1
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2024; 111:105532. [PMID: 39731853 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
2
|
Badralmaa Y, Natarajan V. Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity. J Biol Chem 2024:108057. [PMID: 39662832 DOI: 10.1016/j.jbc.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Obesity is one of the main clinical characteristics associated with the heterogeneous genetic disorder Bardet-Biedl syndrome (BBS). Leucine zipper transcription factor like 1 (LZTFL1) is a member of the BBS gene family. Our work showed that Lztfl1knockout (LZKO) mice display the obesity phenotype as early as three months of age. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into various cell types, including adipocytes. To understand the role of LZTFL1 in adipogenesis, we analyzed MSCs isolated from LZKO mouse compact bones (CB-MSCs). Compared to wildtype (WT), LZKO CB-MSCs had elongated primary cilia with tapered tips and increased levels of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor that favors adipogenesis, and nuclear glucocorticoid receptor (GR), a transcription factor involved in Pparγ activation. Also, LZKO CB-MSCs had a lower level of total β-catenin, a core factor of the antiadipogenic canonical Wnt/b-catenin signaling pathway involved in limiting the nuclear localization of GR. Interaction between caveolin1 (CAV1) and LRP6, the main receptor for canonical Wnt signaling, is known to be critical for Wnt pathway activation and β-catenin stabilization. Compared to WT cells, LZKO cells had elevated total, cell-surface, and lipid-raft-associated LRP6 and reduced CAV1, strongly indicating alterations in the components of the Wnt-signaling pathway. We show that in the absence of LZTFL1, adipogenesis-restraining Wnt/β-catenin signaling is inhibited and adipogenesis-favorable factors are stimulated in CB-MSCs, leading to enhanced adipogenesis. Evidence provided here could help in understanding the mechanism and molecular basis of obesity in LZTFL1-defective patients.
Collapse
Affiliation(s)
- Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Zhou H, Fick K, Patel V, Hilton LR, Kim HW, Bagi Z, Weintraub NL, Chen W. AGPAT3 deficiency impairs adipocyte differentiation and leads to a lean phenotype in mice. Am J Physiol Endocrinol Metab 2024; 327:E69-E80. [PMID: 38717361 PMCID: PMC11390115 DOI: 10.1152/ajpendo.00012.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kendra Fick
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Lisa Renee Hilton
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ha Won Kim
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Barsimantov Mandel J, Solorio L, Tepole AB. Geometry of adipocyte packing in subcutaneous tissue contributes to nonlinear tissue properties captured through a Gaussian process surrogate model. SOFT MATTER 2024; 20:4197-4207. [PMID: 38477130 DOI: 10.1039/d3sm01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Subcutaneous tissue mechanical response is governed by the geometry and mechanical properties at the microscale and drives physiological and clinical processes such as drug delivery. Even though adipocyte packing is known to change with age, disease, and from one individual to another, the link between the geometry of the packing and the overall mechanical response of adipose tissue remains poorly understood. Here we create 1200 periodic representative volume elements (RVEs) that sample the possible space of Laguerre packings describing adipose tissue. RVE mechanics are modeled under tri-axial loading. Equilibrium configuration of RVEs is solved by minimizing an energetic potential that includes volume change contributions from adipocyte expansion, and area change contributions from collagen foam stretching. The resulting mechanical response across all RVE samples is interpolated with the aid of a Gaussian process (GP), revealing how the microscale geometry dictates the overall RVE mechanics. For example, increase in adipocyte size and increase in sphericity lead to adipose tissue softening. We showcase the use of the homogenized model in finite element simulations of drug injection by implementing a Blatz-Ko model, informed by the GP, as a custom material in the popular open-source package FEBio. These simulations show how microscale geometry can lead to vastly different injection dynamics even if the constituent parameters are held constant, highlighting the importance of characterizing individual's adipose tissue structure in the development of personalized therapies.
