1
|
Pérez Núñez I, Díaz R, Quiñones J, Martínez A, Velázquez L, Huaiquipán R, Tapia D, Muñoz A, Valdés M, Sepúlveda N, Paz E. Molecular Characteristics and Processing Technologies of Dairy Products from Non-Traditional Species. Molecules 2024; 29:5427. [PMID: 39598816 PMCID: PMC11597077 DOI: 10.3390/molecules29225427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Non-bovine dairy animals, commonly referred to as non-traditional dairy species, include goats, sheep, yaks, buffalo, donkeys, alpacas, llamas, and other less commonly farmed species. These animals have been integral to livestock systems since ancient times, providing milk and other essential products. Despite their historical significance, dairy production from many of these species remains predominantly confined to rural areas in developing countries, where scientific advancements and technical improvements are often limited. As a consequence of this, the scientific literature and technological developments in the processing and characterization of dairy products from these species have lagged behind those for cow's milk. This review aims to compile and analyze existing research on dairy products derived from non-traditional animals, focusing on their molecular characteristics, including proteins (alpha, beta, kappa, and total casein), fats (cholesterol and total fat), lactose, albumin, ash, total solids, and somatic cell count, among others, for each of these species. Additionally, we discuss emerging technologies employed in their processing, encompassing both non-thermal methods (such as high-pressure processing, pulsed electric fields, ultrasound processing, UV-C irradiation, gamma radiation, microfiltration, and cold plasma processing) and thermal methods (such as ohmic heating). This review also explores the specific potential applications and challenges of implementing these technologies. By synthesizing recent findings, we aim to stimulate further research into innovative technologies and strategies that can enhance the quality and yield of non-bovine dairy products. Understanding the unique properties of milk from these species may lead to new opportunities for product development, improved processing methods, and increased commercialization in both developing and developed markets.
Collapse
Affiliation(s)
- Isabela Pérez Núñez
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Ailín Martínez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Rodrigo Huaiquipán
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Daniela Tapia
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Alex Muñoz
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Marcos Valdés
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Néstor Sepúlveda
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| |
Collapse
|
2
|
Elmalawany AM, Osman GY, Mohamed AH, Khalaf FM, Yassien RI. Schistosomicidal Effects of Moringa oleifera Seed Oil Extract on Schistosoma mansoni-Infected Mice. Parasite Immunol 2024; 46:e13070. [PMID: 39494757 DOI: 10.1111/pim.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis causes severe hepatic fibrosis, making it a global health issue. Moringa oleifera seed oil extract, which had antiparasitic, anti-inflammatory and antioxidant effects, was investigated as an alternative treatment. The 50 mice were divided into control, infected, praziquantel-treated, M. oleifera seed oil extract-treated and combined treatment groups. These treatments were examined for their effects on egg granulomas, hepatic enzymes, total protein, albumin, antioxidant enzymes and pro-inflammatory cytokines. M. oleifera seed oil and/or PZQ significantly reduced egg numbers, granuloma size and liver histopathology. M. oleifera seed oil reduced hepatic enzyme activity, increased total protein and albumin, and increased antioxidant enzyme activity while decreasing malondialdehyde. M. oleifera seed oil reduced the levels of pro-inflammatory cytokines. M. oleifera seed oil may treat schistosomiasis instead of PZQ due to its antifibrotic, immunomodulatory and schistosomicidal properties.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Fatema M Khalaf
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Rania I Yassien
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
3
|
Ali M, Xu C, Wang J, Kulyar MFEA, Li K. Emerging therapeutic avenues against Cryptosporidium: A comprehensive review. Vet Parasitol 2024; 331:110279. [PMID: 39116547 DOI: 10.1016/j.vetpar.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Cryptosporidium is among the top causes of life-threatening diarrheal infection in public health and livestock sectors. Despite its high prevalence and economic importance, currently, there is no vaccine. Control of this protozoan is difficult due to the excretion of many resistant oocysts in the feces of the infected host, which contaminate the environment. Paromomycin shows inconsistent results and isn't considered a reliable therapy for cryptosporidiosis. Nitazoxanide (NTZ), the only FDA-approved drug against this parasite, is less productive in impoverished children and PLWHA (people living with HIV/AIDS). The absence of mitochondria and apicoplast, its unique location inside enterocytes separated by parasitophorous vacuole, and, most importantly, challenges in its genetic manipulations are some hurdles to the drug-discovery process. A library of compounds has been tested against Cryptosporidium during in vitro and in vivo trials. However, there has still not been sufficient success in finding the drug of choice against this parasite. Recent genome editing technologies based on CRISPR/Cas-9 have explored the functions of the vital genes by producing transgenic parasites that help to screen a collection of compounds to find target-specific drugs, provided the sufficient availability of in vitro culturing platforms, efficient transfection methods, and analytic techniques. The use of herbal remedies against Cryptosporidium is also an emerging area of interest with sufficient clinical success due to enhanced concern regarding anthelmintic resistance. Here, we highlighted present treatment options with their associated limitations, the use of genetic tools and natural products against it to find safe, effective, and inexpensive drugs to control the ever-increasing global burden of this disease.