exosomes. Exosomal LINC00265, LINC00467, UCA1, and SNHG1 may act as promising cell-free biomarkers for AML diagnosis and treatment monitoring and provide a new frontier of liquid biopsy for this type of cancer.
Collapse
Affiliation(s)
- Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Zailin Yang, ; Zesong Yang, ; Ling Zhang,
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zailin Yang, ; Zesong Yang, ; Ling Zhang,
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Zailin Yang, ; Zesong Yang, ; Ling Zhang,
| |
Collapse
|
12
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
13
|
Choe EJ, Lee CH, Bae JH, Park JM, Park SS, Baek MC. Atorvastatin Enhances the Efficacy of Immune Checkpoint Therapy and Suppresses the Cellular and Extracellular Vesicle PD-L1. Pharmaceutics 2022; 14:pharmaceutics14081660. [PMID: 36015287 PMCID: PMC9414447 DOI: 10.3390/pharmaceutics14081660] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/12/2022] Open
Abstract
According to clinical studies, statins improve the efficacy of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) blockade therapy for breast cancer; however, the underlying mechanisms are unclear. Herein, we showed that atorvastatin (ATO) decreased the content of PD-L1 in extracellular vesicles (EVs) by reducing cellular PD-L1 expression and inhibiting EV secretion in breast cancer cells, thereby enhancing the efficacy of anti-PD-L1 therapy. ATO reduced EV secretion by regulating the Rab proteins involved in EV biogenesis and secretion. ATO-mediated inhibition of the Ras-activated MAPK signaling pathway downregulated PD-L1 expression. In addition, ATO strongly promoted antitumor efficacy by inducing T cell-mediated tumor destruction when combined with an anti-PD-L1 antibody. Moreover, suppression of EV PD-L1 by ATO improved the reactivity of anti-PD-L1 therapy by enhancing T-cell activity in draining lymph nodes of EMT6-bearing immunocompetent mice. Therefore, ATO is a potential therapeutic drug that improves antitumor immunity by inhibiting EV PD-L1, particularly in response to immune escape during cancer.
Collapse
|
14
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
15
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
16
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
17
|
Binder HM, Maeding N, Wolf M, Cronemberger Andrade A, Vari B, Krisch L, Gomes FG, Blöchl C, Muigg K, Poupardin R, Raninger AM, Heuser T, Obermayer A, Ebner-Peking P, Pleyer L, Greil R, Huber CG, Schallmoser K, Strunk D. Scalable Enrichment of Immunomodulatory Human Acute Myeloid Leukemia Cell Line-Derived Extracellular Vesicles. Cells 2021; 10:3321. [PMID: 34943829 PMCID: PMC8699161 DOI: 10.3390/cells10123321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) cells can secrete trophic factors, including extracellular vesicles (EVs), instructing the stromal leukemic niche. Here, we introduce a scalable workflow for purification of immunomodulatory AML-EVs to compare their phenotype and function to the parental AML cells and their secreted soluble factors. AML cell lines HL-60, KG-1, OCI-AML3, and MOLM-14 released EVs with a peak diameter of approximately 80 nm in serum-free particle-reduced medium. We enriched EVs >100x using tangential flow filtration (TFF) and separated AML-derived soluble factors and cells in parallel. EVs were characterized by electron microscopy, immunoblotting, and flow cytometry, confirming the double-membrane morphology, purity and identity. AML-EVs showed significant enrichment of immune response and leukemia-related pathways in tandem mass-tag proteomics and a significant dose-dependent inhibition of T cell proliferation, which was not observed with AML cells or their soluble factors. Furthermore, AML-EVs dose-dependently reduced NK cell lysis of third-party K-562 leukemia targets. This emphasizes the peculiar role of AML-EVs in leukemia immune escape and indicates novel EV-based targets for therapeutic interventions.
Collapse
Affiliation(s)
- Heide-Marie Binder
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Nicole Maeding
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Martin Wolf
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - André Cronemberger Andrade
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Balazs Vari
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Linda Krisch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Fausto Gueths Gomes
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Constantin Blöchl
- Department of Biosciences, Paris Lodron University, 5020 Salzburg, Austria; (C.B.); (A.O.); (C.G.H.)
| | - Katharina Muigg
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Anna M. Raninger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Thomas Heuser
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria;
| | - Astrid Obermayer
- Department of Biosciences, Paris Lodron University, 5020 Salzburg, Austria; (C.B.); (A.O.); (C.G.H.)
| | - Patricia Ebner-Peking
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| | - Lisa Pleyer
- 3rd Medical Department with Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, 5020 Salzburg, Austria; (L.P.); (R.G.)