Collapse
Affiliation(s)
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, 205 Gates Rd, West Lafayette, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| |
Collapse
|
5
|
Lin DA, Abujamra BA, Revah S, Nattkemper L, Morrison B, Romanelli P, Jozic I. Downregulation of Caveolae-Associated Proteins in Psoriasis: A Case Series Study. JID INNOVATIONS 2024; 4:100265. [PMID: 38445230 PMCID: PMC10914522 DOI: 10.1016/j.xjidi.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
We have previously identified that a structural membrane protein Caveolin-1 (Cav1) is involved in the regulation of aberrant keratinocyte proliferation and differentiation. The aim of this study was to elucidate the role of Cav1, Caveolin-2 (Cav2), and Cavin-1 in the pathogenesis of psoriasis vulgaris and between psoriasis subtypes. We utilized human biopsies from validated cases of psoriasis vulgaris (n = 21) at the University of Miami Hospital and compared the expression of Cav1, Cav2, and Cavin-1 by immunohistochemistry staining with that in normal healthy age-/sex-/location-matched skin (n = 15) and chronic spongiotic dermatitis skin samples (as control inflammatory skin condition) and quantified using QuPath. Distinct subtypes of psoriasis included guttate, inverse, nail, plaque, palmoplantar, and pustular. All biopsy samples exhibited a trend toward downregulation of Cav1, with nail, plaque, and palmoplantar psoriasis exhibiting the most pronounced effects. Only nail and pustular psoriasis samples exhibited significant downregulation of Cav2 and Cavin-1, suggesting Cav1 to be the main caveolar contributor to the pathogenesis of psoriasis. Together, these data support caveolae as pathophysiological targets in nail and pustular psoriasis, whereas Cav1 seems to be a general biomarker of multiple subtypes of psoriasis.
Collapse
Affiliation(s)
- Deborah A. Lin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Beatriz Abdo Abujamra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie Revah
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Leigh Nattkemper
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Brian Morrison
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Paolo Romanelli
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Jiménez-Franco A, Castañé H, Martínez-Navidad C, Placed-Gallego C, Hernández-Aguilera A, Fernández-Arroyo S, Samarra I, Canela-Capdevila M, Arenas M, Zorzano A, Hernández-Alvarez MI, Castillo DD, Paris M, Menendez JA, Camps J, Joven J. Metabolic adaptations in severe obesity: Insights from circulating oxylipins before and after weight loss. Clin Nutr 2024; 43:246-258. [PMID: 38101315 DOI: 10.1016/j.clnu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.
Collapse
Affiliation(s)
- Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Iris Samarra
- Center for Omics Sciences, EURECAT-Technology Center of Catalonia, Reus, Spain
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Zorzano
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - María Isabel Hernández-Alvarez
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute, Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
7
|
Widjaja N, Jalava N, Chen Y, Ivaska KK. Perilipin-1 immunostaining improves semi-automated digital quantitation of bone marrow adipocytes in histological bone sections. Adipocyte 2023; 12:2252711. [PMID: 37649225 PMCID: PMC10472850 DOI: 10.1080/21623945.2023.2252711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Bone marrow adipocytes (BMAds) are not just passive fillers inside the bone marrow compartment but respond to various metabolic changes. Assessment of those responses requires evaluation of the number of BMAds and their morphology for which laborious and error-prone manual histological analysis remains the most widely used method. Here, we report an alternative image analysis strategy to semi-automatically quantitate and analyse the morphology of BMAds in histological bone sections. Decalcified, formalin-fixed paraffin-embedded histological sections of long bones of Sprague-Dawley rats were stained with either haematoxylin and eosin (HE) or by immunofluorescent staining for adipocyte-specific protein perilipin-1 (PLIN1). ImageJ-based commands were constructed to detect BMAds sized 200 µm2 or larger from standardized 1 mm2 analysis regions by either classifying the background colour (HE) or the positive and circular PLIN1 fluorescent signal. Semi-automated quantitation strongly correlated with independent, single-blinded manual counts regardless of the staining method (HE-based: r=0.85, p<0.001; PLIN1 based: r=0.95, p<0.001). The detection error was higher in HE-stained sections than in PLIN1-stained sections (14% versus 5%, respectively; p<0.001), which was due to false-positive detections of unstained adipocyte-like circular structures. In our dataset, the total adiposity area from standardised ROIs in PLIN-1-stained sections correlated with that in whole-bone sections (r=0.60, p=0.02).
Collapse
Affiliation(s)
- Nicko Widjaja
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Niki Jalava
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yimeng Chen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa K. Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Dun Y, Hu Z, You B, Du Y, Zeng L, Zhao Y, Liu Y, Wu S, Cui N, Yang F, Liu S. Exercise prevents fatal stress-induced myocardial injury in obese mice. Front Endocrinol (Lausanne) 2023; 14:1223423. [PMID: 37711889 PMCID: PMC10497866 DOI: 10.3389/fendo.2023.1223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction This study aimed to explore whether aerobic exercise (AE) can prevent fatal stress-induced myocardial injury. Methods Thirty C57BL/6J mice were divided into either a normal diet, high-fat diet, or high-fat diet plus AE (n=10 per group). The AE protocol consisted of eight weeks of swimming. At the end of the diet and AE interventions, the mice were stimulated with fatal stress caused by exhaustive exercise (forced weight-loaded swimming until exhaustion), after which cardiac function was evaluated using echocardiography, myocardial ultrastructure was examined using transmission electron microscopy, and myocardial apoptosis was assessed using western blotting and TUNEL. Mitophagy, mitochondrial biogenesis and dynamics, and activation of the macrophage migration inhibitor factor (MIF)/AMP-activated protein kinase (AMPK) pathway were evaluated using quantitative PCR and western blotting. Obesity phenotypes were assessed once per week. Results AE reversed high-fat diet-induced obesity as evidenced by reductions in body weight and visceral fat compared to obese mice without AE. Obesity exacerbated fatal stress-induced myocardial damage, as demonstrated by impaired left ventricular ejection fraction and myocardial structure. The apoptotic rate was also elevated upon fatal stress, and AE ameliorated this damage. Obesity suppressed mitophagy, mitochondrial fission and fusion, and mitochondrial biogenesis, and these effects were accompanied by suppression of the MIF/AMPK pathway in the myocardium of mice subjected to fatal stress. AE alleviated or reversed these effects. Conclusion This study provides evidence that AE ameliorated fatal stress-induced myocardial injury in obese mice. The cardioprotective effect of AE in obese mice might be attributed to improved mitochondrial quality.
