1
|
Li X, Wang Y, Cai L, Huang S. SMAD4 enhances the cytotoxic efficacy of human NK cells against colorectal cancer cells via the m 6A reader YTHDF2. Front Immunol 2024; 15:1440308. [PMID: 39439794 PMCID: PMC11494605 DOI: 10.3389/fimmu.2024.1440308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Colorectal cancer (CRC) ranks as the third most prevalent malignant neoplasm in terms of both morbidity and mortality. Within the tumor microenvironment (TME) of CRC, the diminished presence and diminished cytotoxic function of natural killer (NK) cells serve as important factors driving the advancement of CRC; however, the precise regulatory mechanisms governing this phenomenon remain incompletely understood. Consequently, the identification of novel, potential anti-CRC targets associated with NK cells emerges as a pressing and paramount concern warranting immediate attention. Methods We examined the regulatory mechanism of SMAD4-mediated NK cell cytotoxicity on CRC by utilizing various experimental techniques, such as qRT-PCR, flow cytometry. Results Our findings revealed that the expression of SMAD4 is decreased in NK cells within the TME of human CRC. Furthermore, we observed that enforced upregulation of SMAD4 resulted in enhanced cytotoxicity of NK cells towards CRC cells. Furthermore, our research has revealed that YTHDF2 functions as a downstream effector of SMAD4, playing a crucial role in the control of transcription and translation of m6A-modified RNA. Moreover, our investigation demonstrated that increased expression of SMAD4 promoted the activating receptor NKG2D by elevating levels of YTHDF2. Ultimately, the SMAD4-YTHDF2 regulatory axis significantly enhanced the cytotoxicity of NK cells against human CRC cells. Conclusion Our study unveils a novel mechanism through which SMAD4 modulates the cytotoxicity of NK cells towards CRC cells, suggesting that SMAD4 may hold promise as a potential therapeutic target for NK cell therapy in CRC.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China
| | - Yilin Wang
- Department of Psychiatry, Zigong Mental Health Center, the Zigong Affiliated Hospital of Southwest Medical University, Zigong, Sichuan, China
| | - Lei Cai
- Division of Digestive Surgery, Hospital of Digestive Diseases, Xi’an International Medical Center, Xi’an, Shaanxi, China
| | - Siyong Huang
- Department of Hematology, Xi’an International Medical Center, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
3
|
Marin ND, Becker-Hapak M, Song WM, Alayo QA, Marsala L, Sonnek N, Berrien-Elliott MM, Foster M, Foltz JA, Tran J, Wong P, Cubitt CC, Pence P, Hwang K, Zhou AY, Jacobs MT, Schappe T, Russler-Germain DA, Fields RC, Ciorba MA, Fehniger TA. Memory-like differentiation enhances NK cell responses against colorectal cancer. Oncoimmunology 2024; 13:2348254. [PMID: 38737793 PMCID: PMC11086027 DOI: 10.1080/2162402x.2024.2348254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.
Collapse
Affiliation(s)
- Nancy D. Marin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wilbur M. Song
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Quazim A. Alayo
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Marsala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi Sonnek
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa M. Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Celia C. Cubitt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Hwang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David A. Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C. Fields
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Jiang B, Zhou H, Xie X, Xia T, Ke C. Down-regulation of zinc finger protein 335 undermines natural killer cell function in mouse colitis-associated colorectal carcinoma. Heliyon 2024; 10:e25721. [PMID: 38375265 PMCID: PMC10875430 DOI: 10.1016/j.heliyon.2024.e25721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Natural killer (NK) cells constitute an active and potent anti-tumor effector population against multiple malignancies. NK cells exploit tumoricidal machinery to restrain colorectal carcinoma (CRC) expansion and invasion. Nonetheless, it is becoming increasingly evident that functional exhaustion considerably compromises the potency of NK cells in patients with CRC. To elucidate the factors that impair NK cell function in the context of CRC, we determined the role of zinc finger protein 335 (ZFP335) in modulating NK cell activity in mouse CRC induced by azoxymethane and dextran sulfate sodium. ZFP335 was profoundly decreased in NK cells in mesenteric lymph nodes of CRC-bearing mice. ZFP335 was especially diminished in NK cells that were both phenotypically and functionally exhausted. Besides, effective ZFP335 knockdown markedly undermined NK cell proliferation, tumoricidal protein production, degranulation, and cytotoxic efficacy on malignant cells, strongly suggesting that ZFP335 reinforces NK cell function. Importantly, ZFP335 knockdown lowered the expression of Janus kinase 1 (JAK1) and Janus kinase 3 (JAK3), both of which play crucial roles in NK cell homeostasis and activation. Collectively, ZFP335 down-regulation is essential for NK cell exhaustion in mesenteric lymph nodes of mice with CRC. We discovered a new ZFP335-JAK1/3 signaling pathway that modulates NK cell exhaustion.
Collapse
Affiliation(s)
- Bin Jiang
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| |
Collapse
|
5
|
Yin JY, Zhou Y, Ding XM, Gong RZ, Zhou Y, Hu HY, Liu Y, Lv XB, Zhang B. UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer. Curr Cancer Drug Targets 2024; 24:204-219. [PMID: 37076962 DOI: 10.2174/1568009623666230418134253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.
