1
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
2
|
Carretero-Iglesia L, Hall OJ, Berret J, Pais D, Estoppey C, Chimen M, Monney T, Loyau J, Dreyfus C, Macoin J, Perez C, Menon V, Gruber I, Laurendon A, Caro LN, Gudi GS, Matsuura T, van der Graaf PH, Blein S, Mbow ML, Croasdale-Wood R, Srivastava A, Dyson MR, Matthes T, Kaya Z, Edwards CM, Edwards JR, Maiga S, Pellat-Deceunynck C, Touzeau C, Moreau P, Konto C, Drake A, Zhukovsky EA, Perro M, Pihlgren M. ISB 2001 trispecific T cell engager shows strong tumor cytotoxicity and overcomes immune escape mechanisms of multiple myeloma cells. NATURE CANCER 2024; 5:1494-1514. [PMID: 39261676 PMCID: PMC11505469 DOI: 10.1038/s43018-024-00821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Despite recent advances in immunotherapies targeting single tumor-associated antigens, patients with multiple myeloma eventually relapse. ISB 2001 is a CD3+ T cell engager (TCE) co-targeting BCMA and CD38 designed to improve cytotoxicity against multiple myeloma. Targeting of two tumor-associated antigens by a single TCE resulted in superior cytotoxic potency across a variable range of BCMA and CD38 tumor expression profiles mimicking natural tumor heterogeneity, improved resistance to competing soluble factors and exhibited superior cytotoxic potency on patient-derived samples and in mouse models. Despite the broad expression of CD38 across human tissues, ISB 2001 demonstrated a reduced T cell activation profile in the absence of tumor cells when compared to TCEs targeting CD38 only. To determine an optimal first-in-human dose for the ongoing clinical trial ( NCT05862012 ), we developed an innovative quantitative systems pharmacology model leveraging preclinical data, using a minimum pharmacologically active dose approach, therefore reducing patient exposure to subefficacious doses of therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Vinu Menon
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | | - Tomomi Matsuura
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | - Piet H van der Graaf
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | | | | | | | | | | | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, Geneva, Switzerland
| | - Zeynep Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Sophie Maiga
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | | | - Cyrille Touzeau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Philippe Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Cyril Konto
- Ichnos Glenmark Innovation, New York, NY, USA
| | - Adam Drake
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA.
| | | |
Collapse
|
3
|
Iversen KF. Mechanisms of resistance to daratumumab in patients with multiple myeloma. Basic Clin Pharmacol Toxicol 2024; 135:401-408. [PMID: 39183578 DOI: 10.1111/bcpt.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer in the bone marrow. The treatment of MM has developed significantly during the last 20 years, which has resulted in increased survival. Daratumumab is the first CD38 antibody approved for the treatment of MM. It has improved the treatment of MM even further. This is an evaluation of the modes of action of daratumumab and a description of the development of resistance with a focus on inhibitory checkpoint receptors on CD8+ T-cells, complement activation and extracellular vesicles.
Collapse
Affiliation(s)
- Katrine Fladeland Iversen
- Institute of Regional Health Science, University of Southern Denmark, and Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
4
|
Duan H, Jiang Q, Liu L, Deng M, Lai Q, Jiang Y, Li Z, Xu B, Lin Z. Effect of prior lenalidomide or daratumumab exposure on hematopoietic stem cell collection and reconstitution in multiple myeloma. Ann Hematol 2024; 103:3839-3853. [PMID: 38448787 DOI: 10.1007/s00277-024-05683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The roles of Lenalidomide (Len) and Daratumumab (Dara) in multiple myeloma treatment are well-established, yet their influences on hematopoietic stem cell harvesting and reconstitution remain disputed. METHODS We conducted a systematic database review to identify cohort studies or RCTs evaluating the effect of the use of Len or Dara on hematopoietic stem cell collection and peripheral blood count recovery in multiple myeloma patients. Effects on hematopoietic collection or reconstitution were estimated by comparing standardized mean differences (SMD) and mean differences (MD), or median differences. RESULTS Eighteen relevant studies were identified, summarizing mobilization results. For Len, data from 13 studies were summarized, including total CD34+ cell yield, collection failure rate, and time to neutrophil and platelet engraftment. Results indicated that Len exposure led to decreased stem cell collection [SMD=-0.23, 95% CI (-0.34, -0.12)]. However, collection failure (<2×106) could be mitigated by plerixafor [OR=2.14, 95% CI (0.96, 4.77)]. For Dara, two RCTs and three cohort studies were included, showing that Dara exposure resulted in a reduction in total stem cells even with optimized plerixafor mobilization [SMD=-0.75, 95% CI (-1.26, -0.23)], and delayed platelet engraftment recovery [MD=1.20, 95% CI (0.73, 1.66)]. CONCLUSIONS Our meta-analysis offers a comprehensive view of Len and Dara's impacts on hematopoietic stem cell collection and reconstitution in multiple myeloma. Len usage could lead to reduced stem cell collection, counteracted by plerixafor mobilization. Dara usage could result in diminished stem cell collection and delayed platelet engraftment.
