1
|
Camonis JH, Aushev VN, Zueva E, Zalcman G. A review and perspective paper: Ras oncogene gets modest, from kingpin to mere henchman. Cell Mol Life Sci 2024; 81:412. [PMID: 39352544 PMCID: PMC11445209 DOI: 10.1007/s00018-024-05449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The concomitant activation of both the YAP1 co-transcription factor and RAS GTPases is a hallmark of several aggressive cancers, though the intricacies of their relationship and implications for oncogenesis are still poorly understood. This review has presented a cooperative model where YAP1 and RAS are not independently acting oncogenes but rather interdependently acting ones, with each fulfilling an essential role within the oncogenic process. YAP1 is responsible for initiating the expression of key proteins that contribute to various cancer traits. However, these proteins must often be transported into the cytoplasm to exert their effects. We suggest that oncogenic RAS actually facilitates this transport, enabling the phosphorylation and subsequent activation of the nuclear transporter XPO1 (aka Exportin1). This mechanism is particularly crucial for anti-apoptotic proteins. Instead of being sequestered within the nucleus in an ineffective state, these proteins are rather shuttled into the cytoplasm. Within the cytoplasm, they can effectively inhibit apoptosis, undermining by these means the efficacy of chemotherapeutic agents designed to induce cell death in cancer cells. Therefore, a clearer understanding of the oncogenic partnership between RAS and YAP1 will likely provide new insights into the molecular underpinnings of cancer and highlight as well potential targets for therapeutic interventions designed to disrupt this pernicious interaction.
Collapse
Affiliation(s)
- Jacques H Camonis
- Institut Curie, Inserm U830, Stress and Cancer Laboratory, PSL Research University, 26 rue d'Ulm, 75005, Paris, France.
- IHPST_UMR-CNRS8590, 13 rue Dufour, 75006, Paris, France.
| | | | - Elina Zueva
- Institut Curie, Inserm U932, Université PSL, 75005, Paris, France
| | - Gérard Zalcman
- Université Paris Cité, Thoracic Oncology Department, Hôpital Bichat, AP-HP.Nord & U830 Inserm Stress and Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
| |
Collapse
|
2
|
Mukhtar F, Guarnieri A, Brancazio N, Falcone M, Di Naro M, Azeem M, Zubair M, Nicolosi D, Di Marco R, Petronio Petronio G. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers. Front Microbiol 2024; 15:1441781. [PMID: 39176271 PMCID: PMC11340542 DOI: 10.3389/fmicb.2024.1441781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculosis (TB) is a global threat, affecting one-quarter of the world's population. The World Health Organization (WHO) reports that 6 million people die annually due to chronic illnesses, a statistic that includes TB-related deaths. This high mortality is attributed to factors such as the emergence of drug-resistant strains and the exceptional survival mechanisms of Mycobacterium tuberculosis (MTB). Recently, microRNAs (miRNAs) have garnered attention for their crucial role in TB pathogenesis, surpassing typical small RNAs (sRNA) in their ability to alter the host's immune response. For instance, miR-155, miR-125b, and miR-29a have been identified as key players in the immune response to MTB, particularly in modulating macrophages, T cells, and cytokine production. While sRNAs are restricted to within cells, exo-miRNAs are secreted from MTB-infected macrophages. These exo-miRNAs modify the function of surrounding cells to favor the bacterium, perpetuating the infection cycle. Another significant aspect is that the expression of these miRNAs affects specific genes and pathways involved in immune functions, suggesting their potential use in diagnosing TB and as therapeutic targets. This review compiles existing information on the immunomodulatory function of exosomal miRNAs from MTB, particularly focusing on disease progression and the scientific potential of this approach compared to existing diagnostic techniques. Thus, the aim of the study is to understand the role of exosomal miRNAs in TB and to explore their potential for developing novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Muhammad Azeem