Collapse
Affiliation(s)
- Jun-Yi Yin
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yao Zhou
- Department of Breast Surgery, the Third hospital of Nanchang, No. 2, Xiangshan Road, Xihu District, Nanchang, Jiangxi, 330009, China
| | - Xiao-Ming Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Run-Ze Gong
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Hai-Yan Hu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuan Liu
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan N Road, Donghu District, Nanchang, Jiangxi, 330008, China
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
6
|
Nagai K, Nagai S, Okubo Y, Teshigawara K. Diffuse large B-cell lymphoma successfully treated with amplified natural killer therapy alone: A case report. World J Clin Cases 2023; 11:7432-7439. [PMID: 37969464 PMCID: PMC10643074 DOI: 10.12998/wjcc.v11.i30.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The prognosis of patients with advanced diffuse large B-cell lymphoma (DLBCL) is poor, with a 5-year survival rate of approximately 50%. The mainstay of treatment is multidrug combination chemotherapy, which has been associated with serious side effects. Amplified natural killer (ANK) cell therapy amplifies and activates natural killer (NK) cells to attack only malignant tumors. As ANK cells attack programmed death ligand 1 (PD-L1)-positive tumor cells, ANK therapy is considered effective against adult T-cell lymphoma and malignant lymphoma. CASE SUMMARY Herein, we report a case of an older patient with advanced DLBCL who was successfully treated with ANK immunotherapy. A 91-year-old female visited our hospital with sudden swelling of the right axillary lymph node in April 2022. The patient was diagnosed with stage II disease, given the absence of splenic involvement or contralateral lymphadenopathy. ANK therapy was administered. Six rounds of lymphocyte sampling were performed on July 28, 2022. To reduce the occurrence of side effects, the six samples were diluted by half to obtain 12 samples. Cultured NK cells were administered twice weekly. The treatment efficacy was evaluated by performing computed tomography and serological tests every 1 or 2 mo. The treatment suppressed lesion growth, and the antitumor effect persisted for several months. The patient experienced mild side effects. PD-L1 immunostaining was positive, indicating that the treatment was highly effective. CONCLUSION ANK therapy can be used as a first-line treatment for malignant lymphoma; the PD-L1 positivity rate can predict treatment efficacy.
Collapse
Affiliation(s)
- Kenjiro Nagai
- Department of Internal Medicine, Medical Corporation Ebino Centro Clinic, Ebino 889-4304, Japan
| | - Syo Nagai
- Department of Internal Medicine, Medical Corporation Ebino Centro Clinic, Ebino 889-4304, Japan
| | - Yuji Okubo
- Department of Internal Medicine, Higashinotoin Clinic, Kyoto 604-8175, Japan
| | - Keisuke Teshigawara
- Department of Internal Medicine, Higashinotoin Clinic, Kyoto 604-8175, Japan
| |
Collapse
|
7
|
Carannante V, Wiklund M, Önfelt B. In vitro models to study natural killer cell dynamics in the tumor microenvironment. Front Immunol 2023; 14:1135148. [PMID: 37457703 PMCID: PMC10338882 DOI: 10.3389/fimmu.2023.1135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel in vitro methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease. They should allow high-throughput and high-content analysis, to evaluate the efficacy of treatments and understand immune-evasion processes to facilitate development of new therapeutic targets. Ideally, they should be suitable for personalized immunotherapy testing, providing information for patient stratification. Consequently, the application of in vitro 3-dimensional (3D) cell culture models, such as tumor spheroids and organoids, is rapidly expanding in the immunotherapeutic field, coupled with the development of novel imaging-based techniques and -omic analysis. In this paper, we review the recent advances in the development of in vitro 3D platforms applied to natural killer (NK) cell-based cancer immunotherapy studies, highlighting the benefits and limitations of the current methods, and discuss new concepts and future directions of the field.
Collapse
Affiliation(s)
- Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Kutle I, Polten R, Hachenberg J, Klapdor R, Morgan M, Schambach A. Tumor Organoid and Spheroid Models for Cervical Cancer. Cancers (Basel) 2023; 15:cancers15092518. [PMID: 37173984 PMCID: PMC10177622 DOI: 10.3390/cancers15092518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical cancer is one of the most common malignant diseases in women worldwide. Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer, human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high, especially in economically challenged areas. New advances in cancer therapy, especially the rapid development and application of different immunotherapy strategies, have shown promising pre-clinical and clinical results. However, mortality from advanced stages of cervical cancer remains a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in pre-clinical phases is indispensable for efficient development of new, more successful treatment options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical cancer research due to their capacity to better mimic the architecture and microenvironment of tumor tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target cancer cells and modulate the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Nagai K, Nagai S, Okubo Y, Teshigawara K. ANK Therapeutic Prospects and Usefulness of PD-L1 and NK Activity as Biomarkers for Predicting Treatment Efficacy Revealed from the Treatment Course of Patients with HTLV-1-Associated Bronchioloalveolar Disease. CANCER MEDICINE JOURNAL 2023; 6:30-36. [PMID: 36282976 PMCID: PMC9578538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell neoplasm with poor prognosis that can present as HTLV-1-associated bronchioloalveolar disease (HABA). Chemotherapy is recommended for ATL; however, it is not very effective against all types of ATL. Furthermore, there are no effective treatments for smoldering HABA-associated ATL. We present a case in which amplified natural killer cell (ANK) therapy was effective in a woman in her early 80s who was previously diagnosed with ATL-related smoldering HABA and presented with dyspnea and productive cough on exertion. The symptoms were suppressed for approximately 10 months after the first treatment, but then gradually worsened. About a year later, a second treatment was followed by mild side effects. Suppression of ATL cell proliferation by repeated doses of ANK therapy appears to be effective in this patient. The therapeutic effect was high even with long treatment intervals, and the efficacy and safety of repeated treatments have been demonstrated. ANK therapy is expected to be the mainstay of treatment ATL and HABA. ANK therapy has been reported to kill PD-L1 positive tumor cells and some solid tumors with excellent responses have many PD-L1-positive tumor cells. ANK therapy is thought to be effective for ATL because there are many PD-L1-positive tumor cells. Furthermore, administration of activated NK cells may increase tumor-killing activity in those patients with reduced NK activity. While future studies are needed, PD-L1 positive rate and NK activity may be biomarkers for the effectiveness of ANK therapy.
