1
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
4
|
Steinke-Lange V, Holinski-Feder E. [Lynch syndrome]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:290-299. [PMID: 38864870 DOI: 10.1007/s00292-024-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 06/13/2024]
Abstract
Patients with Lynch syndrome, one of the most common hereditary tumor predisposition syndromes, harbor an increased risk for a broad spectrum of especially gastrointestinal and gynecological tumors. Causative for the syndrome are variants in DNA mismatch repair genes, which are passed on to the offspring at a 50% chance (autosomal dominant inheritance). The tumor tissue of these patients usually shows microsatellite instability, which is of increasing relevance regarding prognosis and therapeutic decisions. The detection of a causative genetic variant in a patient enables predictive testing of family members to provide relief to noncarriers and provide carriers with intensified risk-adapted surveillance. In addition, chemoprevention with aspirin (acetylsalicylic acid) has been proven useful for chemoprevention in studies. Therefore, the diagnosis of Lynch syndrome is important for patients and their relatives.
Collapse
Affiliation(s)
- Verena Steinke-Lange
- MGZ - Medizinisch Genetisches Zentrum, Bayerstraße 3-5, 80335, München, Deutschland.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München Campus Innenstadt, München, Deutschland.
- Europäisches Referenznetzwerk für erbliche Tumorerkrankungen (ERN GENTURIS), Nijmegen, Niederlande.
- Deutsches Referenznetzwerk für erbliche Tumorerkrankungen, Bonn, Deutschland.
| | - Elke Holinski-Feder
- MGZ - Medizinisch Genetisches Zentrum, Bayerstraße 3-5, 80335, München, Deutschland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München Campus Innenstadt, München, Deutschland
- Europäisches Referenznetzwerk für erbliche Tumorerkrankungen (ERN GENTURIS), Nijmegen, Niederlande
- Deutsches Referenznetzwerk für erbliche Tumorerkrankungen, Bonn, Deutschland
| |
Collapse
|
5
|
Kayhanian H, Cross W, van der Horst SEM, Barmpoutis P, Lakatos E, Caravagna G, Zapata L, Van Hoeck A, Middelkamp S, Litchfield K, Steele C, Waddingham W, Patel D, Milite S, Jin C, Baker AM, Alexander DC, Khan K, Hochhauser D, Novelli M, Werner B, van Boxtel R, Hageman JH, Buissant des Amorie JR, Linares J, Ligtenberg MJL, Nagtegaal ID, Laclé MM, Moons LMG, Brosens LAA, Pillay N, Sottoriva A, Graham TA, Rodriguez-Justo M, Shiu KK, Snippert HJG, Jansen M. Homopolymer switches mediate adaptive mutability in mismatch repair-deficient colorectal cancer. Nat Genet 2024; 56:1420-1433. [PMID: 38956208 PMCID: PMC11250277 DOI: 10.1038/s41588-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.
Collapse
Affiliation(s)
| | - William Cross
- UCL Cancer Institute, University College London, London, UK
- Cancer Mechanisms and Biomarker Discovery Group, School of Life Sciences, University of Westminster, London, UK
| | - Suzanne E M van der Horst
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Panagiotis Barmpoutis
- UCL Cancer Institute, University College London, London, UK
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Arne Van Hoeck
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | | | - Dominic Patel
- UCL Cancer Institute, University College London, London, UK
| | - Salvatore Milite
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy
| | - Chen Jin
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Khurum Khan
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Daniel Hochhauser
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Marco Novelli
- UCL Cancer Institute, University College London, London, UK
- Department of Pathology, University College London Hospital, London, UK
| | - Benjamin Werner
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ruben van Boxtel
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Joris H Hageman
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leon M G Moons
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Manuel Rodriguez-Justo
- UCL Cancer Institute, University College London, London, UK
- Department of Pathology, University College London Hospital, London, UK
| | - Kai-Keen Shiu
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Hugo J G Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK.
- Department of Pathology, University College London Hospital, London, UK.
| |
Collapse
|
6
|
Liu X, Zhu H, Guo B, Chen J, Zhang J, Wang T, Zhang J, Shan W, Zou J, Cao Y, Wei B, Zhan L. NLRC5 promotes endometrial carcinoma progression by regulating NF-κB pathway-mediated mismatch repair gene deficiency. Sci Rep 2024; 14:12447. [PMID: 38822039 PMCID: PMC11143240 DOI: 10.1038/s41598-024-63457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Wenjun Shan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junchi Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Shuaibi A, Chitra U, Raphael BJ. A latent variable model for evaluating mutual exclusivity and co-occurrence between driver mutations in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590995. [PMID: 38712136 PMCID: PMC11071465 DOI: 10.1101/2024.04.24.590995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A key challenge in cancer genomics is understanding the functional relationships and dependencies between combinations of somatic mutations that drive cancer development. Such driver mutations frequently exhibit patterns of mutual exclusivity or co-occurrence across tumors, and many methods have been developed to identify such dependency patterns from bulk DNA sequencing data of a cohort of patients. However, while mutual exclusivity and co-occurrence are described as properties of driver mutations, existing methods do not explicitly disentangle functional, driver mutations from neutral, passenger mutations. In particular, nearly all existing methods evaluate mutual exclusivity or co-occurrence at the gene level, marking a gene as mutated if any mutation - driver or passenger - is present. Since some genes have a large number of passenger mutations, existing methods either restrict their analyses to a small subset of suspected driver genes - limiting their ability to identify novel dependencies - or make spurious inferences of mutual exclusivity and co-occurrence involving genes with many passenger mutations. We introduce DIALECT, an algorithm to identify dependencies between pairs of driver mutations from somatic mutation counts. We derive a latent variable mixture model for drivers and passengers that combines existing probabilistic models of passenger mutation rates with a latent variable describing the unknown status of a mutation as a driver or passenger. We use an expectation maximization (EM) algorithm to estimate the parameters of our model, including the rates of mutually exclusivity and co-occurrence between drivers. We demonstrate that DIALECT more accurately infers mutual exclusivity and co-occurrence between driver mutations compared to existing methods on both simulated mutation data and somatic mutation data from 5 cancer types in The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- Ahmed Shuaibi
- Department of Computer Science, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | - Uthsav Chitra
- Department of Computer Science, Princeton University
| | | |
Collapse
|
8
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
9
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
11
|
Mumphrey MB, Hosseini N, Parolia A, Geng J, Zou W, Raghavan M, Chinnaiyan A, Cieslik M. Distinct mutational processes shape selection of MHC class I and class II mutations across primary and metastatic tumors. Cell Rep 2023; 42:112965. [PMID: 37597185 DOI: 10.1016/j.celrep.2023.112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Shannon AH, Manne A, Diaz Pardo DA, Pawlik TM. Combined radiotherapy and immune checkpoint inhibition for the treatment of advanced hepatocellular carcinoma. Front Oncol 2023; 13:1193762. [PMID: 37554167 PMCID: PMC10405730 DOI: 10.3389/fonc.2023.1193762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common cancers and a leading cause of cancer related death worldwide. Until recently, systemic therapy for advanced HCC, defined as Barcelona Clinic Liver Cancer (BCLC) stage B or C, was limited and ineffective in terms of long-term survival. However, over the past decade, immune check point inhibitors (ICI) combinations have emerged as a potential therapeutic option for patients with nonresectable disease. ICI modulate the tumor microenvironment to prevent progression of the tumor. Radiotherapy is a crucial tool in treating unresectable HCC and may enhance the efficacy of ICI by manipulating the tumor microenvironment and decreasing tumor resistance to certain therapies. We herein review developments in the field of ICI combined with radiotherapy for the treatment of HCC, as well as look at challenges associated with these treatment modalities, and review future directions of combination therapy.
