1
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2025; 28:156-170. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
2
|
Hu L, Tang H, Xie Z, Yi H, Feng L, Zhou P, Zhang Y, Liu J, Ao X, Zhou J, Yan H. Daily feeding frequency impacts muscle characteristics and fat deposition in finishing pigs associated with alterations in microbiota composition and bile acid profile. Front Microbiol 2025; 16:1510354. [PMID: 39935644 PMCID: PMC11813218 DOI: 10.3389/fmicb.2025.1510354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Feeding frequency has been shown to affect growth and body composition of the host associated with gut microbiota. It remains unknown whether adjusting feeding frequency could effectively regulate both skeletal muscle development and whole-body lipid metabolism and thus affect carcass composition and feed conversion efficiency. Therefore, this study aimed to explore the effects of feeding frequency on muscle growth, fat deposition, cecal microbiota composition, and bile acid composition in finishing pigs. Methods Sixteen Sichuan-Tibetan black pigs, with an initial weight of 121.50 ± 1.60 kg, were divided into two groups and fed either two meals (M2) or four meals (M4) per day. The trial lasted 30 days. The muscle fiber characteristics, lipid metabolism in adipose tissue, and cecal microbiota and bile acid composition were determined. Results The present study revealed that pigs fed four meals exhibited a lower feed-to-gain ratio, abdominal fat weight, and average backfat thickness (p < 0.05), as well as a higher loin eye area (p = 0.09) and myofiber diameter in the longissimus muscle than their counterparts. The mRNA expression of slow-twitch fiber and myogenesis-associated genes in the longissimus muscle was upregulated, while lipid metabolism-related genes in the backfat were downregulated in the M4 group compared to the M2 group (p < 0.05). The M4 pigs exhibited higher abundances of Firmicutes, Actinobacteriota, Bacillus, Clostridium_sensu_1, and Romboutsia, and lower abundances of Spirochaetota, Verrucomicrobiota, Treponema, and Muribaculaceae in the cecal content than the M2 pigs (p < 0.05). A higher feeding frequency increased the levels of primary bile acids and decreased the concentrations of taurine-conjugated bile acids in the cecal content of pigs (p < 0.05). Conclusion Our research suggested that the M4 feeding pattern, compared to the M2 pattern, promoted muscle growth and reduced fat deposition by enhancing fast- to slow-twitch fiber conversion and myogenesis in the muscle and repressing lipid metabolism in adipose tissue, associated with altered microbiota composition and bile acid profiles.
Collapse
Affiliation(s)
- Luga Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Huayu Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhaoxi Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongyu Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Lunjie Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Pan Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiang Ao
- Feng Guangde Laboratory, Sichuan TQLS Group, Mianyang, Sichuan, China
| | - Jianchuan Zhou
- Feng Guangde Laboratory, Sichuan TQLS Group, Mianyang, Sichuan, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
3
|
Ho Y, Hou X, Sun F, Wong SHS, Zhang X. Synergistic Effects of Time-Restricted Feeding and Resistance Training on Body Composition and Metabolic Health: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3066. [PMID: 39339666 PMCID: PMC11434652 DOI: 10.3390/nu16183066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis examined the synergistic impact of time-restricted feeding (TRF) combined with resistance training (RT) (TRF + RT) on body composition and metabolic health in adults, contrasting it with habitual eating patterns (CON) and RT (CON + RT). METHODS Adhering to PRISMA guidelines, five databases were searched up to 28 April 2024. Randomized controlled trials or crossover trials assessing the effects of TRF + RT for at least 4 weeks in adults were selected. Data were pooled as standardized mean differences (SMDs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). The risk of bias was evaluated using the revised Cochrane risk-of-bias tool. RESULTS Seven studies with 164 participants were included in the final analysis. TRF + RT significantly reduced body mass (WMD -2.90, 95% CI: -5.30 to -0.51), fat mass (WMD -1.52, 95% CI: -2.30 to -0.75), insulin (SMD -0.72, 95% CI: -1.24 to -0.21), total cholesterol (WMD -9.44, 95% CI: -13.62 to -5.27), low-density lipoprotein cholesterol (LDL-C) (WMD -9.94, 95% CI: -13.47 to -6.41), and energy intake (WMD -174.88, 95% CI: -283.79 to -65.97) compared to CON + RT. No significant changes were observed in muscle mass, strength, or other metabolic markers. CONCLUSIONS TRF + RT, in contrast to CON + RT, significantly improved body composition, insulin, and cholesterol levels without affecting muscle mass or strength.
Collapse
Affiliation(s)
- Yiling Ho
- Department of Physical Education, Peking University, Beijing 100871, China;
| | - Xiao Hou
- School of Sport Science, Beijing Sport University, Beijing 100871, China;
| | - Fenghua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China;
| | - Stephen H. S. Wong
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong, China;
| | - Xiaoyuan Zhang
- Department of Physical Education, Peking University, Beijing 100871, China;
| |
Collapse
|
4
|
Zambrano C, González E, Salmeron D, Ruiz-Ojeda FJ, Luján J, Scheer FA, Garaulet M. Time-restricted eating affects human adipose tissue fat mobilization. Obesity (Silver Spring) 2024; 32:1680-1688. [PMID: 39073251 PMCID: PMC11357894 DOI: 10.1002/oby.24057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Time-restricted eating (TRE), a dietary approach that confines food intake to specific time windows, has shown metabolic benefits. However, its impact on body weight loss remains inconclusive. The objective of this study was to investigate the influence of early TRE (eTRE) and delayed TRE (dTRE) on fat mobilization using human adipose tissue (AT) cultures. METHODS Subcutaneous AT was collected from 21 participants with severe obesity. We assessed fat mobilization by measuring glycerol release in AT culture across four treatment conditions: control, eTRE, dTRE, and 24-h fasting. RESULTS TRE had a significant impact on lipolysis (glycerol release [mean (SD)] in micromoles per hour per gram: control, 0.05 [0.003]; eTRE, 0.10 [0.006]; dTRE, 0.08 [0.005]; and fasting, 0.17 [0.008]; p < 0.0001). Both eTRE and dTRE increased lipolysis compared with the control group, with eTRE showing higher glycerol mobilization than dTRE during the overall 24-h time window, especially at the nighttime/habitual sleep episode (p < 0.0001). Further analysis of TRE based on fasting duration revealed that, independently of the time window, glycerol release increased with fasting duration (in micromoles per hour per gram: 8 h = 0.08 [0.001]; 12 h = 0.09 [0.008]; and 16 h of fasting = 0.12 [0.011]; p < 0.0001). CONCLUSIONS This study provides insights into the potential benefits of TRE on fat mobilization and may guide the design of future dietary strategies for weight management and metabolic health.