Collapse
Affiliation(s)
- Kenjiro Nagai
- Medical Corporation Ebino Centro Clinic, Ebino City, Miyazaki Prefecture, Japan,Department of Medicine, Respiratory Disease Center, Yokohama City University School of Medicine, Yokohama City, Kanagawa Prefecture, Japan
| | - Syo Nagai
- Medical Corporation Ebino Centro Clinic, Ebino City, Miyazaki Prefecture, Japan
| | - Yuji Okubo
- Higashinotoin Clinic, Kyoto City, Kyoto Prefecture, Japan
| | | |
Collapse
|
10
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
11
|
Pesini C, Hidalgo S, Arias MA, Santiago L, Calvo C, Ocariz-Díez M, Isla D, Lanuza PM, Agustín MJ, Galvez EM, Ramírez-Labrada A, Pardo J. PD-1 is expressed in cytotoxic granules of NK cells and rapidly mobilized to the cell membrane following recognition of tumor cells. Oncoimmunology 2022; 11:2096359. [PMID: 35813574 PMCID: PMC9262365 DOI: 10.1080/2162402x.2022.2096359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
| | - Maykel A. Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Maitane Ocariz-Díez
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Pilar M. Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - M José Agustín
- Pharmacy Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Eva M Galvez
- CSIC, Instituto de Carboquimica (ICB), Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
12
|
Lanuza PM, Alonso MH, Hidalgo S, Uranga-Murillo I, García-Mulero S, Arnau R, Santos C, Sanjuan X, Santiago L, Comas L, Redrado S, Pazo-Cid R, Agustin-Ferrández MJ, Jaime-Sánchez P, Pesini C, Gálvez EM, Ramírez-Labrada A, Arias M, Sanz-Pamplona R, Pardo J. Adoptive NK Cell Transfer as a Treatment in Colorectal Cancer Patients: Analyses of Tumour Cell Determinants Correlating With Efficacy In Vitro and In Vivo. Front Immunol 2022; 13:890836. [PMID: 35747143 PMCID: PMC9210952 DOI: 10.3389/fimmu.2022.890836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease with variable mutational profile and tumour microenvironment composition that influence tumour progression and response to treatment. While chemoresistant and poorly immunogenic CRC remains a challenge, the development of new strategies guided by biomarkers could help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative against chemoresistant and poorly immunogenic CRC. Methods NK cell-related immunological markers were analysed by transcriptomics and immunohistochemistry in human CRC samples and correlated with tumour progression and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a protocol combining cytokines and feeder cells was analysed in vitro and in vivo and correlated with CRC mutational status and the expression of ligands for immune checkpoint (IC) receptors regulating NK cell activity. Results HLA-I downmodulation and NK cell infiltration correlated with better overall survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC, suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo experiments confirmed the efficacy of the therapy against both HLA+ and HLA− CRC cell lines. Concomitant administration of pembrolizumab failed to improve tumour control. Conclusions Our results reveal an immunological profile of CRC tumours in which immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation) favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown that allogeneic NK cell therapy can target tumours expressing mutations conferring poor prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this study provides a rationale for a new potential basis for CRC stratification and NK cell-based therapy.
Collapse
Affiliation(s)
- Pilar M. Lanuza
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- *Correspondence: Pilar M. Lanuza,
| | - M. Henar Alonso
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Hidalgo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Raquel Arnau
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan
- Department of Pathology, University Hospital Bellvitge (HUB-IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Llipsy Santiago
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Laura Comas
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Sergio Redrado
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | | | | | - Paula Jaime-Sánchez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Maykel Arias
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
- ARAID Foundation, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- ARAID Foundation, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
13
|
Nagai K, Nagai S. Effectiveness of Amplified Natural Killer (ANK) Therapy for Adult T-cell Leukemia/Lymphoma (ATL) and Future Prospects of ANK Therapy. CANCER MEDICINE JOURNAL 2022; 5:27-33. [PMID: 35403177 PMCID: PMC8986168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amplified Natural Killer (ANK) therapy is modified to increase the safety and efficacy of the original (LAK) immunotherapy. It is a method of removing natural killer (NK) cells from the patient's own blood, culturing and amplifying the NK cells, specifically increasing their ability to attack cancer and returning them for treatment. It is generally effective against all cancers. The two cases presented here and the other treated cases show that ANK therapy is very safe and effective against ATL. Further research suggests that ANK therapy, rather than chemotherapy, is likely to be the first-line therapy for ATL. In addition, low activity of NK cells means accumulation of bacterial load. Therefore, ANK therapy with high doses of activated NK cells may be effective not only for ATL and cancer, but also for patients with chronic bacterial and viral infections.