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT) and Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Richard Greil
- 3rd Medical Department with Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, 5020 Salzburg, Austria; (L.P.); (R.G.)
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT) and Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Austrian Group for Medical Tumor Therapy (AGMT) Study Group, 1180 Vienna, Austria
| | - Christian G. Huber
- Department of Biosciences, Paris Lodron University, 5020 Salzburg, Austria; (C.B.); (A.O.); (C.G.H.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (H.-M.B.); (N.M.); (M.W.); (A.C.A.); (B.V.); (L.K.); (F.G.G.); (K.M.); (R.P.); (A.M.R.); (P.E.-P.)
| |
Collapse
|
18
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
19
|
Berumen Sánchez G, Bunn KE, Pua HH, Rafat M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun Signal 2021; 19:104. [PMID: 34656117 PMCID: PMC8520651 DOI: 10.1186/s12964-021-00787-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. EVs, which were initially described as cellular debris and devoid of biological function, are now recognized as key components in cell-cell communication. EVs are known to carry multiple factors derived from their cell of origin, including cytokines and chemokines, active enzymes, metabolites, nucleic acids, and surface molecules, that can alter the behavior of recipient cells. Since the cargo of EVs reflects their parental cells, EVs from damaged and dysfunctional tissue environments offer an abundance of information toward elucidating the molecular mechanisms of various diseases and pathological conditions. In this review, we discuss the most recent findings regarding the role of EVs in the progression of cancer, metabolic disorders, and inflammatory lung diseases given the high prevalence of these conditions worldwide and the important role that intercellular communication between immune, parenchymal, and stromal cells plays in the development of these pathological states. We also consider the clinical applications of EVs, including the possibilities for their use as novel therapeutics. While intercellular communication through extracellular vesicles (EVs) is key for physiological processes and tissue homeostasis, injury and stress result in altered communication patterns in the tissue microenvironment. When left unchecked, EV-mediated interactions between stromal, immune, and parenchymal cells lead to the development of disease states Video Abstract.
Collapse
Affiliation(s)
- Greg Berumen Sánchez
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Kaitlyn E. Bunn
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Heather H. Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
20
|
RhoA enhances osteosarcoma resistance to MPPa-PDT via the Hippo/YAP signaling pathway. Cell Biosci 2021; 11:179. [PMID: 34627383 PMCID: PMC8501741 DOI: 10.1186/s13578-021-00690-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is the most prevalent primary bone malignancy affecting adolescents, yet the emergence of chemoradiotherapeutic resistance has limited efforts to cure affected patients to date. Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) is a recently developed, minimally invasive treatment for OS that is similarly constrained by such therapeutic resistance. This study sought to explore the mechanistic basis for RhoA-activated YAP1 (YAP)-mediated resistance in OS. Methods The relationship between YAP expression levels and patient prognosis was analyzed, and YAP levels in OS cell lines were quantified. Immunofluorescent staining was used to assess YAP nuclear translocation. OS cell lines (HOS and MG63) in which RhoA and YAP were knocked down or overexpressed were generated using lentiviral vectors. CCK-8 assays were used to examine OS cell viability, while the apoptotic death of these cells was monitored via Hoechst staining, Western blotting, and flow cytometry. Tumor-bearing nude mice were additionally used to assess the relationship between lentivirus-mediated alterations in RhoA expression and MPPa-PDT treatment outcomes. TUNEL and immunohistochemical staining approaches were leveraged to assess apoptotic cell death in tissue samples. Results OS patients exhibited higher levels of YAP expression, and these were correlated with a poor prognosis. MPPa-PDT induced apoptosis in OS cells, and such MPPa-PDT-induced apoptosis was enhanced following YAP knockdown whereas it was suppressed by YAP overexpression. RhoA and YAP expression levels were positively correlated in OS patients, and both active and total RhoA protein levels rose in OS cells following MPPa-PDT treatment. When RhoA was knocked down, levels of unphosphorylated YAP and downstream target genes were significantly reduced, while RhoA/ROCK2/LIMK2 pathway phosphorylation was suppressed, whereas RhoA overexpression resulted in the opposite phenotype. MPPa-PDT treatment was linked to an increase in HMGCR protein levels, and the inhibition of RhoA or HMGCR was sufficient to suppress RhoA activity and to decrease the protein levels of YAP and its downstream targets. Mevalonate administration partially reversed these reductions in the expression of YAP and YAP target genes. RhoA knockdown significantly enhanced the apoptotic death of OS cells in vitro and in vivo following MPPa-PDT treatment, whereas RhoA overexpression had the opposite effect. Conclusions These results suggest that the mevalonate pathway activates RhoA, which in turn activates YAP and promotes OS cell resistance to MPPa-PDT therapy. Targeting the RhoA/ROCK2/LIMK2/YAP pathway can significantly improve the efficacy of MPPa-PDT treatment for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00690-6.