Collapse
Affiliation(s)
- Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
| | - Elena González
- Department of Nutrition and integrative physiology, University of Utah, Salt Lake City, Utah, United States
| | - Diego Salmeron
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
- Health and Social Sciences Department, University of Murcia, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quiron salud Murcia, Spain
| | - Frank A.J.L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Dai Z, Wan K, Miyashita M, Ho RST, Zheng C, Poon ETC, Wong SHS. The Effect of Time-Restricted Eating Combined with Exercise on Body Composition and Metabolic Health: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100262. [PMID: 38897385 PMCID: PMC11301358 DOI: 10.1016/j.advnut.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Time-restricted eating (TRE) is increasingly popular, but its benefits in combination with exercise still need to be determined. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the efficacy of TRE combined with exercise compared with control diet with exercise in improving the body composition and metabolic health of adults. METHODS Five electronic databases were searched for relevant studies. Randomized controlled trials (RCTs) examining the effect of TRE combined with exercise on body composition and metabolic health in adults were included. All results in the meta-analysis are reported as mean difference (MD) with 95% confidence interval (CI). Study quality was assessed using the revised Cochrane Risk of Bias Tool and Grading of Recommendations Assessment, Development, and Evaluation assessment. RESULTS In total, 19 RCTs comprising 568 participants were included in this systematic review and meta-analysis. TRE combined with exercise likely reduced the participants' body mass (MD: -1.86 kg; 95% CI: -2.75, -0.97 kg) and fat mass (MD: -1.52 kg; 95% CI: -2.07, -0.97 kg) when compared with the control diet with exercise. In terms of metabolic health, the TRE combined with exercise group likely reduced triglycerides (MD: -13.38 mg/dL, 95% CI: -21.22, -5.54 mg/dL) and may result in a reduction in low-density lipoprotein (MD: -8.52 mg/dL; 95% CI: -11.72, -5.33 mg/dL) and a large reduction in leptin (MD: -0.67 ng/mL; 95% CI: -1.02, -0.33 ng/mL). However, TRE plus exercise exhibited no additional benefit on the glucose profile, including fasting glucose and insulin, and other lipid profiles, including total cholesterol and high-density lipoprotein concentrations, compared with the control group. CONCLUSIONS Combining TRE with exercise may be more effective in reducing body weight and fat mass and improving lipid profile than control diet with exercise. Implementing this approach may benefit individuals aiming to achieve weight loss and enhance their metabolic well-being. This study was registered in PROSPERO as CRD42022353834.
Collapse
Affiliation(s)
- Zihan Dai
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Kewen Wan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong, China
| | - Masashi Miyashita
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China; Faculty of Sport Sciences, Waseda University, Saitama, Japan; School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Robin Sze-Tak Ho
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Chen Zheng
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Rastogi S, Verma N, Raghuwanshi G, Kumar Verma D, Atam V. Chronomedicine Insights: Evaluating the Impact of Time-Restricted Meal Intake on Lipid Profile Parameters Among Individuals With Type 2 Diabetes in Northern India. Cureus 2024; 16:e56902. [PMID: 38659523 PMCID: PMC11042785 DOI: 10.7759/cureus.56902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Time-restricted meal intake (TRM) has shown potential benefits such as enhanced insulin sensitivity, lowered blood sugar levels, and possible weight loss in individuals with type 2 diabetes mellitus (T2DM). Our study aimed to investigate the impact of TRM on lipid profile parameters such as total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in fasting conditions in T2DM patients. METHODS In total, 400 patients from the endocrinology department at King George's Medical University (KGMU), Lucknow were enrolled in this study, adhering to the guidelines of the American Diabetes Association (ADA). Male and female patients with recently diagnosed T2DM (in the past five years), aged between 25 to 60 years, on oral anti-diabetic therapy excluding insulin, expressing willingness to provide written consent and to adhere to TRM were included in the TRM group. It was a longitudinal study as diabetic dyslipidemia is primarily caused by insulin resistance and nutritional reasons and we wanted to assess the effect of TRM on lipid profile in T2DM patients. Patients were enrolled via simple random sampling using the random number table method (computerized). The TRM group had an early dinner at 7 pm whereas the control group was of non-TRM/late-night eaters. TRM group was given comprehensive guidance including strategies to manage hunger, permissible beverage options (water and prescribed medication) during the fasting period, and daily maintenance of a diary documenting their timing, type, and quantity of food intake which they were requested to bring fortnightly. Emphasis was placed on recording even minor dietary items consumed throughout the day. The TRM group consumed food ad libitum during a 12-hour eating window from breakfast at 7 am to dinner at 7 pm. Data distribution was non-parametric. Mann-Whitney U test compared TRM and control group using mean values at baseline and follow-ups. Analysis used GraphPad Prism 9.2.0 software (GraphPad Inc., La Jolla, CA). A p-value less than 0.05 (p < 0.05) was considered statistically significant. RESULTS A total of 127 patients were lost to follow-up, resulting in 273 patients who completed the study. The mean value of TC in the TRM and non-TRM groups using the Mann-Whitney U test registered a highly significant p-value <0.0001 at 18 months, with a decrease of 14.17% from baseline in the TRM group and a decrease of 1.53% from baseline in the non-TRM group. The TRM group had a decrease of 24.75% in TG from a baseline value of 145.4±41.9, whereas the non-TRM group showed a decrease of 2.2% from a baseline value of 154.7±37.30 (p-value <0.0001). The TRM group showed an increase of 9.25% in HDL from a baseline value of 50.14±8.58; the non-TRM group showed an increase of 0.82% from a baseline value of 48.62±9.31 (p-value <0.0001). TRM group showed a decrease of 8.62% in LDL from a baseline value of 68.20±16.2 while the non-TRM group showed an increase of 1.54% from a baseline value of 65.38±19.3 (p-value <0.0002). The TRM group showed a decrease of 13.97% in VLDL from a baseline value of 32.20±18.7; the non-TRM group showed an increase of 4% from a baseline value of 30.16±24.2 (p-value <0.0001). CONCLUSION Our study's promising results underscore the potential of TRM as an effective strategy for managing dyslipidemia in individuals with T2DM, even over prolonged periods.