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
3
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Gao X, Lin X, Lin M, Lan Y, Wang Y, Wu R, Li J, Huang C, Zhong D. Silencing Rac1 and Prex1 Inhibit Epithelial-Mesenchymal Transition in Human Gastric Cancer Cells Induced by Transforming Growth Factor-β1. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:975-981. [PMID: 37434402 PMCID: PMC10543419 DOI: 10.5152/tjg.2023.23108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND/AIMS Transforming growth factor-beta can influence tumor cells, causing epithelial-mesenchymal transition and enhancing their invasion and metastasis ability. Rac1 protein could be used as an independent tumor diagnostic marker and survival predictor. Prex1 is closely related to cell metastasis. In this study, the impact of silencing Rac1 and Prex1 on transforming growth factor-beta 1-induced epithelial-mesenchymal transition and apoptosis of human gastric cancer cells MGC-803 and MKN45 was investigated. MATERIALS AND METHODS MGC-803 and MKN45 cells received recombinant transforming growth factor-beta 1 (rTGF-β1) treatments at various concentrations. Cell Counting Kit-8 kit was used to determine cell viability. Rac1 and Prex1 interference vectors were transfected into the rTGF-β1-treated MGC-803 and MKN45 cells. Cell apoptosis and migration were detected by flow cytometry and scratch test, respectively. Western blot was used to detect the epithelial-mesenchymal transition-related markers E-cadherin, N-cadherin, vimentin, and PDLIM2 expression levels. RESULTS The rTGF-β1 (10 ng/mL) could promote MGC-803 and MKN45 cell viability. Silencing Rac1 and Prex1 could increase E-cadherin and PDLIM2 expression, decrease N-cadherin and vimentin expression, inhibit cell viability and migration, and promote apoptosis in rTGF-β1-treated MGC-803 and MKN45 cells. CONCLUSIONS Silencing Rac1 and Prex1 could inhibit epithelial-mesenchymal transition, reduce cell viability and migration, and promote apoptosis in human gastric cancer cells.
Collapse
Affiliation(s)
- Xinyan Gao
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaoyan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mengxin Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yanqin Lan
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yao Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Riping Wu
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Junde Li
- Department of Medical Oncology, Zhangzhou Municipal Hospital, Zhangzhou, Fujian Province, China
| | - Chuanyong Huang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Dongta Zhong
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
6
|
Liu LZ, Wang B, Zhang R, Wu Z, Huang Y, Zhang X, Zhou J, Yi J, Shen J, Li MY, Dong M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis 2023; 14:548. [PMID: 37612265 PMCID: PMC10447533 DOI: 10.1038/s41419-023-06078-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Obesity/overweight and lipid metabolism disorders have become increased risk factors for lung cancer. Fatty acid translocase CD36 promotes cellular uptake of fatty acids. Whether and how CD36 facilitates lung adenocarcinoma (LUAD) growth in high-fat environment is unknown. Here, we demonstrated that palmitic acid (PA) or high-fat diet (HFD) promoted LUAD cell proliferation and metastasis in a CD36-dependent manner. Mechanistically, CD36 translocated from cytoplasm to cell membrane and interacted with Src kinase upon PA stimulation in human LUAD cells. Akt and ERK, downstream of Src, were then activated to mediate LUAD cell proliferation and metastasis. Furthermore, PA treatment promoted CD36 sarcolemmal translocation, where it activated Rac1 and upregulated MMP-9 through Src-Akt/ERK pathway, resulting in redistribution of cortactin, N-WASP and Arp2/3, and finally led to occurrence of finger-like protrusions of actin on cell surface to enhance cell metastasis. Compared with normal-chew diet (NCD) mice, the HFD group exhibited higher level of blood free fatty acid (FFA) and cholesterol (TC), developed larger xenograft LUAD tumors and enhanced tumor cell metastatic potential, which were accompanied by obvious sarcolemmal actin remodeling and were blocked by simultaneous CD36 knockdown in LUAD cells. Consistently, xenografted and tail vein-injected scramble-RNA-A549 cells but not CD36-shRNA-A549 in HFD mice formed metastatic LUAD tumors on the lung. CD36 inhibitor SSO significantly inhibited LUAD cell metastasis to the lung. Collectively, CD36 initiates Src signaling to promote LUAD cell proliferation and actin remodeling-involved metastasis under high-fat environment. Our study provides the new insights that CD36 is a valid target for LUAD therapy.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Guangdong Medical Academic Exchange Center, Yuexiu District, Guangzhou, Guangdong, China