Collapse
Affiliation(s)
- Alexander H. Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Dayssy A. Diaz Pardo
- Department of Radiation Oncology, The Ohio State University, Comprehensive Cancer Center-James Hospital and Solove Research Institute, Columbus, OH, United States
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
13
|
Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel) 2023; 14:1169. [PMID: 37372349 DOI: 10.3390/genes14061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microsatellite instability (MSI) can be found in 15-20% of all colorectal cancers (CRC) and is the key feature of a defective DNA mismatch repair (MMR) system. Currently, MSI has been established as a unique and pivotal biomarker in the diagnosis, prognosis, and treatment of CRC. MSI tumors display a strong lymphocytic activation and a shift toward a tumoral microenvironment restraining metastatic potential and ensuing in a high responsiveness to immunotherapy of MSI CRC. Indeed, neoplastic cells with an MMR defect overexpress several immune checkpoint proteins, such as programmed death-1 (PD-1) and programmed death-ligand 1(PD-L1), that can be pharmacologically targeted, allowing for the revival the cytotoxic immune response toward the tumor. This review aims to illustrate the role of MSI in the tumor biology of colorectal cancer, focusing on the immune interactions with the microenvironment and their therapeutic implications.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arianna Dal Buono
- Division of Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
14
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
15
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
16
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
18
|
Zhu Y, Meng M, Hou Z, Wang W, Li L, Guan A, Wang R, Tang W, Yang F, Zhao Y, Gao H, Xie H, Li R, Tan J. Impact of cytotoxic T lymphocytes immunotherapy on prognosis of colorectal cancer patients. Front Oncol 2023; 13:1122669. [PMID: 36726382 PMCID: PMC9885253 DOI: 10.3389/fonc.2023.1122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Background Expansion and activation of cytotoxic T lymphocytes (CTLs) in vitro represents a promising immunotherapeutic strategy, and CTLs can be primed by dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) transformed by recombinant adeno-associated virus (rAAV). This study aimed to explore the impact of rAAV-DC-induced CTLs on prognosis of CRC and to explore factors associated with prognosis. Methods This prospective observational study included patients operated for CRC at Yan'an Hospital Affiliated to Kunming Medical University between 2016 and 2019. The primary outcome was progression-free survival (PFS), secondary outcomes were overall survival (OS) and adverse events. Totally 49 cases were included, with 29 and 20 administered rAAV-DC-induced CTL and chemotherapy, respectively. Results After 37-69 months of follow-up (median, 54 months), OS (P=0.0596) and PFS (P=0.0788) were comparable between two groups. Mild fever occurred in 2 (6.9%) patients administered CTL infusion. All the chemotherapy group experienced mild-to-moderate adverse effects, including vasculitis (n=20, 100%), vomiting (n=5, 25%), nausea (n=17, 85%) and fatigue (n=17, 85%). Conclusions Lymphatic metastasis (hazard ratio [HR]=4.498, 95% confidence interval [CI]: 1.290-15.676; P=0.018) and lower HLA-I expression (HR=0.294, 95%CI: 0.089-0.965; P=0.044) were associated with poor OS in the CTL group. CTLs induced by rAAV-DCs might achieve comparable effectiveness in CRC patients compare to chemotherapy, cases with high tumor-associated HLA-I expression and no lymphatic metastasis were more likely to benefit from CTLs.
Collapse
Affiliation(s)
- Yankun Zhu
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenju Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Lin Li
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Aoran Guan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ruotian Wang
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weiwei Tang
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fang Yang
- Department of Pathology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yiyi Zhao
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Gao
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Xie
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ruhong Li
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China,*Correspondence: Ruhong Li, ; Jing Tan,
| | - Jing Tan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China,*Correspondence: Ruhong Li, ; Jing Tan,
| |
Collapse
|
19
|
Response to Immune Checkpoint Inhibitors Is Affected by Deregulations in the Antigen Presentation Machinery: A Systematic Review and Meta-Analysis. J Clin Med 2022; 12:jcm12010329. [PMID: 36615128 PMCID: PMC9821706 DOI: 10.3390/jcm12010329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting programmed death 1 (PD-1), its ligand (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) have shown promising results against multiple cancers, where they reactivate exhausted T cells primed to eliminate tumor cells. ICI therapies have been particularly successful in hypermutated cancers infiltrated with lymphocytes. However, resistance may appear in tumors evading the immune system through alternative mechanisms than the PD-1/PD-L1 or CTLA-4 pathways. A systematic pan-cancer literature search was conducted to examine the association between alternative immune evasion mechanisms via the antigen presentation machinery (APM) and resistance towards ICI treatments targeting PD-1 (pembrolizumab and nivolumab), PD-L1 (durvalumab, avelumab, and atezolizumab), and CTLA-4 (ipilimumab). The APM proteins included the human leucocyte antigen (HLA) class I, its subunit beta-2 microglobulin (B2M), the transporter associated with antigen processing (TAP) 1, TAP2, and the NOD-like receptor family CARD domain containing 5 (NLRC5). In total, 18 cohort studies (including 21 original study cohorts) containing 966 eligible patients and 9 case studies including 12 patients were reviewed. Defects in the APM significantly predicted poor clinical benefit with an odds ratio (OR) of 0.39 (95% CI 0.24−0.63, p < 0.001). The effect was non-significant, when considering complete and partial responses only (OR = 0.52, 95% CI 0.18−1.47, p = 0.216). In summary, the APM contains important targets for tumorigenic alterations which may explain insensitivity towards ICI therapy.