Collapse
Affiliation(s)
- Smriti Rastogi
- Physiology, King George's Medical University, Lucknow, IND
| | - Narsingh Verma
- Physiology, King George's Medical University, Lucknow, IND
| | - Gourav Raghuwanshi
- Physiology, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | | | - Virendra Atam
- Internal Medicine, King George's Medical University, Lucknow, IND
| |
Collapse
|
7
|
Zeb F, Osaili T, Obaid RS, Naja F, Radwan H, Cheikh Ismail L, Hasan H, Hashim M, Alam I, Sehar B, Faris ME. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023; 15:259. [PMID: 36678130 PMCID: PMC9863108 DOI: 10.3390/nu15020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Each individual has a unique gut microbiota; therefore, the genes in our microbiome outnumber the genes in our genome by about 150 to 1. Perturbation in host nutritional status influences gut microbiome composition and vice versa. The gut microbiome can help in producing vitamins, hormones, and other active metabolites that support the immune system; harvest energy from food; aid in digestion; protect against pathogens; improve gut transit and function; send signals to the brain and other organs; oscillate the circadian rhythm; and coordinate with the host metabolism through multiple cellular pathways. Gut microbiota can be influenced by host genetics, medications, diet, and lifestyle factors from preterm to aging. Aligning with precision nutrition, identifying a personalized microbiome mandates the provision of the right nutrients at the right time to the right patient. Thus, before prescribing a personalized treatment, it is crucial to monitor and count the gut flora as a focused biomarker. Many nutritional approaches that have been developed help in maintaining and restoring an optimal microbiome such as specific diet therapy, nutrition interventions, and customized eating patterns. One of these approaches is time-restricted feeding/eating (TRF/E), a type of intermittent fasting (IF) in which a subject abstains from food intake for a specific time window. Such a dietary modification might alter and restore the gut microbiome for proper alignment of cellular and molecular pathways throughout the lifespan. In this review, we have highlighted that the gut microbiota would be a targeted biomarker and TRF/E would be a targeted approach for restoring the gut-microbiome-associated molecular pathways such as hormonal signaling, the circadian system, metabolic regulators, neural responses, and immune-inflammatory pathways. Consequently, modulation of the gut microbiota through TRF/E could contribute to proper utilization and availability of the nutrients and in this way confer protection against diseases for harnessing personalized nutrition approaches to improve human health.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Reyad Shakir Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Peshawar 24540, KP, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Luton LU1 3JU, UK
| | - MoezAllslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Johnson H, Yates T, Leedom G, Ramanathan C, Puppa M, van der Merwe M, Tipirneni-Sajja A. Multi-Tissue Time-Domain NMR Metabolomics Investigation of Time-Restricted Feeding in Male and Female Nile Grass Rats. Metabolites 2022; 12:metabo12070657. [PMID: 35888782 PMCID: PMC9321200 DOI: 10.3390/metabo12070657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolic disease resulting from overnutrition is prevalent and rapidly increasing in incidence in modern society. Time restricted feeding (TRF) dietary regimens have recently shown promise in attenuating some of the negative metabolic effects associated with chronic nutrient stress. The purpose of this study is to utilize a multi-tissue metabolomics approach using nuclear magnetic resonance (NMR) spectroscopy to investigate TRF and sex-specific effects of high-fat diet in a diurnal Nile grass rat model. Animals followed a six-week dietary protocol on one of four diets: chow ad libitum, high-fat ad libitum (HF-AD), high-fat early TRF (HF-AM), or high-fat late TRF (HF-PM), and their liver, heart, and white adipose tissues were harvested at the end of the study and were analyzed by NMR. Time-domain complete reduction to amplitude–frequency table (CRAFT) was used to semi-automate and systematically quantify metabolites in liver, heart, and adipose tissues while minimizing operator bias. Metabolite profiling and statistical analysis revealed lipid remodeling in all three tissues and ectopic accumulation of cardiac and hepatic lipids for HF-AD feeding compared to a standard chow diet. Animals on TRF high-fat diet had lower lipid levels in the heart and liver compared to the ad libitum group; however, no significant differences were noted for adipose tissue. Regardless of diet, females exhibited greater amounts of hepatic lipids compared to males, while no consistent differences were shown in adipose and heart. In conclusion, this study demonstrates the feasibility of performing systematic and time-efficient multi-tissue NMR metabolomics to elucidate metabolites involved in the crosstalk between different metabolic tissues and provides a more holistic approach to better understand the etiology of metabolic disease and the effects of TRF on metabolic profiles.