Collapse
Affiliation(s)
- Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zihang Hu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Du
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Shaoping Wu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Feng TY, Melchor SJ, Zhao XY, Ghumman H, Kester M, Fox TE, Ewald SE. Tricarboxylic acid (TCA) cycle, sphingolipid, and phosphatidylcholine metabolism are dysregulated in T. gondii infection-induced cachexia. Heliyon 2023; 9:e17411. [PMID: 37456044 PMCID: PMC10344712 DOI: 10.1016/j.heliyon.2023.e17411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cachexia is a life-threatening disease characterized by chronic, inflammatory muscle wasting and systemic metabolic impairment. Despite its high prevalence, there are no efficacious therapies for cachexia. Mice chronically infected with the protozoan parasite Toxoplasma gondii represent a novel animal model recapitulating the chronic kinetics of cachexia. To understand how perturbations to metabolic tissue homeostasis influence circulating metabolite availability we used mass spectrometry analysis. Despite the significant reduction in circulating triacylglycerides, non-esterified fatty acids, and glycerol, sphingolipid long-chain bases and a subset of phosphatidylcholines (PCs) were significantly increased in the sera of mice with T. gondii infection-induced cachexia. In addition, the TCA cycle intermediates α-ketoglutarate, 2-hydroxyglutarate, succinate, fumarate, and malate were highly depleted in cachectic mouse sera. Sphingolipids and their de novo synthesis precursors PCs are the major components of the mitochondrial membrane and regulate mitochondrial function consistent with a causal relationship in the energy imbalance driving T. gondii-induced chronic cachexia.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie J. Melchor
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Haider Ghumman
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd E. Fox
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
10
|
Nause N, Ispizua Yamati FR, Seidel M, Mahlein AK, Hoffmann CM. Workflow for phenotyping sugar beet roots by automated evaluation of cell characteristics and tissue arrangement using digital image processing. PLANT METHODS 2023; 19:35. [PMID: 37004019 PMCID: PMC10064576 DOI: 10.1186/s13007-023-01014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cell characteristics, including cell type, size, shape, packing, cell-to-cell-adhesion, intercellular space, and cell wall thickness, influence the physical characteristics of plant tissues. Genotypic differences were found concerning damage susceptibility related to beet texture for sugar beet (Beta vulgaris). Sugar beet storage roots are characterized by heterogeneous tissue with several cambium rings surrounded by small-celled vascular tissue and big-celled sugar-storing parenchyma between the rings. This study presents a procedure for phenotyping heterogeneous tissues like beetroots by imaging. RESULTS Ten Beta genotypes (nine sugar beet and one fodder beet) were included to establish a pipeline for the automated histologic evaluation of cell characteristics and tissue arrangement using digital image processing written in the programming language R. The identification of cells has been validated by comparison with manual cell identification. Cells are reliably discriminated from intercellular spaces, and cells with similar morphological features are assigned to biological tissue types. CONCLUSIONS Genotypic differences in cell diameter and cell arrangement can straightforwardly be phenotyped by the presented workflow. The presented routine can further identify genotypic differences in cell diameter and cell arrangement during early growth stages and between sugar storage capabilities.