Collapse
|
20
|
Élez E, Mulet-Margalef N, Sanso M, Ruiz-Pace F, Mancuso FM, Comas R, Ros J, Argilés G, Martini G, Sanz-Garcia E, Baraibar I, Salvà F, Noguerido A, Cuadra-Urteaga JL, Fasani R, Garcia A, Jimenez J, Aguilar S, Landolfi S, Hernández-Losa J, Braña I, Nuciforo P, Dienstmann R, Tabernero J, Salazar R, Vivancos A. A Comprehensive Biomarker Analysis of Microsatellite Unstable/Mismatch Repair Deficient Colorectal Cancer Cohort Treated with Immunotherapy. Int J Mol Sci 2022; 24:ijms24010118. [PMID: 36613564 PMCID: PMC9820517 DOI: 10.3390/ijms24010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The search for immunotherapy biomarkers in Microsatellite Instability High/Deficient Mismatch Repair system (MSI-H/dMMR) metastatic colorectal cancer (mCRC) is an unmet need. Sixteen patients with mCRC and MSI-H/dMMR (determined by either immunohistochemistry or polymerase chain reaction) treated with PD-1/PD-L1 inhibitors at our institution were included. According to whether the progression-free survival with PD-1/PD-L1 inhibitors was longer than 6 months or shorter, patients were clustered into the IT-responder group (n: 9 patients) or IT-resistant group (n: 7 patients), respectively. In order to evaluate determinants of benefit with PD-1/PD-L1 inhibitors, we performed multimodal analysis including genomics (through NGS panel tumour-only with 431 genes) and the immune microenvironment (using CD3, CD8, FOXP3 and PD-L1 antibodies). The following mutations were more frequent in IT-resistant compared with IT-responder groups: B2M (4/7 versus 2/9), CTNNB1 (2/7 versus 0/9), and biallelic PTEN (3/7 versus 1/9). Biallelic ARID1A mutations were found exclusively in the IT-responder group (4/9 patients). Tumour mutational burden did not correlate with immunotherapy benefit, neither the rate of indels in homopolymeric regions. Of note, biallelic ARID1A mutated tumours had the highest immune infiltration and PD-L1 scores, contrary to tumours with CTNNB1 mutation. Immune microenvironment analysis showed higher densities of different T cell subpopulations and PD-L1 expression in IT-responders. Misdiagnosis of MSI-H/dMMR inferred by discordances between immunohistochemistry and polymerase chain reaction was only found in the IT-resistant population (3/7 patients). Biallelic ARID1A mutations and Wnt signalling activation through CTNNB1 mutation were associated with high and low T cell immune infiltrates, respectively, and deserve special attention as determinants of response to PD-1/PD-L1 inhibitors. The non-MSI-H phenotype in dMMR is associated with poor benefit to immunotherapy. Our results suggest that mechanisms of resistance to immunotherapy are multi-factorial.
Collapse
Affiliation(s)
- Elena Élez
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Núria Mulet-Margalef
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Colorectal Cancer Unit, Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miriam Sanso
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Genomics for Precision Oncology Laboratory, Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesco M. Mancuso
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Research and Development Department, Universal Diagnostics S.L., 41013 Sevilla, Spain
| | - Raquel Comas
- Oncology Data Science Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Departament of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Guillem Argilés
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Giulia Martini
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Departament of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Enrique Sanz-Garcia
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Iosune Baraibar
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Alba Noguerido
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jose Luis Cuadra-Urteaga
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Medical Oncology, IOB—Hospital Quirón, 08023 Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ariadna Garcia
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jose Jimenez
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Susana Aguilar
- Molecular Prescreening Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Stefania Landolfi
- Department of Pathology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | | | - Irene Braña
- Medical Oncology Department, Research Unit for Molecular Therapy of Cancer, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Colorectal Cancer Program, Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ramon Salazar
- Colorectal Cancer Unit, Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Oncobell Program (IDIBELL), CIBERONC, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-543-450
| |
Collapse
|
21
|
Thol K, Pawlik P, McGranahan N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med 2022; 14:137. [PMID: 36476325 PMCID: PMC9730559 DOI: 10.1186/s13073-022-01138-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer development is an evolutionary process. A key selection pressure is exerted by therapy, one of the few players in cancer evolution that can be controlled. As such, an understanding of how treatment acts to sculpt the tumour and its microenvironment and how this influences a tumour's subsequent evolutionary trajectory is critical. In this review, we examine cancer evolution and intra-tumour heterogeneity in the context of therapy. We focus on how radiotherapy, chemotherapy and immunotherapy shape both tumour development and the environment in which tumours evolve and how resistance can develop or be selected for during treatment.