Collapse
Affiliation(s)
- Hayden Johnson
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (H.J.); (T.Y.); (G.L.)
| | - Thomas Yates
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (H.J.); (T.Y.); (G.L.)
| | - Gary Leedom
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (H.J.); (T.Y.); (G.L.)
| | - Chidambaram Ramanathan
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (C.R.); (M.P.); (M.v.d.M.)
| | - Melissa Puppa
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (C.R.); (M.P.); (M.v.d.M.)
| | - Marie van der Merwe
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (C.R.); (M.P.); (M.v.d.M.)
| | - Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (H.J.); (T.Y.); (G.L.)
- Correspondence:
| |
Collapse
|
9
|
Parr EB, Devlin BL, Hawley JA. Perspective: Time-Restricted Eating-Integrating the What with the When. Adv Nutr 2022; 13:699-711. [PMID: 35170718 PMCID: PMC9156382 DOI: 10.1093/advances/nmac015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 11/14/2022] Open
Abstract
Time-restricted eating (TRE) is a popular dietary strategy that emphasizes the timing of meals in alignment with diurnal circadian rhythms, permitting ad libitum energy intake during a restricted (∼8-10 h) eating window each day. Unlike energy-restricted diets or intermittent fasting interventions that focus on weight loss, many of the health-related benefits of TRE are independent of reductions in body weight. However, TRE research to date has largely ignored what food is consumed (i.e., macronutrient composition and energy density), overlooking a plethora of past epidemiological and interventional dietary research. To determine some of the potential mechanisms underpinning the benefits of TRE on metabolic health, future studies need to increase the rigor of dietary data collected, assessed, and reported to ensure a consistent and standardized approach in TRE research. This Perspective article provides an overview of studies investigating TRE interventions in humans and considers dietary intake (both what and when food is eaten) and their impact on selected health outcomes (i.e., weight loss, glycemic control). Integrating existing dietary knowledge about what food is eaten with our recent understanding on when food should be consumed is essential to optimize the impact of dietary strategies aimed at improving metabolic health outcomes.
Collapse
Affiliation(s)
| | - Brooke L Devlin
- Department of Dietetics, Nutrition, and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Tordoff MG, Ellis HT. Obesity in C57BL/6J mice fed diets differing in carbohydrate and fat but not energy content. Physiol Behav 2022; 243:113644. [PMID: 34767835 PMCID: PMC8667181 DOI: 10.1016/j.physbeh.2021.113644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
To investigate the contributions of carbohydrate and fat to obesity we measured the body weight, body composition and food intake of adult C57BL/6J mice fed ad libitum with various combinations of two semisynthetic diets that differed in carbohydrate and fat but not in protein, micronutrient or energy content. In Experiment 1, involving male mice, body weights were similar in groups fed diets comprised of (by energy) 20% protein, 75% carbohydrate and 5% fat (C75-F5) or 20% protein, 5% carbohydrate and 75% fat (C5-F75). However, mice fed a 50:50 composite mixture of the C75-F5 and C5-F75 diets (i.e., a C40-F40 diet) became substantially more obese. Mice that could choose between the C75-F5 and C5-F75 diets ate equal amounts of each diet and gained almost as much weight as did the group fed C40-F40 diet. Mice switched every day between the C75-F5 and C5-F75 diets gained no more weight than did those fed either diet exclusively. In Experiment 2, male and female mice were fed chow or one of 8 isocaloric diets that differed parametrically in carbohydrate and fat content. Groups fed diets in the middle of the range (i.e., C35-F45 or C45-F35) weighed significantly more and were significantly fatter than were those fed diets with more extreme proportions of carbohydrate and fat (e.g., C75-F5, C5-F75), an effect that was more pronounced in males than females. In Experiment 3 and 4, male mice fed versions of the C40-F40 formulation gained more weight than did those fed the C75-F5 or C5-F75 formulations irrespective of whether the carbohydrate was predominantly sucrose or predominantly starch, or whether the fat was vegetable shortening, corn oil, palm oil or canola oil; the type of carbohydrate or fat had little or no impact on body weight. In all four experiments, energy intakes differed among the diet groups but could not account for the differences in body weight. These results demonstrate that the proportion of carbohydrate and fat in the diet influences body weight independently of energy content, and that the type of carbohydrate or fat has little impact on body weight. Consuming carbohydrate and fat simultaneously or in close temporal proximity exacerbates obesity.