Collapse
Affiliation(s)
- Kenjiro Nagai
- Ebino Centro Clinic, Ebino City, Miyazaki, Japan
- Department of Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Sho Nagai
- Ebino Centro Clinic, Ebino City, Miyazaki, Japan
| |
Collapse
|
14
|
Ou L, Wang H, Huang H, Zhou Z, Lin Q, Guo Y, Mitchell T, Huang AC, Karakousis G, Schuchter L, Amaravadi R, Guo W, Salvino J, Herlyn M, Xu X. Preclinical platforms to study therapeutic efficacy of human γδ T cells. Clin Transl Med 2022; 12:e814. [PMID: 35731974 PMCID: PMC9217106 DOI: 10.1002/ctm2.814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gamma delta (γδ) T lymphocytes are promising candidate for adoptive T cell therapy, however, their treatment efficacy is not satisfactory. Vδ2 T cells are unique to primates and few suitable models are available to assay their anti-tumour function. METHODS We tested human γδ T cell activation, tumour infiltration, and tumour-killing in four three-dimensional (3D) models, including unicellular, bicellular and multicellular melanoma spheroids, and patient-derived melanoma organoids. We studied the effects of checkpoint inhibitors on γδ T cells and performed a small molecule screen using these platforms. RESULTS γδ T cells rapidly responded to melanoma cells and infiltrated melanoma spheroids better than αβ T cells in PBMCs. Cancer-associated fibroblasts (CAFs) in bicellular spheroids, stroma cells in multicellular melanoma spheroids and inhibitory immune cells in organoids significantly inhibited immune cell infiltrates including γδ T cells and lessened their cytotoxicity to tumour cells. Tumour-infiltrating γδ T cells showed exhausted immunophenotypes with high checkpoints expression (CTLA-4, PD-1 and PD-L1). Immune checkpoint inhibitors increased γδ T cell infiltration of 3D models and killing of melanoma cells in all four 3D models. Our small molecule screen assay and subsequent mechanistic studies demonstrated that epigenetic modifiers enhanced the chemotaxis and cytotoxicity of γδ T cells through upregulating MICA/B, inhibiting HDAC6/7 pathway and downregulating the levels of PD-L1 and PD-L2 in CAFs and tumour cells. These compounds increased CXCR4 and CD107a expression, IFN-γ production and decreased PD-1 expression of γδ T cells. CONCLUSIONS Tumour-infiltrating γδ T cells show exhausted immunophenotypes and limited anti-tumour capacity in melanoma 3D models. Checkpoint inhibitors and epigenetic modifiers enhance anti-tumour functions of γδ T cells. These four 3D models provided valuable preclinical platforms to test γδ T cell functions for immunotherapy.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Huaishan Wang
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hui Huang
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhiyan Zhou
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Qiang Lin
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yeye Guo
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tara Mitchell
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexander C. Huang
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Giorgos Karakousis
- Department of SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lynn Schuchter
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravi Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joseph Salvino
- Molecular and Cellular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Huber V, Vallacchi V, Daveri E, Vergani E. 3D models for melanoma γδ T cell-based immunotherapy. Clin Transl Med 2022; 12:e926. [PMID: 35696610 PMCID: PMC9191865 DOI: 10.1002/ctm2.926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Veronica Huber
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Viviana Vallacchi
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Elena Daveri
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Elisabetta Vergani
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|
16
|
Ahluwalia P, Mondal AK, Ahluwalia M, Sahajpal NS, Jones K, Jilani Y, Gahlay GK, Barrett A, Kota V, Rojiani AM, Kolhe R. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med 2022; 11:1573-1586. [PMID: 35137551 PMCID: PMC8921909 DOI: 10.1002/cam4.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune‐related genes using a medium‐throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four‐gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05–2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99–5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35–4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial–mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T‐reg cells, CD8+ T cells, M2 macrophages, and B cells in high‐risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yasmeen Jilani
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amyn M Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
17
|
Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Zhong F, Lin Y, Jing X, Ye Y, Wang S, Shen Z. Innate tumor killers in colorectal cancer. Cancer Lett 2021; 527:115-126. [PMID: 34952144 DOI: 10.1016/j.canlet.2021.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Standard treatment of colorectal cancer (CRC) improves the prognosis of CRC patients, but it is still intractable to control the progression of metastatic CRC. Immune microenvironment and immunotherapies of CRC have received extensive attention in recent years, but present immunotherapies of CRC have mainly focused on T cells and therapeutic response is only observed in a small proportion of patients. Innate immune cells are the first-line of defense in the development of malignancies. Natural killer (NK) cells, NKT cells and γδT cells are three types of innate cells of lymphoid origin and show cytotoxicity against various tumor cells including CRC. Besides, in the development of CRC, they can also be inhibited or express regulatory type, promoting tumor progression. Researches about anti-tumorigenic and pro-tumorigenic mechanisms of these cells are ongoing and regulation of these cells is also being unearthed. Meanwhile, immunotherapies using these cells more or less have shown efficacy in animal models and some of them are under exploration in clinical trials. This review provides an overview of intrinsic properties of NK cell, NKT cell and γδT cell, and summarizes current related promising treatment strategies.