Collapse
Affiliation(s)
- Hongpeng Duan
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Qiuhui Jiang
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Long Liu
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Manman Deng
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Qian Lai
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Zhifeng Li
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China
| | - Bing Xu
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China.
| | - Zhijuan Lin
- Department of Hematology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361102, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
5
|
Panaampon J, Sungwan P, Fujikawa S, Sampattavanich S, Jirawatnotai S, Okada S. Trastuzumab, a monoclonal anti-HER2 antibody modulates cytotoxicity against cholangiocarcinoma via multiple mechanisms. Int Immunopharmacol 2024; 138:112612. [PMID: 38968862 DOI: 10.1016/j.intimp.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and fatal cancer. The prognosis is very poor and no optimal chemotherapy has been established. Human epidermal growth factor receptor 2 (HER2, neu, and erbB2) is highly-expressed in breast cancer and is expressed in many other tumors but poorly expressed in CCA. The anti-HER2 antibody, trastuzumab, has been used for the treatment of HER2-positive breast and gastric cancer. In this study, we examined the surface expression of HER2 on seven Thai liver-fluke-associated CCA cell lines by flow cytometry, and found all of these CCA cells were weakly positive for HER2. MTT assay revealed that trastuzumab directly suppressed the growth of CCA. By using FcR-bearing recombinant Jurkat T-cell-expressing firefly luciferase gene under the control of NFAT response elements, we defined the activities of antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP). ADCC was confirmed by using expanded NK cells. ADCP was confirmed by using mouse peritoneal macrophages and human monocyte-derived macrophages as effector cells. Rabbit serum was administered to test the complement-dependent cytotoxicity (CDC) activity of trastuzumab. Finally, we evaluated the efficacy of trastuzumab in in vivo patient-derived cell xenograft and patient-derived xenograft (PDX) models. Our results showed that a distinct population of CCA (liver-fluke-associated CCA) expressed HER2. Trastuzumab demonstrated a potent inhibitory effect on even HER2 weakly positive CCA both in vitro and in vivo via multiple mechanisms. Thus, HER2 is a promising target in anti-CCA therapy, and trastuzumab can be considered a promising antibody immunotherapy agent for the treatment of CCA.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prin Sungwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sawako Fujikawa
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
6
|
Zappaterra A, Civettini I, Cafro AM, Pezzetti L, Pierini S, Anghilieri M, Bellio L, Bertazzoni P, Grillo G, Minga P, Pioltelli ML, Ravano E, Sassone M, Viganò CV, Volpato EB, Gambacorti-Passerini C, Rossini S, Cairoli R, Crocchiolo R. Anti-CD38 monoclonal antibody impairs CD34+ mobilization and affects clonogenic potential in multiple myeloma patients. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2024; 22:328-337. [PMID: 38315530 PMCID: PMC11251823 DOI: 10.2450/bloodtransfus.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/26/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Induction with daratumumab-based regimens followed by autologous stem cell transplantation is the current standard for newly diagnosed multiple myeloma (NDMM) patients eligible for intensive chemotherapy. However, concerns emerged regarding potential negative effects following daratumumab-based treatment on CD34+ mobilization. We here compared CD34+ mobilization and clonogenic potential between daratumumab and non-daratumumab based therapy without upfront plerixafor administration among patients affected by NDMM. MATERIALS AND METHODS Clinical, mobilization and clonogenic data from 41 consecutively enrolled NDMM patients were analyzed. Patients underwent collection of autologous CD34+ by apheresis at the ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy, from January 2021 to March 2023. Clonogenicity analysis was performed on BFU-E and CFU-GM. RESULTS Seventy-five percent of daratumumab-treated patients underwent >1 apheresis, compared to 24% of non-daratumumab patients (p=0.0017). Daratumumab-treated patients had significantly lower CD34+ count (mean 38 vs 79/μL, respectively; p=0.0011), with a median CD34+ harvest of 3.98×106/kg (range 1.68-9.18) vs 6.87×106/kg (range 1.63-16.85) in non-daratumumab-treated (p=0.0006). In multivariate analysis the likelihood of undergoing >1 apheresis was significantly higher in older patients (OR 1.2, 95% CI 1-1.4, Z=2.10, p=0.03) and daratumumab-treated patients (OR 15, 95% CI 2.8-129, p=0.004). Moreover, daratumumab-based induction therapy demonstrated an independent negative association with BFU-E colony formation (p=0.0148), even when accounting for patient age and CD34+ levels. DISCUSSION Our findings underscore the impact of daratumumab-based treatment on CD34+ mobilization in a real-life, upfront plerixafor-free population of NDMM patients. Higher probability of requiring multiple apheresis occurred among daratumumab-treated patients. Interestingly, the observation that daratumumab might negatively impact BFU-E colony formation, independent of CD34+ cell count, offers novel biological perspectives. Appropriate strategies should be adopted by the Apheresis teams to mitigate these potential negative effects.