Collapse
|
11
|
MORO TATIANA, TINSLEY GRANT, PACELLI FRANCESCOQ, MARCOLIN GIUSEPPE, BIANCO ANTONINO, PAOLI ANTONIO. Twelve Months of Time-restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med Sci Sports Exerc 2021; 53:2577-2585. [PMID: 34649266 PMCID: PMC10115489 DOI: 10.1249/mss.0000000000002738] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Recently, a modified intermittent fasting protocol was demonstrated to be able to maintain muscle mass and strength, decrease fat mass, and improve some inflammation and cardiovascular risk factors in healthy resistance-trained males after 2 months. The present study sought to investigate the long-term effects on these parameters. METHODS The experiment was a single-blind randomized study. Twenty healthy subjects were enrolled and underwent 12 months of either a time-restricted eating (TRE) diet or a normal diet (ND) protocol, along with resistance training. In the TRE protocol, subjects consumed their energy needs in three meals during an 8-h period of time each day (1 pm, 4 pm, and 8 pm). Subjects in the ND group also had three meals, which were consumed at 8 am, 1 pm, and 8 pm. Groups were matched for kilocalories consumed and macronutrient distribution at baseline. RESULTS After 12 months of TRE, body mass, fat mass, insulin-like growth factor 1, and testosterone were significantly lower compared with ND. Moreover, inflammatory markers (interleukin 6, interleukin 1β, and tumor necrosis factor α), insulin sensitivity (fasting glucose, insulin, and homeostatic model assessment for insulin resistance index), and lipid profile (cholesterol, HDL, and LDL) significantly improved after TRE compared with ND. Finally, subjects in TRE spontaneously decreased their daily energy intake, whereas those in ND maintained their starting kilocalories per day. No adverse events were reported. CONCLUSIONS Our results suggest that long-term TRE combined with a resistance training program is feasible, safe, and effective in reducing inflammatory markers and risk factors related to cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- TATIANA MORO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - GRANT TINSLEY
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX
| | | | - GIUSEPPE MARCOLIN
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - ANTONINO BIANCO
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, ITALY
| | - ANTONIO PAOLI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| |
Collapse
|
12
|
Yan H, Wei W, Hu L, Zhang Y, Zhang H, Liu J. Reduced Feeding Frequency Improves Feed Efficiency Associated With Altered Fecal Microbiota and Bile Acid Composition in Pigs. Front Microbiol 2021; 12:761210. [PMID: 34712219 PMCID: PMC8546368 DOI: 10.3389/fmicb.2021.761210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
A biphasic feeding regimen exerts an improvement effect on feed efficiency of pigs. While gut microbiome and metabolome are known to affect the host phenotype, so far the effects of reduced feeding frequency on fecal microbiota and their metabolism in pigs remain unclear. Here, the combination of 16S rRNA sequencing technique as well as untargeted and targeted metabolome analyses was adopted to investigate the fecal microbiome and metabolome of growing–finishing pigs in response to a biphasic feeding [two meals per day (M2)] pattern. Sixty crossbred barrows were randomly assigned into two groups with 10 replicates (three pigs/pen), namely, the free-access feeding group (FA) and the M2 group. Pigs in the FA group were fed free access while those in the M2 group were fed ad libitum twice daily for 1 h at 8:00 and 18:00. Results showed that pigs fed biphasically exhibited increased feed efficiency compared to FA pigs. The Shannon and Simpson indexes were significantly increased by reducing the feeding frequency. In the biphasic-fed pigs, the relative abundances of Subdoligranulum, Roseburia, Mitsuokella, and Terrisporobacter were significantly increased while the relative abundances of unidentified_Spirochaetaceae, Methanobrevibacter, unidentified_Bacteroidales, Alloprevotella, Parabacteroides, and Bacteroides were significantly decreased compared to FA pigs. Partial least-square discriminant analysis (PLS-DA) analysis revealed an obvious variation between the FA and M2 groups; the differential features were mainly involved in arginine, proline, glycine, serine, threonine, and tryptophan metabolism as well as primary bile acid (BA) biosynthesis. In addition, the changes in the microbial genera were correlated with the differential fecal metabolites. A biphasic feeding regimen significantly increased the abundances of primary BAs and secondary BAs in feces of pigs, and the differentially enriched BAs were positively correlated with some specific genera. Taken together, these results suggest that the improvement effect of a reduced feeding frequency on feed efficiency of pigs might be associated with the altered fecal microbial composition and fecal metabolite profile in particular the enlarged stool BA pool.
Collapse
Affiliation(s)
- Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenzhuo Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Luga Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
13
|
Cheng H, Liu Z, Wu G, Ho CT, Li D, Xie Z. Dietary compounds regulating the mammal peripheral circadian rhythms and modulating metabolic outcomes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Maintain host health with time-restricted eating and phytochemicals: A review based on gut microbiome and circadian rhythm. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Ye Y, Xu H, Xie Z, Wang L, Sun Y, Yang H, Hu D, Mao Y. Time-Restricted Feeding Reduces the Detrimental Effects of a High-Fat Diet, Possibly by Modulating the Circadian Rhythm of Hepatic Lipid Metabolism and Gut Microbiota. Front Nutr 2020; 7:596285. [PMID: 33425971 PMCID: PMC7793950 DOI: 10.3389/fnut.2020.596285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Time-restricted feeding, also known as intermittent fasting, can confer various beneficial effects, especially protecting against obesity, and related metabolic disorders, but little is known about the underlying mechanisms. Therefore, the present study aims to investigate the effects of time-restricted feeding on the circadian rhythm of gut microbiota and hepatic metabolism. Methods: Eight-week-old male Kunming mice received either a normal diet ad libitum, a high-fat diet ad libitum, or a high-fat diet restricted to an 8-h temporal window per day for an experimental period of 8 weeks. Weight gain and calorie intake were measured weekly. Serum metabolites, hepatic sections and lipid metabolites, gut microbiota, and the hepatic expression of Per1, Cry1, Bmal1, SIRT1, SREBP, and PPARα were measured at the end of the experimental period. The composition of gut microbiota and the expression of hepatic genes were compared between four timepoints. Results: Mice that received a time-restricted high-fat diet had less weight gain, milder liver steatosis, and lower hepatic levels of triglycerides than mice that received a high-fat diet ad libitum (p < 0.05). The numbers of Bacteroidetes and Firmicutes differed between mice that received a time-restricted high-fat diet and mice that received a high-fat diet ad libitum (p < 0.05). Mice fed a time-restricted high-fat diet showed distinct circadian rhythms of hepatic expression of SIRT1, SREBP, and PPARα compared with mice fed a normal diet ad libitum, as well as the circadian rhythm of the abundance of Bacteroidetes and Firmicutes. Conclusions: Time-restricted feeding is associated with better metabolic conditions, perhaps owing to alterations in gut microbiota and the circadian pattern of molecules related to hepatic lipid metabolism, which were first to report.
Collapse
Affiliation(s)
- Yuqian Ye
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Haopeng Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhibo Xie
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lun Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yuning Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Dandan Hu
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
16
|
Gao WK, Shu YY, Ye J, Pan XL. Circadian clock and liver energy metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:1025-1035. [DOI: 10.11569/wcjd.v28.i20.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythm, generated by the circadian clock, is an internal rhythm that the body evolved to adapt to the diurnal changes in the external environment. Under its influence, mammals have distinct feeding and fasting cycles, which cause rhythmic changes in nutrient supply and demand. In recent years, many studies have shown that biorhythms are closely related to body metabolism. The liver, as the metabolism center of the body, is affected by circadian rhythm. However, with the acceleration of the pace of modern life and the change of life styles, the body's original rhythm is disrupted, resulting in a significant increase in the incidence of liver related metabolic diseases. Meanwhile, the disorder of circadian rhythm can also promote the occurrence and development of these diseases, and affect their prognosis and outcome. This paper reviews the relationship between the function of liver clock genes and the metabolism of liver glucose, lipids, bile acids, protein, etc.