Collapse
Affiliation(s)
- Nelia Nause
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079, Göttingen, Germany
| | | | - Marion Seidel
- Bildungsakademie Der Universitätsmedizin Göttingen, Humboldtallee 11, 37073, Göttingen, Germany
| | - Anne-Katrin Mahlein
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079, Göttingen, Germany
| | - Christa M Hoffmann
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079, Göttingen, Germany
| |
Collapse
|
11
|
Naik RR, Rajan A, Kalita N. Automated image analysis method to detect and quantify fat cell infiltration in hematoxylin and eosin stained human pancreas histology images. BBA ADVANCES 2023; 3:100084. [PMID: 37082253 PMCID: PMC10074932 DOI: 10.1016/j.bbadva.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas transplantation. Hematoxylin and eosin (H and E) is one of the common histological staining techniques that provides information on the tissue cytoarchitecture. Adipose (fat) cells accumulation in pancreas has been shown to impact beta cell survival, its endocrine function and pancreatic steatosis and can cause non-alcoholic fatty pancreas disease (NAFPD). The current automated tools (E.g. Adiposoft) available for fat analysis are suited for white fat tissue which is homogeneous and easier to segment unlike heterogeneous tissues such as pancreas where fat cells continue to play critical physiopathological functions. The currently, available pancreas segmentation tool focuses on endocrine islet segmentation based on cell nuclei detection for diagnosis of pancreatic cancer. In the current study, we present a fat quantifying tool, Fatquant, which identifies fat cells in heterogeneous H and E tissue sections with reference to diameter of fat cell. Using histological images from a public database, we observed an intersection over union of 0.797 to 0.962 and 0.675 to 0.937 for manual versus Fatquant analysis of pancreas and liver, respectively.
Collapse
Affiliation(s)
- Roshan Ratnakar Naik
- Department of Biotechnology, Parvatibai Chowgule College of Arts & Science, Margao-Goa, 403601
- Corresponding author.
| | - Annie Rajan
- Department of Computer Science, Dhempe College of Arts and Science, Miramar, Panaji-Goa, 403 001
| | | |
Collapse
|
12
|
Palomäki VA, Lehenkari P, Meriläinen S, Karttunen TJ, Koivukangas V. Dynamics of adipose tissue macrophage populations after gastric bypass surgery. Obesity (Silver Spring) 2023; 31:184-191. [PMID: 36478639 PMCID: PMC10107220 DOI: 10.1002/oby.23602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This case-control study aimed to analyze the dynamics of macrophage infiltration in subcutaneous adipose tissue following bariatric surgery or conservative treatment of obesity and to clarify whether these features predict the weight loss outcome after the surgery. METHODS Subcutaneous tissue samples taken before and 12 months after laparoscopic Roux-en-Y gastric bypass surgery (n = 39) or conservative (n = 43) treatment for obesity were analyzed. Fat cell size was determined, and with CD68 immunohistochemistry, crown-like structures (CLS) were counted and single macrophages were quantitated. RESULTS A major decline in CLS density from 4.1 (SD 3.5) to 1.1 (SD 0.8) per 1000 fat cells (p < 0.000) was found, regardless of the degree of weight loss after the surgery. Surgery had no effect on the fraction of infiltrating single-cell macrophages in subcutaneous adipose tissue. The abundance of these macrophage populations before the intervention did not predict the degree of postsurgery weight loss or suboptimal response to the surgery. CONCLUSIONS The effect of gastric bypass on adipose tissue inflammatory status associates closely with CLS density even in subjects with suboptimal weight loss. The study suggests that factors related to bypass surgery other than weight loss modify the inflammatory response in adipose tissue.
Collapse
Affiliation(s)
- Ville A Palomäki
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sanna Meriläinen
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Vesa Koivukangas
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life. Br J Nutr 2022:1-10. [PMID: 36412162 DOI: 10.1017/s0007114522003737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution. Female Wistar rats ate chow (C-5 %-fat) or HFD (maternal obesity (MO)-25 %-fat) from weaning until the end of lactation. Male offspring were weaned on either control (C/C and MO/C, maternal diet/offspring diet) or HFD (C/HF and MO/HF) diet. At 110 postnatal days, offspring were killed. Fat depots were excised to estimate adiposity index (AI). Serum glucose, triglyceride, leptin, insulin, insulin resistance index (HOMA-IR), corticosterone and dehydroepiandrosterone (DHEA) were determined. Adipocyte size distribution was evaluated in retroperitoneal fat. Body weight was similar in C/C and MO/C but higher in C/HF and MO/HF. AI, leptin, insulin and HOMA-IR were higher in MO/C and C/HF v. C/C but lower than MO/HF. Glucose increased in MO/HF v. MO/C. C/HF and MO/C had higher triglyceride and corticosterone than C/C, but lower corticosterone than MO/HF. DHEA and the DHEA/corticosterone ratio were lower in C/HF and MO/C v. C/C, but higher than MO/HF. Small adipocyte proportion decreased while large adipocyte proportions increased in MO/C and C/HF v. C/C and exacerbated in MO/HF v. C/HF. Postnatal consumption of a HFD by the offspring of obese mothers exacerbates body fat accumulation as well as the decrease of small and the increase of large adipocytes, which leads to larger metabolic abnormalities.
Collapse
|