| | - Rui Zhang
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Zangshu Wu
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jian Shen
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Ming-Yue Li
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Dong
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
7
|
Ireton K, Gyanwali GC, Herath TUB, Lee N. Exploitation of the host exocyst complex by bacterial pathogens. Mol Microbiol 2023. [PMID: 36717381 DOI: 10.1111/mmi.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Intracellular bacterial pathogens remodel the plasma membrane of eukaryotic cells in order to establish infection. A common and well-studied mechanism of plasma membrane remodelling involves bacterial stimulation of polymerization of the host actin cytoskeleton. Here, we discuss recent results showing that several bacterial pathogens also exploit the host vesicular trafficking pathway of 'polarized exocytosis' to expand and reshape specific regions in the plasma membrane during infection. Polarized exocytosis is mediated by an evolutionarily conserved octameric protein complex termed the exocyst. We describe examples in which the bacteria Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Shigella flexneri co-opt the exocyst to promote internalization into human cells or intercellular spread within host tissues. We also discuss results showing that Legionella pneumophila or S. flexneri manipulate exocyst components to modify membrane vacuoles to favour intracellular replication or motility of bacteria. Finally, we propose potential ways that pathogens manipulate exocyst function, discuss how polarized exocytosis might promote infection and highlight the importance of future studies to determine how actin polymerization and polarized exocytosis are coordinated to achieve optimal bacterial infection.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Listeria monocytogenes Co-Opts the Host Exocyst Complex To Promote Internalin A-Mediated Entry. Infect Immun 2022; 90:e0032622. [PMID: 36255255 PMCID: PMC9753705 DOI: 10.1128/iai.00326-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes induces its internalization (entry) into intestinal epithelial cells through interaction of its surface protein, internalin A (InlA), with the human cell-cell adhesion molecule, E-cadherin. While InlA-mediated entry requires bacterial stimulation of actin polymerization, it remains unknown whether additional host processes are manipulated to promote internalization. Here, we show that interaction of InlA with E-cadherin induces the host membrane-trafficking process of polarized exocytosis, which augments uptake of Listeria. Imaging studies revealed that exocytosis is stimulated at sites of InlA-dependent internalization. Experiments inhibiting human N-ethylmaleimide-sensitive factor (NSF) demonstrated that exocytosis is needed for efficient InlA-mediated entry. Polarized exocytosis is mediated by the exocyst complex, which comprises eight proteins, including Sec6, Exo70, and Exo84. We found that Exo70 was recruited to sites of InlA-mediated entry. In addition, depletion of Exo70, Exo84, or Sec6 by RNA interference impaired entry without affecting surface levels of E-cadherin. Similar to binding of InlA to E-cadherin, homophilic interaction of E-cadherin molecules mobilized the exocyst and stimulated exocytosis. Collectively, these results demonstrate that ligation of E-cadherin induces exocytosis that promotes Listeria entry, and they raise the possibility that the exocyst might also control the normal function of E-cadherin in cell-cell adhesion.