Collapse
Affiliation(s)
- Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Li Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
17
|
Mehus AA, Rust B, Idso JP, Hanson B, Zeng H, Yan L, Bukowski MR, Picklo MJ. Time-restricted feeding mice a high-fat diet induces a unique lipidomic profile. J Nutr Biochem 2020; 88:108531. [PMID: 33098972 DOI: 10.1016/j.jnutbio.2020.108531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/11/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022]
Abstract
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.
Collapse
Affiliation(s)
- Aaron A Mehus
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Bret Rust
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Joseph P Idso
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Benjamin Hanson
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Huawei Zeng
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Lin Yan
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA
| | - Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center Grand Forks, North Dakota, USA; Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA.
| |
Collapse
|
18
|
Wang L, Ren B, Zhang Q, Chu C, Zhao Z, Wu J, Zhao W, Liu Z, Liu X. Methionine restriction alleviates high-fat diet-induced obesity: Involvement of diurnal metabolism of lipids and bile acids. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165908. [PMID: 32745530 DOI: 10.1016/j.bbadis.2020.165908] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Circadian misalignment induced by a high-fat diet (HFD) increases the risk of metabolic diseases. Methionine restriction (MR) is known to have the potential of alleviating obesity by improving insulin sensitivity. However, the role of the circadian clock in mediating the effects of MR on obesity-related metabolic disorders remains unclear. Ten-week-old male C57BL/6 J mice were fed with a low-fat diet (LFD) or a HFD for 4 wk., followed with a full diet (0.86% methionine, w/w) or a methionine-restricted diet (0.17% methionine, w/w) for 8 wk. Our results showed that MR attenuated insulin resistance triggered by HFD, especially at ZT12. Moreover, MR led to a time-specific enhancement of the expression of FGF21 and activated the AMPK/PGC-1α signaling. Notably, MR upregulated the cyclical levels of cholic acid (CA) and chenodeoxycholic acid (CDCA), and downregulated the cyclical level of deoxycholic acid (DCA) in the dark phase. MR restored the HFD-disrupted cyclical fluctuations of lipidolysis genes and BAs synthetic genes and improved the circulating lipid profile. Also, MR improved the expressions of clock-controlled genes (CCGs) in the liver and the brown adipose tissue throughout one day. In conclusion, MR exhibited the lipid-lowering effects on HFD-induced obesity and restored the diurnal metabolism of lipids and BAs, which could be partly explained by improving the expression of CCGs. These findings suggested that MR could be a potential nutritional intervention for attenuating obesity-induced metabolic misalignment.
Collapse
Affiliation(s)
- Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenting Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianbin Wu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Department of Food Science, Cornell University, Ithaca, NY, USA.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Aouichat S, Chayah M, Bouguerra-Aouichat S, Agil A. Time-Restricted Feeding Improves Body Weight Gain, Lipid Profiles, and Atherogenic Indices in Cafeteria-Diet-Fed Rats: Role of Browning of Inguinal White Adipose Tissue. Nutrients 2020; 12:E2185. [PMID: 32717874 PMCID: PMC7469029 DOI: 10.3390/nu12082185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Time-restricted feeding (TRF) showed a potent effect in preventing obesity and improving metabolicoutcomes in several animal models of obesity. However, there is, as of yet, scarce evidence concerning its effectiveness against obesogenic challenges that more accurately mimic human Western diets, such as the cafeteria diet. Moreover, the mechanism for its efficacy is poorly understood. White adipose browning has been linked to body weight loss. Herein, we tested whether TRF has the potential to induce browning of inguinal white adipose tissue (iWAT) and to attenuate obesity and associated dyslipidemia in a cafeteria-diet-induced obesity model. Male Wistar rats were fed normal laboratory chow (NC) or cafeteria diet (CAF) for 16 weeks and were subdivided into two groups that were subjected to either ad libitum (ad lib, A) or TRF (R) for 8 h per day. Rats under the TRF regimen had a lower body weight gain and adiposity than the diet-matchedad lib rats, despite equivalent levels of food intake and locomotor activity. In addition, TRF improved the deranged lipid profile (total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL-c), low-density lipoprotein (LDL-c)) and atherogenic indices (atherogenic index of plasma (AIP), atherogenic coefficient (AC), coronary risk index (CRI) in CAF-fed rats. Remarkably, TRF resulted in decreased size of adipocytes and induced emergence of multilocular brown-like adipocytes in iWAT of NC- and CAF-fed rats. Protein expression of browning markers, such as uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), were also up-regulated in the iWAToftime-restricted NC- or CAF-fed rats. These findings suggest that a TRF regimen is an effective strategy to improve CAF diet-induced obesity, probably via a mechanismthe involving WAT browning process.