Collapse
Affiliation(s)
- Fengyun Zhong
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Xiangxiang Jing
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| |
Collapse
|
19
|
Nguyen OTP, Misun PM, Lohasz C, Lee J, Wang W, Schroeder T, Hierlemann A. An Immunocompetent Microphysiological System to Simultaneously Investigate Effects of Anti-Tumor Natural Killer Cells on Tumor and Cardiac Microtissues. Front Immunol 2021; 12:781337. [PMID: 34925361 PMCID: PMC8675866 DOI: 10.3389/fimmu.2021.781337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity of cancers, so that new therapeutic approaches are urgently needed. Among novel alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer treatment in recent years. The limited clinical applications of ACT, despite its advantages over standard-of-care therapies, can be attributed to (i) time-consuming and cost-intensive procedures to screen for potent anti-tumor immune cells and the corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the safety assessment of ACT. Suitable experimental models and testing platforms have the potential to accelerate the development of ACT. Immunocompetent microphysiological systems (iMPS) are microfluidic platforms that enable complex interactions of advanced tissue models with different immune cell types, bridging the gap between in-vitro and in-vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and human-derived natural killer (NK) cells in the same microfluidic network. Different aspects of tumor-NK cell interactions were characterized using this iMPS including: (i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived chemokines and cytokines, indicating crosstalk and development of an inflammatory milieu. While viability and morphological integrity of cardiac microtissues remained mostly unaffected, we were able to detect alterations in their beating behavior, which shows the potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christian Lohasz
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jihyun Lee
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Weijia Wang
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
20
|
Díaz‐Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, Caprioli F, Facciotti F. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin-granzyme pathway. Mol Oncol 2021; 15:3385-3403. [PMID: 34535957 PMCID: PMC8637555 DOI: 10.1002/1878-0261.13104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are lipid-specific T lymphocytes endowed with cytotoxic activities and are thus considered important in antitumor immunity. While several studies have demonstrated iNKT cell cytotoxicity against different tumors, very little is known about their cell-killing activities in human colorectal cancer (CRC). Our aim was to assess whether human iNKT cells are cytotoxic against colon cancer cells and the mechanisms underlying this activity. For this purpose, we generated stable iNKT cell lines from peripheral blood and colon specimens and used NK-92 and peripheral blood natural killer cells as cell-mediated cytotoxicity controls. In vitro cytotoxicity was assessed using a panel of well-characterized human CRC cell lines, and the cellular requirements for iNKT cell cytotoxic functions were evaluated. We demonstrated that both intestinal and circulating iNKT cells were cytotoxic against the entire panel of CRC lines, as well as against freshly isolated patient-derived colonic epithelial cancer cells. Perforin and/or granzyme inhibition impaired iNKT cell cytotoxicity, whereas T-cell receptor (TCR) signaling was a less stringent requirement for efficient killing. This study is the first evidence of tissue-derived iNKT cell cytotoxic activity in humans, as it shows that iNKT cells depend on the perforin-granzyme pathway and both adaptive and innate signal recognition for proper elimination of colon cancer cells.
Collapse
Affiliation(s)
- Angélica Díaz‐Basabe
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Claudia Burrello
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| | - Georgia Lattanzi
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Fiorenzo Botti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Alberto Carrara
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Elisa Cassinotti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Gastroenterology and Endoscopy UnitFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Federica Facciotti
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
21
|
Ando Y, Mariano C, Shen K. Engineered in vitro tumor models for cell-based immunotherapy. Acta Biomater 2021; 132:345-359. [PMID: 33857692 PMCID: PMC8434941 DOI: 10.1016/j.actbio.2021.03.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy is rapidly evolving as one of the major pillars of cancer treatment. Cell-based immunotherapies, which utilize patient's own immune cells to eliminate cancer cells, have shown great promise in treating a range of malignancies, especially those of hematopoietic origins. However, their performance on a broader spectrum of solid tumor types still fall short of expectations in the clinical stage despite promising preclinical assessments. In this review, we briefly introduce cell-based immunotherapies and the inhibitory mechanisms in tumor microenvironments that may have contributed to this discrepancy. Specifically, a major obstacle to the clinical translation of cell-based immunotherapies is in the lack of preclinical models that can accurately assess the efficacies and mechanisms of these therapies in a (patho-)physiologically relevant manner. Lately, tissue engineering and organ-on-a-chip tools and microphysiological models have allowed for more faithful recapitulation of the tumor microenvironments, by incorporating crucial tumor tissue features such as cellular phenotypes, tissue architecture, extracellular matrix, physical parameters, and their dynamic interactions. This review summarizes the existing engineered tumor models with a focus on tumor immunology and cell-based immunotherapy. We also discuss some key considerations for the future development of engineered tumor models for immunotherapeutics. STATEMENT OF SIGNIFICANCE: Cell-based immunotherapies have shown great promise in treating hematological malignancies and some epithelial tumors. However, their performance on a broader spectrum of solid tumor types still fall short of expectations. Major obstacles include the inhibitory mechanisms in tumor microenvironments (TME) and the lack of preclinical models that can accurately assess the efficacies and mechanisms of cellular therapies in a (patho-)physiologically relevant manner. In this review, we introduce recent progress in tissue engineering and microphysiological models for more faithful recapitulation of TME for cell-based immunotherapies, and some key considerations for the future development of engineered tumor models. This overview will provide a better understanding on the role of engineered models in accelerating immunotherapeutic discoveries and clinical translations.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Chelsea Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
22
|
Singh J, Hatcher S, Ku AA, Ding Z, Feng FY, Sharma RA, Pfister SX. Model Selection for the Preclinical Development of New Drug-Radiotherapy Combinations. Clin Oncol (R Coll Radiol) 2021; 33:694-704. [PMID: 34474951 DOI: 10.1016/j.clon.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy plays an essential role in the treatment of more than half of all patients with cancer. In recent decades, advances in devices that deliver radiation and the development of treatment planning software have helped radiotherapy attain precise tumour targeting with minimal toxicity to surrounding tissues. Simultaneously, as more targeted drug therapies are being brought into the market, there has been significant interest in improving cure rates for cancer by adding drugs to radiotherapy to widen the therapeutic window, the difference between normal tissue toxicity and treatment efficacy. The development of new combination therapies will require judicious adaptation of preclinical models that are routinely used for traditional drug discovery. Here we highlight the strengths and weaknesses of each of these preclinical models and discuss how they can be used optimally to identify new and clinically beneficial drug-radiotherapy combinations.