Collapse
|
9
|
Krause GJ, Diaz A, Jafari M, Khawaja RR, Agullo‐Pascual E, Santiago‐Fernández O, Richards AL, Chen K, Dmitriev P, Sun Y, See SK, Abdelmohsen K, Mazan‐Mamczarz K, Krogan NJ, Gorospe M, Swaney DL, Sidoli S, Bravo‐Cordero JJ, Kampmann M, Cuervo AM. Reduced endosomal microautophagy activity in aging associates with enhanced exocyst-mediated protein secretion. Aging Cell 2022; 21:e13713. [PMID: 36116133 PMCID: PMC9577956 DOI: 10.1111/acel.13713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023] Open
Abstract
Autophagy is essential for protein quality control and regulation of the functional proteome. Failure of autophagy pathways with age contributes to loss of proteostasis in aged organisms and accelerates the progression of age-related diseases. In this work, we show that activity of endosomal microautophagy (eMI), a selective type of autophagy occurring in late endosomes, declines with age and identify the sub-proteome affected by this loss of function. Proteomics of late endosomes from old mice revealed an aberrant glycation signature for Hsc70, the chaperone responsible for substrate targeting to eMI. Age-related Hsc70 glycation reduces its stability in late endosomes by favoring its organization into high molecular weight protein complexes and promoting its internalization/degradation inside late endosomes. Reduction of eMI with age associates with an increase in protein secretion, as late endosomes can release protein-loaded exosomes upon plasma membrane fusion. Our search for molecular mediators of the eMI/secretion switch identified the exocyst-RalA complex, known for its role in exocytosis, as a novel physiological eMI inhibitor that interacts with Hsc70 and acts directly at the late endosome membrane. This inhibitory function along with the higher exocyst-RalA complex levels detected in late endosomes from old mice could explain, at least in part, reduced eMI activity with age. Interaction of Hsc70 with components of the exocyst-RalA complex places this chaperone in the switch from eMI to secretion. Reduced intracellular degradation in favor of extracellular release of undegraded material with age may be relevant to the spreading of proteotoxicity associated with aging and progression of proteinopathies.
Collapse
Affiliation(s)
- Gregory J. Krause
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Antonio Diaz
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Maryam Jafari
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Rabia R. Khawaja
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Esperanza Agullo‐Pascual
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olaya Santiago‐Fernández
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alicia L. Richards
- Department of Cellular Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- The J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kuei‐Ho Chen
- Department of Cellular Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- The J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Phillip Dmitriev
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Yan Sun
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Stephanie K. See
- Department of Biochemistry and BiophysicsInstitute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Krystyna Mazan‐Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Nevan J. Krogan
- Department of Cellular Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- The J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Danielle L. Swaney
- Department of Cellular Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- The J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Simone Sidoli
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jose Javier Bravo‐Cordero
- Department of Medicine, Division of Hematology and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Martin Kampmann
- Department of Biochemistry and BiophysicsInstitute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging Studies, Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
10
|
Parihar K, Nukpezah J, Iwamoto DV, Janmey PA, Radhakrishnan R. Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness. iScience 2022; 25:104721. [PMID: 35865140 PMCID: PMC9293776 DOI: 10.1016/j.isci.2022.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli. Through machine learning, we identified a fingerprint of cytoskeleton-related proteins that accurately characterize cell stiffness in different ECM conditions. Expression of their respective genes correlates with patient prognosis across different tumor types. The levels of selected cytoskeleton proteins indicated that cortical tension mirrors the increase (or decrease) in cell stiffness with a change in ECM stiffness. A mechanistic biophysical model shows that the tendency for curvature generation by curvature-inducing proteins has an ultrasensitive dependence on cortical tension. This study thus highlights the effect of ECM stiffness, mediated by cortical tension, in modulating vesicle biogenesis.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel V. Iwamoto
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Langemeyer L, Ungermann C. Vesicle transport: Exocyst follows PIP 2 to tether membranes. Curr Biol 2022; 32:R748-R750. [PMID: 35820387 DOI: 10.1016/j.cub.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new study uses reconstituted, functional octameric exocyst complex to provide new insights into the assembly of this tethering complex and reveal how the activity of the lipid kinase PIP5K1C stimulated by Arf6 on exocytic vesicles allows for exocyst-mediated tethering at the plasma membrane.