Collapse
Affiliation(s)
- Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Piotr Pawlik
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.
| |
Collapse
|
22
|
Campana LG, Mansoor W, Hill J, Macutkiewicz C, Curran F, Donnelly D, Hornung B, Charleston P, Bristow R, Lord GM, Valpione S. T-Cell Infiltration and Clonality May Identify Distinct Survival Groups in Colorectal Cancer: Development and Validation of a Prognostic Model Based on The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Cancers (Basel) 2022; 14:cancers14235883. [PMID: 36497365 PMCID: PMC9740634 DOI: 10.3390/cancers14235883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Predicting the survival outcomes of patients with colorectal cancer (CRC) remains challenging. We investigated the prognostic significance of the transcriptome and tumour-infiltrating lymphocyte T-cell receptor (TIL/Tc-TCR) repertoire and analysed TIL/Tc-TCR sequences of The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) CRC cohorts. Using a multivariate Cox regression, we tested whether TIL/Tc-TCR repertoire, patient and tumour characteristics (stage, sidedness, total non-synonymous mutations, microsatellite instability (MSI) and transcriptional signatures) correlated with patient overall survival (OS) and designed a prognostic nomogram. A multivariate analysis (C-index = 0.75) showed that only patient age, disease stage, TIL/Tc degree of infiltration and clonality were independent prognostic factors for OS. The cut-offs for patients’ allocation to TIL/Tc abundance subgroups were determined using a strategy of maximally selected rank statistics with the OptimalCutpoints R package. These were “high”, “low” and “very high” (90 th percentile) TIL/Tc infiltration-stratified OS (median not reached, 67 and 44.3 months; p < 0.001); the results were validated in the CPTAC cohort. TIL/Tc clonality was prognostic (median OS in “high” vs. “low” clonality not reached and 67.3 months; p = 0.041) and independent of TIL/Tc infiltration. Whilst tumour sidedness was not prognostic, the “very highly” infiltrated tumours were prevalent among right-sided CRCs (p = 0.039) and showed distinct immunological features, with lower Th1 signature (p = 0.004), higher PD-L1 expression (p < 0.001) and likely enrichment in highly suppressory IL1R1+ Tregs (FoxP3 and IL1R1 overexpression, p < 0.001). TIL/Tc abundance and clonality are independent prognosticators in CRC and, combined with clinical variables, refine risk stratification. We identified a subset of CRCs with “very high” TIL/Tc infiltration, poor prognosis and distinct genetic and immunologic features, which may benefit from alternative therapeutic approaches. These results need validation in prospective patient cohorts.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Wasat Mansoor
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - James Hill
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christian Macutkiewicz
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Finlay Curran
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - David Donnelly
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ben Hornung
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter Charleston
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert Bristow
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- CRUK Manchester Major Centre and Manchester Cancer Research Centre, Manchester M20 4BX, UK
| | - Graham M. Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Correspondence: (G.M.L.); (S.V.); Tel.: +44-161-306-0533 (G.M.L.); +44-161-446-3000 (S.V.)
| | - Sara Valpione
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- CRUK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
- Correspondence: (G.M.L.); (S.V.); Tel.: +44-161-306-0533 (G.M.L.); +44-161-446-3000 (S.V.)
| |
Collapse
|
23
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Neoantigens and their clinical applications in human gastrointestinal cancers. World J Surg Oncol 2022; 20:321. [PMID: 36171610 PMCID: PMC9520945 DOI: 10.1186/s12957-022-02776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor-specific neoantigens are ideal targets for cancer immunotherapy. As research findings have proved, neoantigen-specific T cell activity is immunotherapy’s most important determinant. Main text There is sufficient evidence showing the role of neoantigens in clinically successful immunotherapy, providing a justification for targeting. Because of the significance of the pre-existing anti-tumor immune response for the immune checkpoint inhibitor, it is believed that personalized neoantigen-based therapy may be an imperative approach for cancer therapy. Thus, intensive attention is given to strategies targeting neoantigens for the significant impact with other immunotherapies, such as the immune checkpoint inhibitor. Today, several algorithms are designed and optimized based on Next-Generation Sequencing and public databases, including dbPepNeo, TANTIGEN 2.0, Cancer Antigenic Peptide Database, NEPdb, and CEDAR databases for predicting neoantigens in silico that stimulates the development of T cell therapies, cancer vaccine, and other ongoing immunotherapy approaches. Conclusions In this review, we deliberated the current developments in understanding and recognition of the immunogenicity of newly found gastrointestinal neoantigens as well as their functions in immunotherapies and cancer detection. We also described how neoantigens are being developed and how they might be used in the treatment of GI malignancies.
Collapse
|
25
|
Hou L, Huang F, Chen G, Qiu J, Liu Y, Zhao H, Wang Z. Application of RNA processing factors for predicting clinical outcomes in colon cancer. Front Genet 2022; 13:979001. [PMID: 36212157 PMCID: PMC9538339 DOI: 10.3389/fgene.2022.979001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Colon cancer is the fifth most common cause of cancer-related death worldwide, and despite significant advances in related treatment, the prognosis of colon cancer patients remains poor. Objective: This study performs systematic bioinformatics analysis of prognostic-associated RNA processing factor genes in colon cancer using the Cancer Related Genome Atlas database to explore their role in colon carcinogenesis and prognosis and excavate potential therapeutic targets. Methods: Data sets of colon cancer patients were obtained from GEO and TCGA databases. Univariate cox analysis was performed on the GSE39582 training set to identify prognosis-associated RNA processing factor genes and constructed a muticox model. The predictive performance of the model was validated by Correlation curve analysis. Similar results were obtained for the test dataset. Functional analyses were performed to explore the underlying mechanisms of colon carcinogenesis and prognosis. Results: A constructed muticox model consisting of βi and prognosis-related RNA processing factor gene expression levels (Expi) was established to evaluate the risk score of each patient. The subgroup with a higher risk score had lower overall survival (OS), higher risk factor, and mortality. We found that the risk score, age, gender, and TNM Stage were strongly associated with OS, and the 13-gene signature as an independent prognostic factor for colon cancer. The model has good accuracy in predicting patient survival and is superior to traditional pathological staging. Conclusion: This study proposes 13 RNA processing factor genes as a prognostic factor for colon cancer patients, which can independently predict the clinical outcome by risk score. The gene expression profile in this model is closely related to the immune status and prognosis of colon cancer patients. The interaction of the 13 RNA processing factor genes with the immune system during colon carcinogenesis provides new ideas for the molecular mechanisms and targeted therapies for colon cancer.