Collapse
Affiliation(s)
- J Singh
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - S Hatcher
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - A A Ku
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - Z Ding
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA
| | - F Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, California, USA; Department of Radiation Oncology, University of California, San Francisco, California, USA; Department of Urology, University of California, San Francisco, California, USA
| | - R A Sharma
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA; UCL Cancer Institute, University College London, London, UK
| | - S X Pfister
- Global Translational Science, Varian, a Siemens Healthineers company, Palo Alto, California, USA.
| |
Collapse
|
23
|
Three-Dimensional Culture Models to Study Innate Anti-Tumor Immune Response: Advantages and Disadvantages. Cancers (Basel) 2021; 13:cancers13143417. [PMID: 34298630 PMCID: PMC8303518 DOI: 10.3390/cancers13143417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Several approaches have shown that the immune response against tumors strongly affects patients' clinical outcome. Thus, the study of anti-tumor immunity is critical to understand and potentiate the mechanisms underlying the elimination of tumor cells. Natural killer (NK) cells are members of innate immunity and represent powerful anti-tumor effectors, able to eliminate tumor cells without a previous sensitization. Thus, the study of their involvement in anti-tumor responses is critical for clinical translation. This analysis has been performed in vitro, co-incubating NK with tumor cells and quantifying the cytotoxic activity of NK cells. In vivo confirmation has been applied to overcome the limits of in vitro testing, however, the innate immunity of mice and humans is different, leading to discrepancies. Different activating receptors on NK cells and counter-ligands on tumor cells are involved in the antitumor response, and innate immunity is strictly dependent on the specific microenvironment where it takes place. Thus, three-dimensional (3D) culture systems, where NK and tumor cells can interact in a tissue-like architecture, have been created. For example, tumor cell spheroids and primary organoids derived from several tumor types, have been used so far to analyze innate immune response, replacing animal models. Herein, we briefly introduce NK cells and analyze and discuss in detail the properties of 3D tumor culture systems and their use for the study of tumor cell interactions with NK cells.
Collapse
|
24
|
Kim N, Lee DH, Choi WS, Yi E, Kim H, Kim JM, Jin HS, Kim HS. Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors. BMB Rep 2021. [PMID: 33298244 PMCID: PMC7851441 DOI: 10.5483/bmbrep.2021.54.1.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Hee Lee
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - HyoJeong Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyung-Seung Jin
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
25
|
Shen H, Cai S, Wu C, Yang W, Yu H, Liu L. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. MICROMACHINES 2021; 12:96. [PMID: 33477508 PMCID: PMC7831097 DOI: 10.3390/mi12010096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.
Collapse
Affiliation(s)
- Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Chuanxiang Wu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
26
|
Reina-Ortiz C, Constantinides M, Fayd-Herbe-de-Maudave A, Présumey J, Hernandez J, Cartron G, Giraldos D, Díez R, Izquierdo I, Azaceta G, Palomera L, Marzo I, Naval J, Anel A, Villalba M. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 2020; 10:1853314. [PMID: 33457074 PMCID: PMC7781838 DOI: 10.1080/2162402x.2020.1853314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | | | | | | | | | | | - David Giraldos
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Rosana Díez
- Hematology Department, Miguel Servet Hospital, Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Luis Palomera
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Martín Villalba
- CHU Montpellier, IRMB, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
27
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
28
|
Temples MN, Adjei IM, Nimocks PM, Djeu J, Sharma B. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomater Sci Eng 2020; 6:4179-4199. [PMID: 33463353 DOI: 10.1021/acsbiomaterials.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A critical hurdle associated with natural killer (NK) cell immunotherapies is inadequate infiltration and function in the solid tumor microenvironment. Well-controlled 3D culture systems could advance our understanding of the role of various biophysical and biochemical cues that impact NK cell migration in solid tumors. The objectives of this study were to establish a biomaterial which (i) supports NK cell migration and (ii) recapitulates features of the in vivo solid tumor microenvironment, to study NK infiltration and function in a 3D system. Using peptide-functionalized poly(ethylene glycol)-based hydrogels, the extent of NK-92 cell migration was observed to be largely dependent on the density of integrin binding sites and the presence of matrix metalloproteinase degradable sites. When lung cancer cells were encapsulated into the hydrogels to create tumor microenvironments, the extent of NK-92 cell migration and functional activity was dependent on the cancer cell type and duration of 3D culture. NK-92 cells showed greater migration into the models consisting of nonmetastatic A549 cells relative to metastatic H1299 cells, and reduced migration in both models when cancer cells were cultured for 7 days versus 1 day. In addition, the production of NK cell-related pro-inflammatory cytokines and chemokines was reduced in H1299 models relative to A549 models. These differences in NK-92 cell migration and cytokine/chemokine production corresponded to differences in the production of various immunomodulatory molecules by the different cancer cells, namely, the H1299 models showed increased stress ligand shedding and immunosuppressive cytokine production, particularly TGF-β. Indeed, inhibition of TGF-β receptor I in NK-92 cells restored their infiltration in H1299 models to levels similar to that in A549 models and increased overall infiltration in both models. Relative to conventional 2D cocultures, NK-92 cell mediated cytotoxicity was reduced in the 3D tumor models, suggesting the hydrogel serves to mimic some features of the biophysical barriers in in vivo tumor microenvironments. This study demonstrates the feasibility of a synthetic hydrogel system for investigating the biophysical and biochemical cues impacting NK cell infiltration and NK cell-cancer cell interactions in the solid tumor microenvironment.