Collapse
Affiliation(s)
- Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| |
Collapse
|
12
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
13
|
Chan EHY, Zhou Y, Aerne BL, Holder MV, Weston A, Barry DJ, Collinson L, Tapon N. RASSF8-mediated transport of Echinoid via the exocyst promotes Drosophila wing elongation and epithelial ordering. Development 2021; 148:dev199731. [PMID: 34532737 PMCID: PMC8572004 DOI: 10.1242/dev.199731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.
Collapse
Affiliation(s)
- Eunice H. Y. Chan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Birgit L. Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J. Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
14
|
Herath TUB, Roy A, Gianfelice A, Ireton K. Shigella flexneri subverts host polarized exocytosis to enhance cell-to-cell spread. Mol Microbiol 2021; 116:1328-1346. [PMID: 34608697 DOI: 10.1111/mmi.14827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Shigella flexneri is a gram-negative bacterial pathogen that causes dysentery. Critical for disease is the ability of Shigella to use an actin-based motility (ABM) process to spread between cells of the colonic epithelium. ABM transports bacteria to the periphery of host cells, allowing the formation of plasma membrane protrusions that mediate spread to adjacent cells. Here we demonstrate that efficient protrusion formation and cell-to-cell spread of Shigella involves bacterial stimulation of host polarized exocytosis. Using an exocytic probe, we found that exocytosis is locally upregulated in bacterial protrusions in a manner that depends on the Shigella type III secretion system. Experiments involving RNA interference (RNAi) indicate that efficient bacterial protrusion formation and spread require the exocyst, a mammalian multi-protein complex known to mediate polarized exocytosis. In addition, the exocyst component Exo70 and the exocyst regulator RalA were recruited to Shigella protrusions, suggesting that bacteria manipulate exocyst function. Importantly, RNAi-mediated depletion of exocyst proteins or RalA reduced the frequency of protrusion formation and also the lengths of protrusions, demonstrating that the exocyst controls both the initiation and elongation of protrusions. Collectively, our results reveal that Shigella co-opts the exocyst complex to disseminate efficiently in host cell monolayers.
Collapse
Affiliation(s)
- Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Arpita Roy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
16
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
17
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
18
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Buechner M, Yang Z, Al-Hashimi H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. J Dev Biol 2020; 8:jdb8030017. [PMID: 32906663 PMCID: PMC7557474 DOI: 10.3390/jdb8030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.
Collapse
Affiliation(s)
- Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
- Correspondence:
| | - Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| | | |
Collapse
|
20
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
21
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
22
|
Xia L, Lin J, Su J, Oyang L, Wang H, Tan S, Tang Y, Chen X, Liu W, Luo X, Tian Y, Liang J, Su Q, Liao Q, Zhou Y. Diallyl disulfide inhibits colon cancer metastasis by suppressing Rac1-mediated epithelial-mesenchymal transition. Onco Targets Ther 2019; 12:5713-5728. [PMID: 31410018 PMCID: PMC6645609 DOI: 10.2147/ott.s208738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Prevention of epithelial-mesenchymal transition (EMT) provides a novel treatment strategy for tumor metastasis. Our previous studies have shown that diallyl disulfide (DADS) inhibits Ras related C3 botulinum toxin substrate1 (Rac1) expression, being a potential agent that suppresses migration and invasion of colon cancer cells. The study provides information on the underlying mechanisms. Methods The expression of Rac1 and EMT markers (vimentin, N-cadherin and E-cadherin) in colon cancer samples was detected. Colon cancer cell lines treated with or without DADS were used to examine EMT markers, Rac1 and its related molecules. Various cell functions related to metastasis were performed in vitro, and further confirmed in vivo. Results Rac1 was highly expressed in colon cancer, and associated with aberrant expression of EMT markers and poor prognosis. Rac1 overexpression induced cell migration and invasion in vitro and metastasis in vivo with down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin, and snail1, whereas inhibition of Rac1 impaired the oncogenic function. DADS suppressed Rac1 expression and activity via inhibition of PI3K/Akt pathway, thus suppressing EMT and invasion and migration of colon cancer cells. The tumor inhibition of DADS was enhanced by knockdown of Rac1, but antagonized by overexpression of Rac1. We further found that DADS blocked EMT via targeting the Rac1-mediated PAK1-LIMK1-Cofilins signaling. Conclusion Rac1 is a potential target molecule for the inhibitory effect of DADS on EMT and invasion and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Longzheng Xia