Collapse
Affiliation(s)
- Arianna Zappaterra
- Department of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Ivan Civettini
- Department of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | - Anna Maria Cafro
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Laura Pezzetti
- Cellular Therapy Laboratory, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Silvia Pierini
- Department of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | | | - Laura Bellio
- Immunohematology and Transfusion Medicine Service, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Paola Bertazzoni
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giovanni Grillo
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Periana Minga
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Maria L. Pioltelli
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Emanuele Ravano
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | | | - Elisabetta B. Volpato
- Immunohematology and Transfusion Medicine Service, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | - Silvano Rossini
- Immunohematology and Transfusion Medicine Service, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Roberto Cairoli
- Department of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Hematology Division, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Roberto Crocchiolo
- Immunohematology and Transfusion Medicine Service, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
7
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595377. [PMID: 38826403 PMCID: PMC11142146 DOI: 10.1101/2024.05.22.595377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, United States
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
8
|
Mehl J, Akhoundova D, Bacher U, Jeker B, Rhyner Agocs G, Ruefer A, Soltermann S, Soekler M, Winkler A, Daskalakis M, Pabst T. Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery. Cancers (Basel) 2024; 16:1854. [PMID: 38791933 PMCID: PMC11119719 DOI: 10.3390/cancers16101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Daratumumab is being increasingly integrated into first-line multiple myeloma (MM) induction regimens, leading to improved response depth and longer progression-free survival. Autologous stem cell transplantation (ASCT) is commonly performed as a consolidation strategy following first-line induction in fit MM patients. We investigated a cohort of 155 MM patients who received ASCT after first-line induction with or without daratumumab (RVd, n = 110; D-RVd, n = 45), analyzing differences in stem cell mobilization, apheresis, and engraftment. In the D-RVd group, fewer patients successfully completed mobilization at the planned apheresis date (44% vs. 71%, p = 0.0029), and more patients required the use of rescue plerixafor (38% vs. 28%, p = 0.3052). The median count of peripheral CD34+ cells at apheresis was lower (41.37 vs. 52.19 × 106/L, p = 0.0233), and the total number of collected CD34+ cells was inferior (8.27 vs. 10.22 × 106/kg BW, p = 0.0139). The time to recovery of neutrophils and platelets was prolonged (12 vs. 11 days, p = 0.0164; and 16 vs. 14 days, p = 0.0002, respectively), and a higher frequency of erythrocyte transfusions (74% vs. 51%, p = 0.0103) and a higher number of platelet concentrates/patients were required (4 vs. 2; p = 0.001). The use of daratumumab during MM induction might negatively impact stem cell mobilization and engraftment in the context of ASCT.
Collapse
Affiliation(s)
- Julian Mehl
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.M.); (D.A.); (B.J.)
| | - Dilara Akhoundova
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.M.); (D.A.); (B.J.)
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (U.B.); (M.D.)
| | - Barbara Jeker
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.M.); (D.A.); (B.J.)
| | - Gaëlle Rhyner Agocs
- Department of Medical Oncology, HFR Fribourg-Hôpital Cantonal, 1708 Fribourg, Switzerland;
| | - Axel Ruefer
- Department of Hematology, Cantonal Hospital Lucerne, 6000 Lucerne, Switzerland;
| | - Susanne Soltermann
- Department of Oncology and Hematology, Bürgerspital Solothurn, 4500 Solothurn, Switzerland;
| | - Martin Soekler
- Department of Oncology and Hematology, Hospital Thun, 3600 Thun, Switzerland;
| | - Annette Winkler
- Department of Oncology and Hematology, Biel Hospital Center, 2501 Biel, Switzerland;
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (U.B.); (M.D.)