Collapse
Affiliation(s)
- Madison N Temples
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Isaac M Adjei
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Phoebe M Nimocks
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Julie Djeu
- Department of Immunology, Moffitt Cancer Center MRC 4E, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States
| | - Blanka Sharma
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| |
Collapse
|
29
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Lanuza PM, Pesini C, Arias MA, Calvo C, Ramirez-Labrada A, Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front Immunol 2020; 10:3010. [PMID: 31998304 PMCID: PMC6962251 DOI: 10.3389/fimmu.2019.03010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint receptors (IC) positively or negatively regulate the activation of the host immune response, preventing unwanted reactions against self-healthy tissues. In recent years the term IC has been mainly used for the inhibitory ICs, which are critical to control Natural Killer (NK) and Cytotoxic CD8+ T cells due to its high cytotoxic potential. Due to the different nature of the signals that regulate T and NK cell activation, specific ICs have been described that mainly regulate either NK cell or T cell activity. Thus, strategies to modulate NK cell activity are raising as promising tools to treat tumors that do not respond to T cell-based immunotherapies. NK cell activation is mainly regulated by ICs and receptors from the KIR, NKG2 and NCRs families and the contribution of T cell-related ICs is less clear. Recently, NK cells have emerged as contributors to the effect of inhibitors of T cell-related ICs like CTLA4, LAG3 or the PD1/PD-L1 axes in cancer patients, suggesting that these ICs also regulate the activity of NK cells under pathological conditions. Strikingly, in contrast to NK cells from cancer patients, the level of expression of these ICs is low on most subsets of freshly isolated and in vitro activated NK cells from healthy patients, suggesting that they do not control NK cell tolerance and thus, do not act as conventional ICs under non-pathological conditions. The low level of expression of T cell-related ICs in “healthy” NK cells suggest that they should not be restricted to the detrimental effects of these inhibitory mechanisms in the cancer microenvironment. After a brief introduction of the regulatory mechanisms that control NK cell anti-tumoral activity and the conventional ICs controlling NK cell tolerance, we will critically discuss the potential role of T cell-related ICs in the control of NK cell activity under both physiological and pathological (cancer) conditions. This discussion will allow to comprehensively describe the chances and potential limitations of using allogeneic NK cells isolated from a healthy environment to overcome immune subversion by T cell-related ICs and to improve the efficacy of IC inhibitors (ICIs) in a safer way.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón i + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
31
|
Leman JKH, Munoz-Erazo L, Kemp RA. The Intestinal Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:1-22. [PMID: 32030672 DOI: 10.1007/978-3-030-36214-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumour microenvironment (TME) of intestinal tumours is highly complex and comprises a network of stromal cells, tumour cells, immune cells and fibroblasts, as well as microorganisms. The tumour location, environmental factors and the tumour cells themselves influence the cells within the TME. Immune cells can destroy tumour cells and are associated with better patient prognosis and response to therapy; however, immune cells are highly plastic and easily influenced to instead promote tumour growth. The interaction between local immune cells and the microbiome can lead to progression or regression of intestinal tumours. In this chapter, we will discuss how tumour development and progression can influence, and be influenced by, the microenvironment surrounding it, focusing on immune and fibroblastic cells, and the intestinal microbiota, particularly in the context of colorectal cancer.
Collapse
Affiliation(s)
- J K H Leman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - L Munoz-Erazo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - R A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Sci Rep 2019; 9:12480. [PMID: 31462653 PMCID: PMC6713778 DOI: 10.1038/s41598-019-48764-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
The EGFR pathway plays a critical role in head and neck squamous cell carcinoma (HNSCC). Targeted therapies against the EGFR are utilized as a treatment for HNSCCC. However, patient response is heterogeneous and molecular biomarkers are lacking to predict patient response. Therefore, functional assays where drug response is directly evaluated in tumor cells are an interesting alternative. Previous studies have shown that experimental conditions modify the drug response observed in functional assays. Thus, in this work the influence of the culture environment on response to Cetuximab (EGFR monoclonal antibody) and AZD8055 (mTOR inhibitor) was evaluated. HNSCC UM-SCC-1 and UM-SCC-47 cells were cultured in 2D monoculture and compared with: 2D co-culture with cancer-associated fibroblasts (CAF); 3D culture in collagen hydrogels; and 3D culture in tumor spheroids. The results showed UM-SCC-1 drug response significantly changed in the different culture environments; leading to an increase in drug resistance in the CAF co-culture and the 3D spheroids. Conversely, UM-SCC-47 exhibited a more constant drug response across culture conditions. In conclusion, this work highlights the importance of culture conditions that modulate response to EGFR pathway inhibition.