Collapse
Affiliation(s)
- Samira Aouichat
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Meriem Chayah
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| | - Souhila Bouguerra-Aouichat
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| |
Collapse
|
20
|
Freire T, Senior AM, Perks R, Pulpitel T, Clark X, Brandon AE, Wahl D, Hatchwell L, Le Couteur DG, Cooney GJ, Larance M, Simpson SJ, Solon-Biet SM. Sex-specific metabolic responses to 6 hours of fasting during the active phase in young mice. J Physiol 2020; 598:2081-2092. [PMID: 32198893 DOI: 10.1113/jp278806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Night time/active phase food restriction for 6 h impaired glucose intolerance in young male and female mice. Females displayed increased capacity for lipogenesis and triglyceride storage in response to a short daily fast. Females had lower fasting insulin levels and an increased potential for utilizing fat for energy through β-oxidation compared to males. The need for the inclusion of both sexes, and the treatment of sex as an independent variable, is emphasized within the context of this fasting regime. ABSTRACT There is growing interest in understanding the mechanistic significance and benefits of fasting physiology in combating obesity. Increasing the fasting phase of a normal day can promote restoration and repair mechanisms that occur during the post-absorptive period. Most studies exploring the effect of restricting food access on mitigating obesity have done so with a large bias towards the use of male mice. Here, we disentangle the roles of sex, food intake and food withdrawal in the response to a short-term daily fasting intervention, in which food was removed for 6 h in the dark/active phase of young, 8-week-old mice. We showed that the removal of food during the dark phase impaired glucose tolerance in males and females, possibly due to the circadian disruption induced by this feeding protocol. Although both sexes demonstrated similar patterns of food intake, body composition and various metabolic markers, there were clear sex differences in the magnitude and extent of these responses. While females displayed enhanced capacity for lipogenesis and triglyceride storage, they also had low fasting insulin levels and an increased potential for utilizing available energy sources such as fat for energy through β-oxidation. Our results highlight the intrinsic biological and metabolic disparities between male and female mice, emphasizing the growing need for the inclusion of both sexes in scientific research. Furthermore, our results illustrate sex-specific metabolic pathways that regulate lipogenesis, obesity and overall metabolic health.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ruth Perks
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Luke Hatchwell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Mark Larance
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br J Nutr 2020; 123:1216-1226. [PMID: 31902372 DOI: 10.1017/s0007114519003428] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Time-restricted feeding (TRF) confers protection against nutritional challenges that predispose obesity and metabolic risks through involvement of circadian locomotor output cycles protein kaput genes and gut microbiome, but the underlying mechanism is not clearly understood. Therefore, the present study examined the effects of TRF on metabolic markers and circadian rhythm associated with gut microbiota in healthy males. Two groups (TRF, n 56; non-TRF, n 24) of male adults were enrolled. The TRF group provided blood at pre-TRF and post-TRF, while non-TRF one time after 25 d of trial. Serum lipid and liver profiles were determined. Real time-PCR was applied for circadian and inflammatory gene expression. The 16S rRNA genes were sequenced on the Illumina Miseq v3 platform to comprehensively catalogue the composition and abundance of bacteria in stool. We showed that TRF ameliorated the serum lipid and liver profiles of the individuals. In the TRF group, gut microbial richness was significantly enhanced, with enrichment of Prevotellaceae and Bacteroideaceae. TRF enhanced circadian gene expression probably by activation of sirtuin-1, which is positively associated with gut microbiome richness. TRF could be a safe remedy for the prevention of metabolic diseases related to dyslipidaemia, as it regulates circadian rhythm associated with gut microbiome modulation.
Collapse
|
22
|
Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019; 11:nu11102442. [PMID: 31614992 PMCID: PMC6836017 DOI: 10.3390/nu11102442] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022] Open
Abstract
The current obesity epidemic is staggering in terms of its magnitude and public health impact. Current guidelines recommend continuous energy restriction (CER) along with a comprehensive lifestyle intervention as the cornerstone of obesity treatment, yet this approach produces modest weight loss on average. Recently, there has been increased interest in identifying alternative dietary weight loss strategies that involve restricting energy intake to certain periods of the day or prolonging the fasting interval between meals (i.e., intermittent energy restriction, IER). These strategies include intermittent fasting (IMF; >60% energy restriction on 2-3 days per week, or on alternate days) and time-restricted feeding (TRF; limiting the daily period of food intake to 8-10 h or less on most days of the week). Here, we summarize the current evidence for IER regimens as treatments for overweight and obesity. Specifically, we review randomized trials of ≥8 weeks in duration performed in adults with overweight or obesity (BMI ≥ 25 kg/m2) in which an IER paradigm (IMF or TRF) was compared to CER, with the primary outcome being weight loss. Overall, the available evidence suggests that IER paradigms produce equivalent weight loss when compared to CER, with 9 out of 11 studies reviewed showing no differences between groups in weight or body fat loss.
Collapse
Affiliation(s)
- Corey A Rynders
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO 80045, USA.
| | - Elizabeth A Thomas
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adnin Zaman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Zhaoxing Pan
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Victoria A Catenacci
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Edward L Melanson
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO 80045, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Woodie LN, Luo Y, Wayne MJ, Graff EC, Ahmed B, O'Neill AM, Greene MW. Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism 2018; 82:1-13. [PMID: 29253490 DOI: 10.1016/j.metabol.2017.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is a major public health concern that can result from diets high in fat and sugar, including sugar sweetened beverages. A proposed treatment for dietary-induced obesity is time-restricted feeding (TRF), which restricts consumption of food to specific times of the 24-hour cycle. Although TRF shows great promise to prevent obesity and the development of chronic disease, the effects of TRF to reverse metabolic changes and the development of NAFLD in animal models of a Western diet with sugary water consumption is not known. OBJECTIVE The objective of the current study was to evaluate the role of TRF in the treatment of obesity and NAFLD through examination of changes in metabolic and histopathologic parameters. METHODS To better understand the role of TRF in the treatment of obesity and NAFLD, we investigated the metabolic phenotype and NAFLD parameters in a mouse model of NAFLD in which obesity and liver steatosis are induced by a Western Diet (WD): a high-fat diet of lard, milkfat and Crisco with sugary drinking water. Mice were subjected to a short-term (4-weeks) and long-term (10-weeks) TRF in which food was restricted to 9h at night. RESULTS Prior to TRF treatment, the WD mice had increased body mass, and exhibited less activity, and higher average daytime energy expenditure (EE) than chow fed mice. Approximately 4- and 10-weeks following TFR treatment, WD-TRF had moderate but not statistically significant weight loss compared to WD-ad libitum (WD-AL) mice. There was a modest but significant reduction in the inguinal adipose tissue weight in both WD-TRF groups compared to the WD-AL groups; however, there was no difference in epididymal and retroperitoneal adipose tissue mass or adipocyte size distribution. In contrast, the diet-induced increase in normalized liver tissue weight, hepatic triglyceride, and NAFLD score was partially abrogated in the 4-week WD-TRF mice, while systemic insulin resistance was partially abrogated and glucose intolerance was completely abrogated in the 10-week WD-TRF mice. Importantly, WD-induced metabolic dysfunction (substrate utilization, energy expenditure, and activity) was partially abrogated by 4- and 10-week TRF. CONCLUSIONS Our results support the hypothesis that TRF aids in reducing the detrimental metabolic effects of consuming a WD with sugary drinking water but does not ameliorate obesity.