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.M.); (D.A.); (B.J.)
| |
Collapse
|
9
|
Revach OY, Cicerchia AM, Shorer O, Petrova B, Anderson S, Park J, Chen L, Mehta A, Wright SJ, McNamee N, Tal-Mason A, Cattaneo G, Tiwari P, Xie H, Sweere JM, Cheng LC, Sigal N, Enrico E, Miljkovic M, Evans SA, Nguyen N, Whidden ME, Srinivasan R, Spitzer MH, Sun Y, Sharova T, Lawless AR, Michaud WA, Rasmussen MQ, Fang J, Palin CA, Chen F, Wang X, Ferrone CR, Lawrence DP, Sullivan RJ, Liu D, Sachdeva UM, Sen DR, Flaherty KT, Manguso RT, Bod L, Kellis M, Boland GM, Yizhak K, Yang J, Kanarek N, Sade-Feldman M, Hacohen N, Jenkins RW. Disrupting CD38-driven T cell dysfunction restores sensitivity to cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579184. [PMID: 38405985 PMCID: PMC10888727 DOI: 10.1101/2024.02.12.579184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.
Collapse
Affiliation(s)
- Or-Yam Revach
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angelina M. Cicerchia
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ofir Shorer
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Seth Anderson
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnav Mehta
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Niamh McNamee
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Aya Tal-Mason
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Payal Tiwari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hongyan Xie
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Matthew H. Spitzer
- Teiko Bio, Salt Lake City, UT, USA
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Yi Sun
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha R. Lawless
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - William A. Michaud
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Q. Rasmussen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacy Fang
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire A. Palin
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina R. Ferrone
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Donald P. Lawrence
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Liu
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Uma M. Sachdeva
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Debattama R. Sen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith T. Flaherty
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert T. Manguso
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lloyd Bod
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Genevieve M. Boland
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naama Kanarek
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nir Hacohen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W. Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
10
|
Shehata HM, Dogra P, Gierke S, Holder P, Sanjabi S. Efbalropendekin Alfa enhances human natural killer cell cytotoxicity against tumor cell lines in vitro. Front Immunol 2024; 15:1341804. [PMID: 38515757 PMCID: PMC10954783 DOI: 10.3389/fimmu.2024.1341804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
IL-15 has shown preclinical activity by enhancing the functional maturation of natural killer (NK) cells. Clinical evaluation of the potential anticancer activity of most cytokines, including IL-15, has been limited by low tolerability and rapid in vivo clearance. Efbalropendekin Alfa (XmAb24306) is a soluble IL15/IL15-receptor alpha heterodimer complex fused to a half-life extended Fc domain (IL15/IL15Rα-Fc), engineered with mutations to reduce IL-15 affinity for CD122. Reduced affinity drives lower potency, leading to prolonged pharmacodynamic response in cynomolgus monkeys. We show that in vitro, human NK cells treated with XmAb24306 demonstrate enhanced cytotoxicity against various tumor cell lines. XmAb24306-treated NK cells also exhibit enhanced killing of 3D colorectal cancer spheroids. Daratumumab (dara), a monoclonal antibody (mAb) that targets CD38 results in antibody-dependent cellular cytotoxicity (ADCC) of both multiple myeloma (MM) cells and NK cells. Addition of XmAb24306 increases dara-mediated NK cell ADCC against various MM cell lines in vitro. Because NK cells express CD38, XmAb24306 increases dara-mediated NK cell fratricide, but overall does not negatively impact the ADCC activity against a MM cell line likely due to increased NK cell activity of the surviving cells. These data show that XmAb24306 increases direct and ADCC-mediated human NK cell cytotoxicity in vitro.