Collapse
|
33
|
Elemam NM, Al-Jaderi Z, Hachim MY, Maghazachi AA. HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells. Cancer Immunol Immunother 2019; 68:883-895. [PMID: 30847498 PMCID: PMC11028293 DOI: 10.1007/s00262-019-02319-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mahmood Yaseen Hachim
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
34
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|
35
|
Kim N, Lee HH, Lee HJ, Choi WS, Lee J, Kim HS. Natural killer cells as a promising therapeutic target for cancer immunotherapy. Arch Pharm Res 2019; 42:591-606. [DOI: 10.1007/s12272-019-01143-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
36
|
Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M, Aparicio T, Allez M, Le Bourhis L. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer 2019; 7:74. [PMID: 30871626 PMCID: PMC6417026 DOI: 10.1186/s40425-019-0553-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Immunotherapies still fail to benefit colorectal cancer (CRC) patients. Relevant functional assays aimed at studying these failures and the efficacy of cancer immunotherapy in human are scarce. 3D tumor cultures, called tumor organoids or spheroids, represent interesting models to study cancer treatments and could help to challenge these issues. Methods We analyzed heterotypic cocultures of human colon tumor-derived spheroids with immune cells to assess the infiltration, activation and function of T and NK cells toward human colorectal tumors in vitro. Results We showed that allogeneic T and NK cells rapidly infiltrated cell line-derived spheroids, inducing immune-mediated tumor cell apoptosis and spheroid destruction. NKG2D, a key activator of cytotoxic responses, was engaged on infiltrating cells. We thus assessed the therapeutic potential of an antibody targeting the specific ligands of NKG2D, MICA and MICB, in this system. Anti-MICA/B enhanced immune-dependent destruction of tumor spheroid by driving an increased NK cells infiltration and activation. Interestingly, tumor cells reacted to immune infiltration by upregulating HLA-E, ligand of the inhibitory receptor NKG2A expressed by CD8 and NK cells. NKG2A was increased after anti-MICA/B treatment and, accordingly, combination of anti-MICA/B and anti-NKG2A was synergistic. These observations were ultimately confirmed in a clinical relevant model of coculture between CRC patients-derived spheroids and autologous tumor-infiltrating lymphocytes. Conclusions Altogether, we show that tumor spheroids represent a relevant tool to study tumor-lymphocyte interactions on human tissues and revealed the antitumor potential of immunomodulatory antibodies targeting MICA/B and NKG2A. Electronic supplementary material The online version of this article (10.1186/s40425-019-0553-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tristan Courau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France
| | - Julie Bonnereau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | - Justine Chicoteau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Hugo Bottois
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | | | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | - Thomas Aparicio
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Matthieu Allez
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Lionel Le Bourhis
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.
| |
Collapse
|
37
|
Kim N, Kim HS. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Front Immunol 2018; 9:2041. [PMID: 30250471 PMCID: PMC6139314 DOI: 10.3389/fimmu.2018.02041] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most promising therapeutic modalities for cancer treatment is the blockade of immune checkpoint pathways, which are frequently co-opted by tumors as a major mechanism of immune escape. CTLA-4 and PD-1 are the representative examples, and their blockade by therapeutic antibodies leads to enhanced anti-tumor immunity with durable clinical responses, but only in a minority of patients. This has highlighted the need to identify and target additional immune checkpoints that can be exploited to further enhance immune responses to refractory cancers. These emerging targets include natural killer (NK) cell-directed checkpoint receptors (KIR and CD94/NKG2A) as well as the NK- and T cell-expressed checkpoints TIM-3, TIGIT, CD96, and LAG-3. Interestingly, the potentiation of anti-tumor immunity by checkpoint blockade relies not only on T cells but also on other components of the innate immune system, including NK cells. NK cells are innate lymphoid cells that efficiently kill tumor cells without MHC specificity, which is complementary to the MHC-restricted tumor lysis mediated by cytotoxic T cells. However, the role of these immune checkpoints in modulating the function of NK cells remains unclear and somewhat controversial. Unraveling the mechanisms by which these immune checkpoints function in NK cells and other immune cells will pave the way to developing new therapeutic strategies to optimize anti-tumor immunity while limiting cancer immune escape. Here, we focus on recent findings regarding the roles of immune checkpoints in regulating NK cell function and their potential application in cancer immunotherapy.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Successful Amplified-Natural-Killer Cell (ANK) Therapy Administered to a Patient with Smoldering Adult T-Cell Leukemia in Acute Crisis. REPORTS 2018. [DOI: 10.3390/reports1020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adult T-cell leukemia (ATL) is an indolent leukemia caused by type 1 human T-cell leukemia virus (HTLV-1). A variety of therapeutic interventions via immunological approaches have been attempted. ATL cells express costimulatory molecules of natural killer (NK) cells, and a new modality—amplified NK (ANK) cell treatment—was administered here to a patient with ATL. A 70-year-old female presenting with ringworm infection received a diagnosis of smoldering ATL in 2004. Monitoring of soluble IL-2 receptors (sIL-2Rs) in the serum showed disease exacerbation in 2007, associated with the enlargement of lymph nodes and formation of a skin tumor. NK cells were amplified by in vitro cell culture methods. To avoid cytokine release syndrome, 2–5 × 108 cells were administered with each injection. A total of 15 injections from 12 November 2007 to 15 February 2008 were administered to this patient. This case showed drastic downregulation of sIL-2R, resulting in the induction of complete remission, which lasted for >5 years. This is the first report of treatment of a patient with ATL using ANK cell therapy. More attempts of this therapy will enhance our insight into the appropriate application of this new therapy to clinically diverse patients.
Collapse
|