Collapse
Affiliation(s)
- Lauren N Woodie
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Yuwen Luo
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Michael J Wayne
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Bulbul Ahmed
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Ann Marie O'Neill
- Department of Biology, Auburn University Montgomery, Montgomery, AL 36117, USA.
| | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
24
|
Aggarwal A, Costa MJ, Rivero-Gutiérrez B, Ji L, Morgan SL, Feldman BJ. The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15. Cell Rep 2017; 21:2367-2375. [PMID: 29186676 PMCID: PMC5728416 DOI: 10.1016/j.celrep.2017.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022] Open
Abstract
The generation of new adipocytes from precursor cells (adipogenesis) has implications for systemic metabolism and is a commonly used model for studying the process of cell differentiation in vitro. Previous studies from us and others suggested that the peripheral circadian clock can influence adipogenesis in vitro, but the mechanisms driving this activity and the relevance for adipogenesis in vivo are unknown. Here we reveal that mouse adipocyte precursor cells (APCs) contain a circadian clock that oscillates in vivo. We expose context-specific features of the clock in APCs: expression of the canonical core clock component Per1 does not significantly oscillate, whereas the lesser-understood paralog Per3 has a prominent rhythm. We discovered that deletion of Per3 promotes adipogenesis in vivo by a clock output pathway in which PER3 and BMAL1 directly regulate Klf15 expression. These findings demonstrate that Per3 has a major role in the APC clock and regulates adipogenesis in vivo.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Maria José Costa
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Belén Rivero-Gutiérrez
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Lijuan Ji
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Stefanie L Morgan
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Brian J Feldman
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Program in Regenerative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Eggink HM, Oosterman JE, de Goede P, de Vries EM, Foppen E, Koehorst M, Groen AK, Boelen A, Romijn JA, la Fleur SE, Soeters MR, Kalsbeek A. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiol Int 2017; 34:1339-1353. [PMID: 29028359 DOI: 10.1080/07420528.2017.1363226] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Desynchronization between the master clock in the brain, which is entrained by (day) light, and peripheral organ clocks, which are mainly entrained by food intake, may have negative effects on energy metabolism. Bile acid metabolism follows a clear day/night rhythm. We investigated whether in rats on a normal chow diet the daily rhythm of plasma bile acids and hepatic expression of bile acid metabolic genes is controlled by the light/dark cycle or the feeding/fasting rhythm. In addition, we investigated the effects of high caloric diets and time-restricted feeding on daily rhythms of plasma bile acids and hepatic genes involved in bile acid synthesis. In experiment 1 male Wistar rats were fed according to three different feeding paradigms: food was available ad libitum for 24 h (ad lib) or time-restricted for 10 h during the dark period (dark fed) or 10 h during the light period (light fed). To allow further metabolic phenotyping, we manipulated dietary macronutrient intake by providing rats with a chow diet, a free choice high-fat-high-sugar diet or a free choice high-fat (HF) diet. In experiment 2 rats were fed a normal chow diet, but food was either available in a 6-meals-a-day (6M) scheme or ad lib. During both experiments, we measured plasma bile acid levels and hepatic mRNA expression of genes involved in bile acid metabolism at eight different time points during 24 h. Time-restricted feeding enhanced the daily rhythm in plasma bile acid concentrations. Plasma bile acid concentrations are highest during fasting and dropped during the period of food intake with all diets. An HF-containing diet changed bile acid pool composition, but not the daily rhythmicity of plasma bile acid levels. Daily rhythms of hepatic Cyp7a1 and Cyp8b1 mRNA expression followed the hepatic molecular clock, whereas for Shp expression food intake was leading. Combining an HF diet with feeding in the light/inactive period annulled CYp7a1 and Cyp8b1 gene expression rhythms, whilst keeping that of Shp intact. In conclusion, plasma bile acids and key genes in bile acid biosynthesis are entrained by food intake as well as the hepatic molecular clock. Eating during the inactivity period induced changes in the plasma bile acid pool composition similar to those induced by HF feeding.
Collapse
Affiliation(s)
- Hannah M Eggink
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Johanneke E Oosterman
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Paul de Goede
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Emmely M de Vries
- c Department of Medicine , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Ewout Foppen
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Martijn Koehorst
- d Department of Laboratory Medicine , University of Groningen, University Medical Centre Groningen , Groningen , The Netherlands
| | - Albert K Groen
- d Department of Laboratory Medicine , University of Groningen, University Medical Centre Groningen , Groningen , The Netherlands.,e Department of Vascular Medicine, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Anita Boelen
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Johannes A Romijn
- c Department of Medicine , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Susanne E la Fleur
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands.,f Metabolism and Reward , Netherlands Institute for Neuroscience , Amsterdam , the Netherlands
| | - Maarten R Soeters
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Andries Kalsbeek
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands.,g Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| |
Collapse
|
26
|
Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017; 39:59-67. [PMID: 28017879 PMCID: PMC5814245 DOI: 10.1016/j.arr.2016.12.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA; University of California Center for Circadian Biology, 9500, Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|