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jingguan Lin
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jian Su
- Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Linda Oyang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Heran Wang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Shiming Tan
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Xiaoyan Chen
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Xia Luo
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yutong Tian
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jiaxin Liang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Qi Su
- Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qianjin Liao
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yujuan Zhou
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| |
Collapse
|
23
|
Ommer A, Figlia G, Pereira JA, Datwyler AL, Gerber J, DeGeer J, Lalli G, Suter U. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol 2019; 218:2350-2369. [PMID: 31201267 PMCID: PMC6605813 DOI: 10.1083/jcb.201811150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo-cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.
Collapse
Affiliation(s)
- Andrea Ommer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Lena Datwyler
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Singh MK, Martin APJ, Joffre C, Zago G, Camonis J, Coppey M, Parrini MC. Localization of RalB signaling at endomembrane compartments and its modulation by autophagy. Sci Rep 2019; 9:8910. [PMID: 31222145 PMCID: PMC6586930 DOI: 10.1038/s41598-019-45443-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/30/2019] [Indexed: 02/02/2023] Open
Abstract
The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantified the endogenous localization of the RGL2 activator and its substrate RalB at different endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly affected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. These results suggest that the contribution of endosome membranes (carrying RGL2 and RalB molecules) increases total pool of RGL2-RalB at autophagosome forming compartments and might contribute to amplify RalB signaling to support autophagy.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France
- ART group, Inserm U830, 75005, Paris, France
| | - Alexandre P J Martin
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France
- ART group, Inserm U830, 75005, Paris, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, Toulouse, France
| | - Giulia Zago
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France
- ART group, Inserm U830, 75005, Paris, France
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France
- ART group, Inserm U830, 75005, Paris, France
| | - Mathieu Coppey
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France
- LOCCO group, UMR168, 75005, Paris, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005, Paris, France.
- ART group, Inserm U830, 75005, Paris, France.
| |
Collapse
|
25
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Calender A, Rollat Farnier PA, Buisson A, Pinson S, Bentaher A, Lebecque S, Corvol H, Abou Taam R, Houdouin V, Bardel C, Roy P, Devouassoux G, Cottin V, Seve P, Bernaudin JF, Lim CX, Weichhart T, Valeyre D, Pacheco Y, Clement A, Nathan N. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018; 11:23. [PMID: 29510755 PMCID: PMC5839022 DOI: 10.1186/s12920-018-0338-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.
Collapse
Affiliation(s)
- Alain Calender
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | | | - Adrien Buisson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Abderrazzaq Bentaher
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Serge Lebecque
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
| | - Harriet Corvol
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
| | - Rola Abou Taam
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
| | - Véronique Houdouin
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
| | - Claire Bardel
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Pascal Roy
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Gilles Devouassoux
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
| | - Vincent Cottin
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
| | - Pascal Seve
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
| | | | - Clarice X. Lim
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Dominique Valeyre
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
| | - Yves Pacheco
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Annick Clement
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - Nadia Nathan
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - in the frame of GSF (Groupe Sarcoïdose France)
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
- Histology and Tumor Biology, ER2 UPMC, Hôpital Tenon, Paris, France
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| |
Collapse
|