Collapse
Affiliation(s)
- Hesham M. Shehata
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| | - Pranay Dogra
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| | - Sarah Gierke
- Department of Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Holder
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Shomyseh Sanjabi
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
11
|
Suzuki K, Yano S. IMiD-Free Interval and IMiDs Sequence: Which Strategy Is Better Suited for Lenalidomide-Refractory Myeloma? Life (Basel) 2023; 13:2229. [PMID: 38004369 PMCID: PMC10672235 DOI: 10.3390/life13112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses immunomodulatory drug (IMiDs) sequencing and IMiD-free interval strategies for lenalidomide-refractory myeloma. IMiDs and proteasome inhibitors (PIs) improve clinical outcomes in patients with myeloma; however, refractoriness to lenalidomide, a category of IMiD, predicts poor outcomes. Next-generation IMiDs, such as pomalidomide, are effective even for lenalidomide-refractory myeloma. Therefore, an IMiD-sequencing strategy from lenalidomide to pomalidomide would be desirable. PIs are an antimyeloma therapeutic agent with another mode of action that might restore cereblon, a target of IMiDs; therefore, an IMiD-free interval via class switching from lenalidomide to PIs may be a promising alternative for lenalidomide-refractory myeloma. Additionally, the anti-CD38 monoclonal antibody is a key drug for salvage therapy in anti-CD38 monoclonal antibody-naïve patients. In clinical practice, safety profiles and social convenience can play important roles in the choice of combination therapy. In the future, the selection of optimal treatments should be based on the status of the immunological environment and genetic alterations. This review aims to discuss IMiDs sequencing and IMiD-free interval strategies for lenalidomide- refractory myeloma.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | | |
Collapse
|
12
|
Perez de Acha O, Reiman L, Jayabalan DS, Walker ZJ, Bosma G, Keller AL, Parzych SE, Abbott D, Idler BM, Ribadeneyra D, Niesvizky R, Forsberg PA, Mark TM, Sherbenou DW. CD38 antibody re-treatment in daratumumab-refractory multiple myeloma after time on other therapies. Blood Adv 2023; 7:6430-6440. [PMID: 37648670 PMCID: PMC10598487 DOI: 10.1182/bloodadvances.2023010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Monoclonal antibodies targeting CD38 are important for treatment of both newly diagnosed and relapsed multiple myeloma (MM). Daratumumab and isatuximab are anti-CD38 antibodies with the US Food and Drugs Administration approval in multiple different combinations. Despite good initial efficacy, patients inevitably develop drug resistance. Whether patients can be effectively re-treated with these antibodies in subsequent lines of therapy is unclear. Thus far, studies have mostly been limited to clinical retrospectives with short washout periods. To answer whether patients regain sensitivity after longer washouts, we used ex vivo sensitivity testing to isolate the anti-CD38 antibody-specific cytotoxicity in samples obtained from patients who had been exposed to and then off daratumumab for up to 53 months. MM cells from patients who had been off daratumumab for >1 year showed greater sensitivity than those with <1 year, although they still were less sensitive than those who were daratumumab naïve. CD38 expression on MM cells gradually recovered, although, again, not to the level of anti-CD38 antibody-naïve patients. Interestingly, low MM CD38 explained only 45% of cases identified to have daratumumab resistance. With clinical follow-up, we found ex vivo sensitivity predicted subsequent clinical response but CD38 overexpression did not. Patients clinically re-treated with anti-CD38 antibodies had <6 months of clinical benefit, but 1 patient who was daratumumab exposed but not refractory achieved complete response lasting 13 months. We conclude that transient efficacy can be achieved by waiting 1 year before CD38 antibody rechallenge, but this approach may be best used as a bridge to, or after, chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lauren Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David S. Jayabalan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Grace Bosma
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alana L. Keller
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Diana Abbott
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Beau M. Idler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Drew Ribadeneyra
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Ruben Niesvizky
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tomer M. Mark
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Yadav S, Gundeti S, Bhave A, Deb U, Dixit J, Mishra K. Role of daratumumab in the frontline management of multiple myeloma: a narrative review. Expert Rev Hematol 2023; 16:743-760. [PMID: 37585685 DOI: 10.1080/17474086.2023.2246651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION The prevalence of multiple myeloma (MM) has gradually increased over the last few decades in India due to growing population, better disease awareness, and improved diagnostic procedures. Despite such advances, MM remains an incurable and relapsing disease due to its heterogeneity and genomic instability. With the inclusion of monoclonal antibodies, especially daratumumab in the frontline regimen, the management landscape of MM has improved significantly resulting in better disease control and patient outcomes. AREAS COVERED This review aims to provide an in-depth summary of efficacy and safety of frontline daratumumab therapy in treatment of MM including patients with high-risk cytogenetic profile. EXPERT OPINION Based on the review of literature, daratumumab in frontline therapy has demonstrated improved efficacy in terms of reduction in disease progression or death, and superior minimal residual disease (MRD)-negativity rates with an acceptable safety profile in patients with newly diagnosed MM (NDMM) including patients with high-risk cytogenetic profile. Daratumumab alone or in combination with other drugs has shown similar clinical outcomes in patients with relapsed/refractory MM. Hence, daratumumab can be used upfront in patients with MM.