Collapse
|
26
|
Jeon SA, Ha YJ, Kim JH, Kim JH, Kim SK, Kim YS, Kim SY, Kim JC. Genomic and transcriptomic analysis of Korean colorectal cancer patients. Genes Genomics 2022; 44:967-979. [PMID: 35751785 PMCID: PMC9273532 DOI: 10.1007/s13258-022-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third most common type of diagnosed cancer in the world and has the second-highest mortality rate. Meanwhile, South Korea has the second-highest incidence rate for CRC in the world. Objective To assess the possible influence of ethnicity on the molecular profile of colorectal cancer, we compared genomic and transcriptomic features of South Korean CRCs with European CRCs. Methods We assembled a genomic and transcriptomic dataset of South Korean CRC patients (KOCRC; n = 126) from previous studies and European cases (EUCRC; n = 245) selected from The Cancer Genome Atlas (TCGA). Then, we compared the two datasets in terms of clinical data, driver genes, mutational signature, gene sets, consensus molecular subtype, and fusion genes. Results These two cohorts showed similar profiles in driver mutations but differences in the mutation frequencies of some driver genes (including APC, TP53, PABPC1, FAT4, MUC7, HSPG2, GNAS, DENND5B, and BRAF). Analysis of hallmark pathways using genomic data sets revealed further differences between these populations in the WNT, TP53, and NOTCH signaling pathways. In consensus molecular subtype (CMS) analyses of the study cases, no BRAF mutations were found in the CMS1 subtype of KOCRC, which contrasts with previous findings. Fusion gene analysis identified oncogenic fusion of PTPRK-RSPO3 in a subset of KOCRC patients without APC mutations. Conclusions This study presents insights into the genomic landscape of KOCRCs and reveals some similarities and differences with EUCRCs at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-022-01275-4.
Collapse
Affiliation(s)
- Sol A Jeon
- Personalized Genomic Medicine Research Center, Daejeon, South Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Ye Jin Ha
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Daejeon, South Korea. .,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea. .,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea.
| | - Jin Cheon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
27
|
Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10:e004416. [PMID: 35732349 PMCID: PMC9226910 DOI: 10.1136/jitc-2021-004416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.
Collapse
Affiliation(s)
- Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, University Hospital Heidelberg Institute of Pathology, Heidelberg, Germany
| | - Mark Grossman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Yeung
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shizuko S Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthias Kloor
- University Hospital Heidelberg, Institute of Pathology, Department of Applied Tumor Biology, Heidelberg, Germany
| |
Collapse
|
28
|
Michelakos T, Kontos F, Kurokawa T, Cai L, Sadagopan A, Krijgsman D, Weichert W, Durrant LG, Kuppen PJK, R Ferrone C, Ferrone S. Differential role of HLA-A and HLA-B, C expression levels as prognostic markers in colon and rectal cancer. J Immunother Cancer 2022; 10:jitc-2021-004115. [PMID: 35277460 PMCID: PMC8919449 DOI: 10.1136/jitc-2021-004115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose The association of human leucocyte antigen (HLA) class I expression levels with the clinical course of many malignancies reflects their crucial role in the recognition and elimination of malignant cells by cognate T cells and NK cells. In colorectal cancer, results regarding this association are conflicting. The potential pathogenetic and therapeutic implications of this association prompted us to perform a large patient-level pooled analysis assessing the role of the expression level of HLA class I loci gene products in colon and rectal cancer. Experimental design Included studies provided patient-level data on HLA class I expression levels determined by immunohistochemistry on surgical specimens. Expression levels of the HLA class I loci gene products (HLA-A, HLA-B/C) were correlated with common genetic events and survival. Results Data from 5 studies including 2863 patients were used. In the 1620 colon cancer patients, lower HLA-A, HLA-B/C and total HLA class I expression levels were associated with microsatellite instability (p=0.044, p=0.008 and p=0.022, respectively), higher frequency of BRAF mutations (p<0.001, p=0.021 and p<0.001, respectively) and lower frequency of KRAS mutations (p=0.001, ns and p=0.002, respectively). In the 1243 rectal cancer patients, HLA-A expression was higher in tumors treated with neoadjuvant radiation (p=0.024). High HLA-B/C, but not HLA-A, expression level was an independent predictor of favorable overall survival in colon (p=0.006) and rectal (p<0.001) cancer. Conclusions T-cells and HLA-B/C antigens, rather than NK cells and HLA-A antigens, likely play an important role in controlling colon/rectal cancer growth. Colon/rectal cancer patients may benefit from strategies that upregulate HLA-B/C and trigger or enhance T cell immunity.
Collapse
Affiliation(s)
- Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomohiro Kurokawa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Cai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Bohaumilitzky L, Kluck K, Hüneburg R, Gallon R, Nattermann J, Kirchner M, Kristiansen G, Hommerding O, Pfuderer PL, Wagner L, Echterdiek F, Kösegi S, Müller N, Fischer K, Nelius N, Hartog B, Borthwick G, Busch E, Haag GM, Bläker H, Möslein G, von Knebel Doeberitz M, Seppälä TT, Ahtiainen M, Mecklin JP, Bishop DT, Burn J, Stenzinger A, Budczies J, Kloor M, Ahadova A. The Different Immune Profiles of Normal Colonic Mucosa in Cancer-Free Lynch Syndrome Carriers and Lynch Syndrome Colorectal Cancer Patients. Gastroenterology 2022; 162:907-919.e10. [PMID: 34863788 DOI: 10.1053/j.gastro.2021.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Owing to the high load of immunogenic frameshift neoantigens, tumors arising in individuals with Lynch syndrome (LS), the most common inherited colorectal cancer (CRC) syndrome, are characterized by a pronounced immune infiltration. However, the immune status of normal colorectal mucosa in LS is not well characterized. We assessed the immune infiltrate in tumor-distant normal colorectal mucosa from LS CRC patients, sporadic microsatellite-unstable (MSI) and microsatellite-stable (MSS) CRC patients, and cancer-free LS carriers. METHODS CD3-positive, FOXP3-positive, and CD8-positive T cells were quantified in, respectively, 219, 233, and 201 formalin-fixed paraffin-embedded (FFPE) normal colonic mucosa tissue sections from CRC patients and cancer-free LS carriers and 26, 22, and 19 LS CRCs. CD3-positive T cells were also quantified in an independent cohort of 97 FFPE normal rectal mucosa tissue sections from LS carriers enrolled in the CAPP2 clinical trial. The expression of 770 immune-relevant genes was analyzed in a subset of samples with the use of the NanoString nCounter platform. RESULTS LS normal mucosa specimens showed significantly elevated CD3-, FOXP3-, and CD8-positive T-cell densities compared with non-LS control specimens. Gene expression profiling and cluster analysis revealed distinct immune profiles in LS carrier mucosa with and without cancer manifestation. Long-term follow-up of LS carriers within the CAPP2 trial found a correlation between mucosal T-cell infiltrate and time to subsequent tumor occurrence. CONCLUSIONS LS carriers show elevated mucosal T-cell infiltration even in the absence of cancer. The normal mucosa immune profile may be a temporary or permanent tumor risk modifier in LS carriers.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Pauline L Pfuderer