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Shanawany EEE, Abouelmagd F, Taha NM, Zalat RS, Abdelrahman EH, Abdel-Rahman EH. Myristica fragrans Houtt. methanol extract as a promising treatment for Cryptosporidium parvum infection in experimentally immunosuppressed and immunocompetent mice. Vet World 2024; 17:2062-2071. [PMID: 39507782 PMCID: PMC11536736 DOI: 10.14202/vetworld.2024.2062-2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Cryptosporidiosis is a major waterborne disease affecting ruminants and humans worldwide. It causes diarrhea and neonatal mortality in buffalo calves, and watery diarrhea and mortality in children and immunodeficient patients. This study aimed to investigate the efficacy of Myristica fragrans methanolic extract in treatment of C. parvum infection in comparison with nitazoxanide (NZX) (a Food and Drug Administration-approved drug control) in immunosuppressed and immunocompetent mice. Materials and Methods One hundred laboratory-bred male Swiss albino mice were equally divided into immunocompetent and immunosuppressed groups. Each group was further divided into five subgroups: (1) non-infected and non-treated control, (2) infected and non-treated control (infected with Cryptosporidium parvum oocysts 3 × 103), (3) NZX-treated (100 mg/kg, 200 μL/mouse), (4) M. fragrans Houtt. methanol extract-treated (500 mg/kg), and (5) combination-treated (NZX + M. fragrans extract). Number of oocysts/g of feces, serum immunoglobulin (Ig) G level, and interferon (IFN)-γ, and interleukin (IL)-4 levels were used to evaluate the therapeutic effect. Results C. parvum oocyst shedding in stool samples was significantly decreased in all treatment groups, with 79.7%, 81.2 %, and 85.5 % reduction in immunocompetent mice treated with NZX, M. fragrans, and their combination, respectively. In immunosuppressed mice, oocyst shedding was reduced by 77.7%, 80.5 %, and 83.7 % upon NZX, M. fragrans, and their combination treatments, respectively. The serum IgG level was lowest in mice treated with a mixture of M. fragrans and NZX, followed by those treated with NZX, and was highest in mice treated with M. fragrans alone. Regarding cytokine levels, all groups treated with M. fragrans had low levels of IFN-γ and IL4 on day 21 post-infection. Conclusion Collectively, the treatment of cryptosporidiosis with M. fragrans extract was successful in mice, as demonstrated by the measured parameters. M. fragrans reduced C. parvum oocyst shedding and serum IgG, IFN-γ, and IL-4 levels in immunocompetent and immunosuppressed mice.
Collapse
Affiliation(s)
- Eman E. El Shanawany
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| | - Faten Abouelmagd
- Department of Medical Parasitology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Noha Madbouly Taha
- Department of Parasitology, Kasr Al-Ainy School of Medicine, Cairo University, Egypt
| | - Rabab S. Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Egypt
| | - Enas H. Abdelrahman
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Eman H. Abdel-Rahman
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki-Giza, Egypt
| |
Collapse
|
5
|
Bourgeois A, Lemos JAS, Roucheray S, Sergerie A, Richard D. The Paradigm Shift of Using Natural Molecules Extracted from Northern Canada to Combat Malaria. Infect Dis Rep 2024; 16:543-560. [PMID: 39051241 PMCID: PMC11270350 DOI: 10.3390/idr16040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Parasitic diseases, such as malaria, are an immense burden to many low- and middle-income countries. In 2022, 249 million cases and 608,000 deaths were reported by the World Health Organization for malaria alone. Climate change, conflict, humanitarian crises, resource constraints and diverse biological challenges threaten progress in the elimination of malaria. Undeniably, the lack of a commercialized vaccine and the spread of drug-resistant parasites beg the need for novel approaches to treat this infectious disease. Most approaches for the development of antimalarials to date take inspiration from tropical or sub-tropical environments; however, it is necessary to expand our search. In this review, we highlight the origin of antimalarial treatments and propose new insights in the search for developing novel antiparasitic treatments. Plants and microorganisms living in harsh and cold environments, such as those found in the largely unexploited Northern Canadian boreal forest, often demonstrate interesting properties that are not found in other environments. Most prominently, the essential oil of Rhododendron tomentosum spp. Subarcticum from Nunavik and mortiamides isolated from Mortierella species found in Nunavut have shown promising activity against Plasmodium falciparum.