Collapse
Affiliation(s)
- Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Abhay Bhave
- Department of Hematology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Uttiya Deb
- Medical Affairs, Johnson and Johnson Private Limited, Mumbai, India
| | - Jitendra Dixit
- Medical Affairs, Johnson and Johnson Private Limited, Mumbai, India
| | - Kundan Mishra
- Department of Hematology, Command Hospital, Lucknow, India
| |
Collapse
|
14
|
Alizadeh Zeinabad H, Yeoh WJ, Arif M, Lomora M, Banz Y, Riether C, Krebs P, Szegezdi E. Natural killer cell-mimic nanoparticles can actively target and kill acute myeloid leukemia cells. Biomaterials 2023; 298:122126. [PMID: 37094524 DOI: 10.1016/j.biomaterials.2023.122126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Natural killer (NK) cells play a crucial role in recognizing and killing emerging tumor cells. However, tumor cells develop mechanisms to inactivate NK cells or hide from them. Here, we engineered a modular nanoplatform that acts as NK cells (NK cell-mimics), carrying the tumor-recognition and death ligand-mediated tumor-killing properties of an NK cell, yet without being subject to tumor-mediated inactivation. NK cell mimic nanoparticles (NK.NPs) incorporate two key features of activated NK cells: cytotoxic activity via the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and an adjustable tumor cell recognition feature based on functionalization with the NK cell Fc-binding receptor (CD16, FCGR3A) peptide, enabling the NK.NPs to bind antibodies targeting tumor antigens. NK.NPs showed potent in vitro cytotoxicity against a broad panel of cancer cell lines. Upon functionalizing the NK.NPs with an anti-CD38 antibody (Daratumumab), NK.NPs effectively targeted and eliminated CD38-positive patient-derived acute myeloid leukemia (AML) blasts ex vivo and were able to target and kill CD38-positive AML cells in vivo, in a disseminated AML xenograft system and reduced AML burden in the bone marrow compared to non-targeted, TRAIL-functionalized liposomes. Taken together, NK.NPs are able to mimicking key antitumorigenic functions of NK cells and warrant their development into nano-immunotherapeutic tools.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; Cell Stress Discoveries, University of Galway Business Innovation Centre, Galway, Ireland
| | - Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Maryam Arif
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; CÚRAM, Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Eva Szegezdi
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; CÚRAM, Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
15
|
Goldsmith SR, Streeter S, Covut F. Bispecific Antibodies for the Treatment of Multiple Myeloma. Curr Hematol Malig Rep 2022; 17:286-297. [PMID: 36029366 DOI: 10.1007/s11899-022-00675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Advances in multiple myeloma therapies have greatly improved outcomes for patients living with the disease, although to date there is yet to be a cure. Cellular and immunotherapies, approved or in development, offer the promise of significantly advancing toward that possibility. The aim of this review is to provide a synopsis and commentary on the current and future states of bispecific agents aimed at harnessing the antineoplastic potential of T-cells in treating and eradicating myeloma. RECENT FINDINGS Numerous bispecific agents are in clinical development with some on the precipice of regulatory approval. While BCMA remains the principal target, some agents are directed at novel targets such as GPRC5D and FcRH5. The constructs vary in design and pharmacokinetics which has dosing and administration implications. The toxicity profiles of these agents generally reflect that of other immune therapies, including cytokine release syndrome and rarely neurotoxicity, although immunosuppression has also led to elevated infection risks. However, the toxicities are generally manageable and offset by unprecedented efficacy seen in such heavily pretreated cohorts. Bispecific agents are poised to significantly alter the treatment paradigms for myeloma. They provide a convenient "off-the-shelf" platform with often deep and durable responses. Toxicities are often limited in duration and severity. In the early-phase trials, many patients have been able to remain on treatment for extended periods, even among those with high-risk features. Upcoming trials are likely to explore earlier implementation of these agents in order to offer this therapeutic opportunity to broader cohorts.