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lelia Wagner
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Echterdiek
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Nephrology, Klinikum Stuttgart-Katharinenhospital, Stuttgart, Germany
| | - Svenja Kösegi
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nico Müller
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Fischer
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Nelius
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Hartog
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Gillian Borthwick
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Elena Busch
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg Martin Haag
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Gabriela Möslein
- Department of Surgery, Ev. Krankenhaus Bethesda Hospital, Duisburg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Toni T Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland; Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Molecular Pathology, Central Finland Hospital Nova, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Surgery, Central Finland Hospital Nova, Jyväskylä, Finland
| | - D Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Kawazu M, Ueno T, Saeki K, Sax N, Togashi Y, Kanaseki T, Chida K, Kishigami F, Sato K, Kojima S, Otsuka M, Kawazoe A, Nishinakamura H, Yuka M, Yamamoto Y, Yamashita K, Inoue S, Tanegashima T, Matsubara D, Tane K, Tanaka Y, Iinuma H, Hashiguchi Y, Hazama S, Khor SS, Tokunaga K, Tsuboi M, Niki T, Eto M, Shitara K, Torigoe T, Ishihara S, Aburatani H, Haeno H, Nishikawa H, Mano H. HLA Class I Analysis Provides Insight Into the Genetic and Epigenetic Background of Immune Evasion in Colorectal Cancer With High Microsatellite Instability. Gastroenterology 2022; 162:799-812. [PMID: 34687740 DOI: 10.1053/j.gastro.2021.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.
Collapse
Affiliation(s)
- Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Keigo Chida
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Fumishi Kishigami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sato
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masafumi Otsuka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihito Kawazoe
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Maeda Yuka
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tokiyoshi Tanegashima
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsukeshi, Japan
| | - Kenta Tane
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yojiro Hashiguchi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsukeshi, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Haeno
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Research Institute, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
31
|
Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022; 1877:188671. [PMID: 34933050 PMCID: PMC8818030 DOI: 10.1016/j.bbcan.2021.188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Gallois C, Taieb J, Sabouret A, Broudin C, Karoui M, Garinet S, Zaanan A. Upfront progression under pembrolizumab followed by a complete response after encorafenib and cetuximab treatment in BRAF V600E-mutated and microsatellite unstable metastatic colorectal cancer patient: A case report. Genes Chromosomes Cancer 2021; 61:114-118. [PMID: 34773327 DOI: 10.1002/gcc.23012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Two new treatments have recently become standard care for patients with metastatic colorectal cancer (mCRC): encorafenib (BRAF inhibitor) associated with cetuximab (anti-EGFR) in the second or third line of chemotherapy for BRAF V600E tumors, and pembrolizumab (an anti PD-1 immune checkpoint inhibitor) for tumors harboring microsatellite instability (MSI)-high and/or deficient mismatch repair (dMMR). Furthermore, 30% of BRAF V600E mutated mCRC are MSI/dMMR through a sporadic hypermethylation of the promoter of hMLH1. We report here, for the first time, the case of a patient with BRAF V600E, PIK3CA, and SMAD4 mutated and dMMR/MSI mCRC, in whom we observed an atypical response pattern under the sequence of pembrolizumab followed by the doublet encorafenib and cetuximab treatment. The patient was progressive after a single cycle of pembrolizumab followed by a rapid complete response after only 2 months of treatment with encorafenib and cetuximab, discovered during R0 cytoreduction surgery for peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Claire Gallois
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annabelle Sabouret
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Broudin
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mehdi Karoui
- Department of General and Digestive Surgery, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Simon Garinet
- Department of Biochemistry, Unit of Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
34
|
Abstract
The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.
Collapse
|
35
|
Gkekas I, Novotny J, Kaprio T, Beilmann-Lehtonen I, Fabian P, Edin S, Strigård K, Svoboda T, Hagström J, Barsova L, Jirasek T, Haglund C, Palmqvist R, Gunnarsson U. Colon cancer patients with mismatch repair deficiency are more likely to present as acute surgical cases. Eur J Cancer 2021; 157:1-9. [PMID: 34461577 DOI: 10.1016/j.ejca.2021.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND The effect of the genetic imprint on the emergency presentation of colon cancer remains unclear. The disparity between tumours evolving along different carcinogenetic pathways has not been studied systematically. This retrospective multicenter cohort study evaluates the association between mismatch repair status and the risk for acute surgery of colon cancer. PATIENTS AND METHODS A retrospective multicenter cohort study including in total 870 patients from three different countries. Scandinavian cohort (Finland and Sweden), including a total of 412 patients operated between January 1, 1995 and December 31, 2010, was validated against a cohort from the Czech Republic, including a total of 458 patients, operated between January 1, 2018 and December 31, 2019. The proficiency or deficiency of mismatch repair was determined by immunohistochemistry. Primary outcome was the risk for acute colon cancer surgery given as the Odds Ratio (OR) in the univariable and multivariable analyses. Acute colon cancer surgery was defined as surgery performed during the same hospital admission as when the diagnosis of colon cancer was made. RESULTS Of the 870 patients (399 females [46%]) included in the analyses, median age at surgery was 69 [interquartile range, 61-76] years, deficient Mismatch Repair (dMMR) status was found in 190 patients (22%), and 179 patients (21%) underwent acute surgery during the same hospital admission as when the diagnosis of colon cancer was made. In the Scandinavian cohort, a significant association between dMMR status and acute surgery was seen in both the univariable (OR 1.82, 95% CI 1.11-3.02, P = 0.017) and the multivariable (OR = 2.21, 95% CI 1.28-3.95, P = 0.005) analyses. This was confirmed in the Czech validation cohort in both the univariable (OR = 1.94, 95% CI 1.09-3.26, P = 0.022) and the multivariable (OR = 1.77, 95% CI 1.15-3.18, P = 0.021) analyses. CONCLUSION This multicenter study reveals a strong association between acute colon cancer surgery and dMMR tumour status.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