Collapse
Affiliation(s)
- Alexandra Bourgeois
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (A.B.); (J.A.S.L.); (S.R.); (A.S.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Juliana Aline Souza Lemos
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (A.B.); (J.A.S.L.); (S.R.); (A.S.)
| | - Stéphanie Roucheray
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (A.B.); (J.A.S.L.); (S.R.); (A.S.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Audrey Sergerie
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (A.B.); (J.A.S.L.); (S.R.); (A.S.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (A.B.); (J.A.S.L.); (S.R.); (A.S.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Lalthanpuii PB, Lalchhandama K. Antiparasitic activity of the steroid-rich extract of Schima wallichii against poultry cestode. Vet World 2024; 17:1299-1306. [PMID: 39077457 PMCID: PMC11283620 DOI: 10.14202/vetworld.2024.1299-1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Schima wallichii Korth., commonly known as the needlewood tree (family Theaceae) has therapeutic uses in traditional Mizo medicine for human helminthiasis and serves as a balm against ectoparasites in animals. Although the medicinal properties have been studied experimentally, its use as a traditional anthelmintic remains unexplored. This study aimed to analyze the chemical components and antiparasitic activity of S. wallichii. Materials and Methods The chemical analysis of S. wallichi bark extracts was conducted focusing on the secondary metabolites using petroleum ether, chloroform, and methanol. Gas chromatography-mass spectrometry (GC-MS) was used to identify the specific compounds. An anthelmintic susceptibility test was carried out against Raillietina tetragona, intestinal cestode parasite of fowl. Results The methanol extract yielded the highest concentrations of alkaloids, carbohydrates, glycosides, sterols, saponins, and tannins among all the extracts. Sterols were the most abundant compounds in all extracts, with flavonoids being absent. Secondary metabolites were largely absent in the petroleum ether and chloroform extracts. The GC-MS data identified cholest-22-ene-21-ol as the major steroid component. The cestode parasite was inhibited in a concentration-dependent manner by the plant extract. The plant extract's anthelmintic activity was evident through observable damage to the parasite's outer structure. Conclusion Phytosterols in S. wallichii bark are responsible for its anthelmintic properties. The mechanism and pharmaceutical properties of the anthelmintic molecule require further exploration.
Collapse
Affiliation(s)
- Pawi Bawitlung Lalthanpuii
- DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Kholhring Lalchhandama
- DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| |
Collapse
|
7
|
Abdel-Gaber R, Alamari G, Dkhil MA, Meryk A, Al-Shaebi EM, Al-Quraishy S. Krameria lappacea root extract's anticoccidial properties and coordinated control of CD4 T cells for IL-10 production and antioxidant monitoring. Front Immunol 2024; 15:1404297. [PMID: 38751432 PMCID: PMC11094240 DOI: 10.3389/fimmu.2024.1404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Alamari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Kajdanek A, Kołat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż. Britanin - a beacon of hope against gastrointestinal tumors? World J Clin Oncol 2024; 15:523-530. [PMID: 38689621 PMCID: PMC11056858 DOI: 10.5306/wjco.v15.i4.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc-HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Agnieszka Kajdanek
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
9
|
Amrane-Abider M, Imre M, Herman V, Debbou-Iouknane N, Saci F, Boudries H, Madani K, Merzouk H, Ayad A. Opuntia Ficus-Indica Peel By-Product as a Natural Antioxidant Food Additive and Natural Anticoccidial Drug. Foods 2023; 12:4403. [PMID: 38137207 PMCID: PMC10742707 DOI: 10.3390/foods12244403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The present study was carried out to valorize the Opuntia ficus-indica (OFI) by-products by extracting and identifying their biochemical compounds and evaluating their antioxidant potential by in vitro activities (DPPH radical and FRAP), as well as their capacity to stabilize margarine oxidation (rancimat test). In addition, their in vitro anticoccidial effect on the destruction of Eimeria oocysts isolated from naturally infected chickens was also targeted. Microwaves and response surface methodology tools were used to extract the maximum amount of phenolic compounds (42.05 ± 0.46 GAE mg/g DW of total phenolic compounds in 90 s at 400 watts). Moreover, the effect of extraction factors was also studied. Eight phenolic compounds, including isorhamnetin, dihydrokaempferol, and kaempferol-3-O-rutinoside, were identified. The findings confirmed that OFI peel extract has strong antioxidant activities (DPPH radical, ferric reducing power). The rancimat test shows that OFI peel extract improves margarine stability by 3.2 h. Moreover, it has a notable destruction rate of Eimeria oocysts (30.06 ± 0.51%, LC50: 60.53 ± 0.38 mg/mL). The present investigation offers promise for the reuse of food waste as natural margarine additives, protection of the environment, and substitution of anticoccidial synthetic treatments.
Collapse
Affiliation(s)
- Meriem Amrane-Abider
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria; (M.A.-A.); (K.M.)
| | - Mirela Imre
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Nedjima Debbou-Iouknane
- Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Fairouz Saci
- Biotechnology Research Center (C.R.Bt.), Ali Mendjli Nouvelle Ville UV 03, BP E73, Constantine 25000, Algeria;
| | - Hafid Boudries
- Department of Food Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.B.); (H.M.)
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometrics, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria; (M.A.-A.); (K.M.)
| | - Hafida Merzouk
- Department of Food Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.B.); (H.M.)
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometrics, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Abdelhanine Ayad
- Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|