Collapse
Affiliation(s)
- Scott R Goldsmith
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Shawn Streeter
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Fahrettin Covut
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Brennan K, Iversen KF, Blanco-Fernández A, Lund T, Plesner T, Mc Gee MM. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59. Cells 2022; 11:3365. [PMID: 36359760 PMCID: PMC9658084 DOI: 10.3390/cells11213365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Daratumumab (DARA) has improved the outcome of treatment of multiple myeloma (MM). DARA acts via complement-dependent and -independent mechanisms. Resistance to DARA may result from upregulation of the complement inhibitory proteins CD55 and CD59, downregulation of the DARA target CD38 on myeloma cells or altered expression of the checkpoint inhibitor ligand programmed death ligand-1 (PD-L1) or other mechanisms. In this study, EVs were isolated from peripheral blood (PB) and bone marrow (BM) from multiple myeloma (MM) patients treated with DARA and PB of healthy controls. EV size and number and the expression of CD38, CD55, CD59 and PD-L1 as well as the EV markers CD9, CD63, CD81, CD147 were determined by flow cytometry. Results reveal that all patient EV samples express CD38, PD-L1, CD55 and CD59. The level of CD55 and CD59 are elevated on MM PB EVs compared with healthy controls, and the level of PD-L1 on MM PB EVs is higher in patients responding to treatment with DARA. CD147, a marker of various aspects of malignant behaviour of cancer cells and a potential target for therapy, was significantly elevated on MM EVs compared with healthy controls. Furthermore, mass spectrometry data suggests that MM PB EVs bind DARA. This study reveals a MM PB and BM EV protein signature that may have diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Katrine F. Iversen
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| |
Collapse
|
17
|
Paulus A, Malavasi F, Chanan-Khan A. CD38 as a multifaceted immunotherapeutic target in CLL. Leuk Lymphoma 2022; 63:2265-2275. [DOI: 10.1080/10428194.2022.2090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Aneel Paulus
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Fabio Malavasi
- Dipartimento Scienze Mediche, Università di Torino, Torino, Italy
- Fondazione Ricerca Molinette ONLUS, Università di Torino, Torino, Italy
| | - Asher Chanan-Khan
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
18
|
Iversen KF, Nederby L, Lund T, Plesner T. High Expression of the Costimulatory Checkpoint Factor DNAM-1 by CD4+ T-Cells from Multiple Myeloma Patients Refractory to Daratumumab-Containing Regimens. Clin Hematol Int 2022; 4:107-116. [PMID: 36131131 PMCID: PMC9492812 DOI: 10.1007/s44228-022-00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractMultiple myeloma is an incurable disease characterized by unregulated growth of malignant plasma cells in the bone marrow (BM). Tumor-induced dysfunction of T-cells may be responsible for immune evasion and failure of immunotherapy. Therefore, a better understanding of the phenotype of T-cells at the tumor site is needed. We assessed the expression of immune regulatory receptors on T-cell subsets from peripheral blood (PB) and BM using multicolor flow cytometry. Paired PB and BM samples were collected from newly diagnosed, treatment-naïve myeloma patients (n = 19) and patients progressing during treatment with the CD38 monoclonal antibody daratumumab alone or in combination with other anti-myeloma drugs (n = 39). We observed that CD4+ T-cells from both PB and BM of patients relapsing on daratumumab have a higher expression of the costimulatory checkpoint receptor DNAM-1. The potential role of DNAM-1+CD4+ T-cells in the development of resistance to daratumumab needs further exploration. We also observed that the inhibitory checkpoint receptor TIGIT is more frequently expressed by BM CD8+ T-cells from myeloma patients than PD-1 and CTLA-4, which supports the hypothesis that TIGIT may play a central role in the immune escape of the malignant plasma cells.
Collapse
Affiliation(s)
- Katrine Fladeland Iversen
- Institute of Regional Health Science, University of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
- Section of Hematology, Department of Internal Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Line Nederby
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, J.B. Winsløvs Vej 4, 5000 Odense C, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
- Section of Hematology, Department of Internal Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| |
Collapse
|
19
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Tang Y, Zhou C, Gao X, Sun J. Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci 2021; 79:14. [PMID: 34966954 PMCID: PMC11073403 DOI: 10.1007/s00018-021-04089-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
How single-chain variable fragments (scFvs) affect the functions of chimeric antigen receptors (CARs) has not been well studied. Here, the components of CAR with an emphasis on scFv were described, and then several methods to measure scFv affinity were discussed. Next, scFv optimization studies for CD19, CD38, HER2, GD2 or EGFR were overviewed, showing that tuning the affinity of scFv could alleviate the on-target/off-tumor toxicity. The affinities of scFvs for different antigens were also summarized to designate a relatively optimal working range for CAR design. Last, a synthetic biology approach utilizing a low-affinity synthetic Notch (synNotch) receptor to achieve ultrasensitivity of antigen-density discrimination and murine models to assay the on-target/off-tumor toxicity of CARs were highlighted. Thus, this review provides preliminary guidelines of choosing the right scFvs for CARs.