| | - Jan Novotny
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Tuomas Kaprio
- Department of Gastrointestinal Surgery, University of Helsinki and Helsinki University Hospital, Finland
| | - Ines Beilmann-Lehtonen
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Finland
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Tomas Svoboda
- Department of Oncology and Radiotherapy, Faculty Hospital Pilsen, Charles University, Prague, Czech Republic
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, Finland; Department of Oral Pathology and Radiology, University of Turku, Finland
| | - Lucie Barsova
- Comprehensive Oncology Center, Liberec, Czech Republic
| | | | - Caj Haglund
- Department of Gastrointestinal Surgery, University of Helsinki and Helsinki University Hospital, Finland
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
36
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
37
|
Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Milenova I, Verhoeff J, Heiniö C, Zafar S, Garcia-Vallejo JJ, van Beusechem VW, de Gruijl TD, Kalervo A, Sorsa S, Kanerva A, Hemminki A. Adenovirus Armed With TNFa and IL2 Added to aPD-1 Regimen Mediates Antitumor Efficacy in Tumors Refractory to aPD-1. Front Immunol 2021; 12:706517. [PMID: 34367166 PMCID: PMC8343222 DOI: 10.3389/fimmu.2021.706517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Ioanna Milenova
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Orca Therapeutics, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Suvi Sorsa
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
38
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
39
|
Busch E, Ahadova A, Kosmalla K, Bohaumilitzky L, Pfuderer PL, Ballhausen A, Witt J, Wittemann JN, Bläker H, Holinski-Feder E, Jäger D, von Knebel Doeberitz M, Haag GM, Kloor M. Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers. Front Oncol 2021; 11:669774. [PMID: 34168989 PMCID: PMC8219238 DOI: 10.3389/fonc.2021.669774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer.
Collapse
Affiliation(s)
- Elena Busch
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kosima Kosmalla
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Pauline L Pfuderer
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Alexej Ballhausen
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Johannes Witt
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Jan-Niklas Wittemann
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.,MGZ - Medical Genetics Centre, Munich, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Georg Martin Haag
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
41
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
42
|
Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13112638. [PMID: 34072037 PMCID: PMC8199207 DOI: 10.3390/cancers13112638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A subset of colorectal cancers (CRCs) is characterized by a mismatch repair deficiency that is frequently associated with microsatellite instability (MSI). The compromised DNA repair machinery leads to the accumulation of tumor neoantigens affecting the sensitivity of MSI metastatic CRC to immune checkpoint inhibitors (CPIs), both upfront and in later lines of treatment. However, up to 30% of MSI CRCs exhibit primary resistance to frontline immune based therapy, and an additional subset develops acquired resistance. Here, we first discuss the clinical and molecular features of MSI CRCs and then we review how the loss of antigenicity, immunogenicity, and a hostile tumor microenvironment could influence primary and acquired resistance to CPIs. Finally, we describe strategies to improve the outcome of MSI CRC patients upon CPI treatment. Abstract Immune checkpoint inhibitors (CPIs) represent an effective therapeutic strategy for several different types of solid tumors and are remarkably effective in mismatch repair deficient (MMRd) tumors, including colorectal cancer (CRC). The prevalent view is that the elevated and dynamic neoantigen burden associated with the mutator phenotype of MMRd fosters enhanced immune surveillance of these cancers. In addition, recent findings suggest that MMRd tumors have increased cytosolic DNA, which triggers the cGAS STING pathway, leading to interferon-mediated immune response. Unfortunately, approximately 30% of MMRd CRC exhibit primary resistance to CPIs, while a substantial fraction of tumors acquires resistance after an initial benefit. Profiling of clinical samples and preclinical studies suggests that alterations in the Wnt and the JAK-STAT signaling pathways are associated with refractoriness to CPIs. Intriguingly, mutations in the antigen presentation machinery, such as loss of MHC or Beta-2 microglobulin (B2M), are implicated in initial immune evasion but do not impair response to CPIs. In this review, we outline how understanding the mechanistic basis of immune evasion and CPI resistance in MMRd CRC provides the rationale for innovative strategies to increase the subset of patients benefiting from CPIs.
Collapse
|
43
|
Abidi A, Gorris MAJ, Brennan E, Jongmans MCJ, Weijers DD, Kuiper RP, de Voer RM, Hoogerbrugge N, Schreibelt G, de Vries IJM. Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch Repair Deficiency Syndrome. Cancers (Basel) 2021; 13:2345. [PMID: 34067951 PMCID: PMC8152233 DOI: 10.3390/cancers13102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary disorders characterised by a highly increased risk of cancer development. This is due to germline aberrations in the mismatch repair (MMR) genes, which results in a high mutational load in tumours of these patients, including insertions and deletions in genes bearing microsatellites. This generates microsatellite instability and cause reading frameshifts in coding regions that could lead to the generation of neoantigens and opens up avenues for neoantigen targeting immune therapies prophylactically and therapeutically. However, major obstacles need to be overcome, such as the heterogeneity in tumour formation within and between LS and CMMRD patients, which results in considerable variability in the genes targeted by mutations, hence challenging the choice of suitable neoantigens. The machine-learning methods such as NetMHC and MHCflurry that predict neoantigen- human leukocyte antigen (HLA) binding affinity provide little information on other aspects of neoantigen presentation. Immune escape mechanisms that allow MMR-deficient cells to evade surveillance combined with the resistance to immune checkpoint therapy make the neoantigen targeting regimen challenging. Studies to delineate shared neoantigen profiles across patient cohorts, precise HLA binding algorithms, additional therapies to counter immune evasion and evaluation of biomarkers that predict the response of these patients to immune checkpoint therapy are warranted.