Collapse
|
21
|
Zhou E, Li Y, Wu F, Guo M, Xu J, Wang S, Tan Q, Ma P, Song S, Jin Y. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 2021; 67:103365. [PMID: 33971402 PMCID: PMC8121992 DOI: 10.1016/j.ebiom.2021.103365] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the most challenging diseases, as many patients show limited therapeutic response to treatment. Liquid biopsy is a minimally invasive method that has the advantage of providing real-time disease information with the least damage to cancer patients. Extracellular vesicles (EVs) released by the parental cells and protected by lipid bilayer membrane structure represent an emerging liquid biopsy modality. Apart from promoting cell growth, proliferation, and migration, EVs and their cargos (mainly miRNAs and proteins) are also biomarkers for cancer diagnosis and prognosis. Furthermore, their alterations pre- and post-therapy can guide therapeutic strategy determinations for better-stratified therapy. In this review, we summarize the potential clinical significance of EVs and their cargos in therapeutic response monitoring and prediction in several cancers (mainly lung cancer, prostate cancer, breast cancer, melanoma, lymphoma, glioblastoma, and head and neck squamous cell carcinoma) and discuss the questions that require future investigation.
Collapse
Affiliation(s)
- E Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China.
| |
Collapse
|
22
|
Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, Li G, Han Z, Zhan L, Zhang S, Zhu K, Luo Y, Chen L, Zhang N, Guo H. LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab 2021; 51:101230. [PMID: 33823318 PMCID: PMC8102998 DOI: 10.1016/j.molmet.2021.101230] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Adaptive rewiring of cancer energy metabolism has received increasing attention. By binding with LDLs, LDLRs make most of the circulating cholesterol available for cells to utilize. However, it remains unclear how LDLR works in HCC development by affecting cholesterol metabolism. Methods Database analyses and immunohistochemical staining were used to identify the clinical significance of LDLR in HCC. A transcriptome analysis was used to reveal the mechanism of LDLR aberration in HCC progression. A liver orthotopic transplantation model was used to evaluate the role of LDLR in HCC progression in vivo. Results Downregulation of LDLR was identified as a negative prognostic factor in human HCC. Reduced expression of LDLR in HCC cell lines impaired LDL uptake but promoted proliferation and metastasis in vitro and in vivo. Mechanistically, increasing intracellular de novo cholesterol biosynthesis was the chief contributor to malignant behaviors caused by LDLR inhibition, which could be rescued by simvastatin. Activation of the MEK/ERK pathway by LDLR downregulation partially contributed to intracellular cholesterol synthesis in HCC. Conclusions Downregulation of LDLR may elevate intracellular cholesterol synthesis to accelerate proliferation and motility through a mechanism partially attributed to stimulation of the MEK/ERK signaling pathway. Repression of intracellular cholesterol synthesis with statins may constitute a targetable liability in the context of lower LDLR expression in HCC. Downregulation of LDLR is identified as a negative prognostic factor in human HCC. LDLR inhibition facilitates the proliferation and metastasis of HCC cells. Increased cholesterol synthesis chiefly contributes to the malignant behaviors caused by LDLR reduction. Blockade of cholesterol synthesis by simvastatin attenuates HCC progression under lower LDLR. Activation of the MEK/ERK pathway by LDLR downregulation promotes cholesterol synthesis in HCC.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guangtao Li
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Linlin Zhan
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Su Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Keyun Zhu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
23
|
Hong CS, Boyiadzis M, Whiteside TL. Chemotherapy Promotes Release of Exosomes Which Upregulate Cholesterol Synthesis and Chemoresistance in AML Blasts. JOURNAL OF CLINICAL HAEMATOLOGY 2021; 2:36-39. [PMID: 34296216 PMCID: PMC8294665 DOI: 10.33696/haematology.2.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Michael Boyiadzis
- Department of Hematology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|