Collapse
Affiliation(s)
- Asima Abidi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Evan Brennan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dilys D. Weijers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
44
|
Scarpa M, Ruffolo C, Kotsafti A, Canal F, Erroi F, Basato S, DallAgnese L, Fiorot A, Pozza A, Brun P, Bassi N, Dei Tos A, Castoro C, Castagliuolo I, Scarpa M. MLH1 Deficiency Down-Regulates TLR4 Expression in Sporadic Colorectal Cancer. Front Mol Biosci 2021; 8:624873. [PMID: 34026821 PMCID: PMC8139190 DOI: 10.3389/fmolb.2021.624873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Patients with mismatch repair (MMR)-deficient colorectal cancer (CRC) have a more favorable prognosis than patients with tumors with intact MMR. In order to obtain further insights on the reasons for this different outcome, we investigated the interplay between MMR genes and TLR4/MyD88 signaling. The cancer genome atlas (TCGA) databases were selected to predict the differential expression of TLR4 in colon cancer and its correlation with MMR genes. Moreover, the expression of MMR genes and TLR4 was evaluated by immunohistochemistry in 113 CRC samples and a cohort of 63 patients was used to assess TLR4 mRNA expression and MLH1 epigenetic silencing status. In vitro, the effect of MLH1 knockdown on TLR4 expression was quantified by Real Time PCR. TLR4 expression resulted dependent on MMR status and directly correlated to MLH1 expression. In vitro, MLH1 silencing decreased TLR4 expression. These observations may reflect the better prognosis and the chemoresistance of patients with CRC and MMR defects.
Collapse
Affiliation(s)
- Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Cesare Ruffolo
- Clinica Chirurgica I, Azienda Ospedaliera di Padova, Padua, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabio Canal
- Pathology Unit, Treviso Regional Hospital, Treviso, Italy
| | - Francesca Erroi
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Silvia Basato
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Lucia DallAgnese
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Alain Fiorot
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Anna Pozza
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Paola Brun
- Department of Molecular Medicine DMM, University of Padua, Padua, Italy
| | - Nicol Bassi
- Department of Surgery, Oncology and Gastroenterology DISCOG, University of Padua, Padua, Italy
| | - Angelo Dei Tos
- Pathology Unit, Treviso Regional Hospital, Treviso, Italy
| | - Carlo Castoro
- Oncological Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Marco Scarpa
- Clinica Chirurgica I, Azienda Ospedaliera di Padova, Padua, Italy
| |
Collapse
|
45
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 425] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
46
|
Fan Y, Dong Z, Shi Y, Sun S, Wei B, Zhan L. NLRC5 promotes cell migration and invasion by activating the PI3K/AKT signaling pathway in endometrial cancer. J Int Med Res 2021; 48:300060520925352. [PMID: 32431202 PMCID: PMC7241267 DOI: 10.1177/0300060520925352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective NOD-like receptor family caspase recruitment domain family domain-containing 5 (NLRC5) is involved in the development of cancer. Our objective was to explore the role of NLRC5 in the progression of endometrial cancer (EC). Methods The roles of NLRC5 in migration and invasion of AN3CA EC cells were examined by cell wound-healing assay, Transwell migration, and invasion analysis. Overexpression of NLRC5 was achieved with NLRC5 plasmid, and knockdown of NLRC5 was achieved using small interfering (si)RNA-NLRC5 in AN3CA cells. The expression of NLRC5 was detected by immunohistochemical, western blot, and quantitative real-time PCR. LY294002 was used to inhibit the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Results NLRC5 was downregulated in EC tissue compared with normal endometrium. Overexpression of NLRC5 led to upregulation of cell migration and invasion in AN3CA cells and expression of matrix metallopeptidase (MMP)-9. Inhibition of NLRC5 restricted migration and invasion of AN3CA cells and expression of MMP9. Overexpression of NLRC5 promoted the activation of PI3K/AKT signaling pathway. Inhibiting PI3K/AKT signaling pathway by using LY294002 blocked the positive role of NLRC5 in migration and invasion of AN3CA cells and expression of MMP9. Conclusions These results demonstrate that NLRC5 promotes EC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhen Dong
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuchuan Shi
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Shiying Sun
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
47
|
Abstract
The immune system can recognize tumor cells to mount antigen-specific T cell response. Central to the establishment of T cell-mediated adaptive immunity are the inflammatory events that facilitate antigen presentation by stimulating the expression of MHC and costimulatory molecules and the secretion of pro-inflammatory cytokines. Such inflammatory events can be triggered upon cytotoxic treatments that induce immunogenic cancer cell death modalities. However, cancers have acquired a plethora of mechanisms to subvert, or to hide from, host-encoded immunosurveillance. Here, we discuss how tumor intrinsic oncogenic factors subvert desirable intratumoral inflammation by suppressing immunogenic cell death.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1138, Paris, France.,Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre De Recherche Des Cordeliers, Paris, France.,Université De Paris, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1138, Paris, France.,Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre De Recherche Des Cordeliers, Paris, France.,Université De Paris, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut Universitaire De France, Paris, France.,Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
49
|
Fisher K, Hazini A, Seymour LW. Tackling HLA Deficiencies Head on with Oncolytic Viruses. Cancers (Basel) 2021; 13:719. [PMID: 33578735 PMCID: PMC7916504 DOI: 10.3390/cancers13040719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of HLA (human leukocyte antigen) function is increasingly recognized as a common escape mechanism for cancers subject to the pressures exerted by immunosurveillance or immunotherapeutic interventions. Oncolytic viruses have the potential to counter this resistance by upregulating HLA expression or encouraging an HLA-independent immunological responses. However, to achieve the best therapeutic outcomes, a prospective understanding of the HLA phenotype of cancer patients is required to match them to the characteristics of different oncolytic strategies. Here, we consider the spectrum of immune competence observed in clinical disease and discuss how it can be best addressed using this novel and powerful treatment approach.
Collapse
Affiliation(s)
- Kerry Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | | | | |
Collapse
|
50
|
Abstract
Abundant neoantigens are considered responsible for the immunotherapy sensitivity of mismatch repair-deficient (MMRd) cancers. In this issue of Cancer Cell, two papers show that MLH1 mismatch repair gene loss promotes cGAS-STING activation, interferon secretion, and T cell priming. This may be essential for the high immunotherapy sensitivity in MMRd cancer.
Collapse
Affiliation(s)
- Marco Gerlinger
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, GI Cancer Unit, London, UK.
| |
Collapse
|