Collapse
Affiliation(s)
- Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Ruoqi Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Chan Liao
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongmin Tang
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Zhou
- School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Duray E, Lejeune M, Baron F, Beguin Y, Devoogdt N, Krasniqi A, Lauwers Y, Zhao YJ, D'Huyvetter M, Dumoulin M, Caers J. A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. J Hematol Oncol 2021; 14:183. [PMID: 34727950 PMCID: PMC8561907 DOI: 10.1186/s13045-021-01171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Antibody-based therapies targeting CD38 are currently used as single agents as well as in combination regimens for multiple myeloma, a malignant plasma cell disorder. In this study, we aimed to develop anti-CD38 single-domain antibodies (sdAbs) that can be used to trace CD38+ tumour cells and subsequently used for targeted radionuclide therapy. SdAbs are derived from Camelidae heavy-chain antibodies and have emerged as promising theranostic agents due to their favourable pharmacological properties. Methods Four different anti-CD38 sdAbs were produced, and their binding affinities and potential competition with the monoclonal antibody daratumumab were tested using biolayer interferometry. Their binding kinetics and potential cell internalisation were further studied after radiolabelling with the diagnostic radioisotope Indium-111. The resulting radiotracers were evaluated in vivo for their tumour-targeting potential and biodistribution through single-photon emission computed tomography (SPECT/CT) imaging and serial dissections. Finally, therapeutic efficacy of a lead anti-CD38 sdAb, radiolabelled with the therapeutic radioisotope Lutetium-177, was evaluated in a CD38+ MM xenograft model. Results We retained anti-CD38 sdAb #2F8 as lead based on its excellent affinity and superior stability, the absence of competition with daratumumab and the lack of receptor-mediated internalisation. When intravenously administered to tumour-xenografted mice, radiolabelled sdAb #2F8 revealed specific and sustained tumour retention with low accumulation in other tissues, except kidneys, resulting in high tumour-to-normal tissue ratios. In a therapeutic setting, myeloma-bearing mice received three consecutive intravenous administrations of a high (18.5 MBq) or a low radioactive dose (9.3 MBq) of 177Lu-DTPA-2F8 or an equal volume of vehicle solution. A dose-dependent tumour regression was observed, which translated into a prolonged median survival from 43 days for vehicle-treated mice, to 62 days (p = 0.027) in mice receiving the low and 65 days in mice receiving the high (p = 0.0007) radioactive dose regimen, respectively. Conclusions These results highlight the theranostic potential of radiolabelled anti-CD38 sdAbs for the monitoring and treatment of multiple myeloma. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01171-6.
Collapse
Affiliation(s)
- Elodie Duray
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,NEPTUNS, Nanobodies To Explore Protein Structure and Functions, Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Margaux Lejeune
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Frederic Baron
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yoline Lauwers
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, University Shenzhen Graduate School, Peking, China
| | - Matthias D'Huyvetter
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- NEPTUNS, Nanobodies To Explore Protein Structure and Functions, Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium. .,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium.
| |
Collapse
|
22
|
Panaampon J, Kariya R, Okada S. Efficacy and mechanism of the anti-CD38 monoclonal antibody Daratumumab against primary effusion lymphoma. Cancer Immunol Immunother 2021; 71:1017-1031. [PMID: 34545416 DOI: 10.1007/s00262-021-03054-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Primary effusion lymphoma (PEL) is a rare, aggressive B cell non-Hodgkin's lymphoma of the body cavities with malignant effusions. The prognosis is poor, and no optimal treatment has been established. CD38 is a type II transmembrane glycoprotein known to overexpress in multiple myeloma (MM). Daratumumab (DARA), a human CD38-targeting monoclonal antibody (mAb), is approved for MM treatment. In this study, we found expression of CD38 on PEL cells and assessed the anti-PEL activity of DARA. We found that both KHYG-1 and N6 (CD16-transfected KHYG-1) NK cell lines showed direct killing activity against PEL cells with induction of CD107a, and NK-mediated cytotoxicity by N6NK (CD16+) cells increased with DARA treatment. We confirmed direct NK activity and antibody-dependent cell cytotoxicity (ADCC) by expanded NK cells, indicating that DARA has high ADCC activity. We elucidated the antibody-dependent cell phagocytosis (ADCP) by using human monocyte-derived macrophages (MDMs) and mouse peritoneal macrophages. DARA also showed potent complement-dependent cytolysis (CDC) toward PEL. DARA also induced PEL cell death in the presence of a cross-linking antibody. Moreover, treatment with DARA inhibited tumor growth in a PEL xenograft mouse model. These results provide preclinical evidence that Ab targeting of CD38 could be an effective therapeutic strategy for the treatment of PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
23
|
Bila J, Katodritou E, Guenova M, Basic-Kinda S, Coriu D, Dapcevic M, Ibricevic-Balic L, Ivanaj A, Karanfilski O, Zver S, Beksac M, Terpos E, Dimopoulos MA. Bone Marrow Microenvironment Interplay and Current Clinical Practice in Multiple Myeloma: A Review of the Balkan Myeloma Study Group. J Clin Med 2021; 10:jcm10173940. [PMID: 34501388 PMCID: PMC8432054 DOI: 10.3390/jcm10173940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The course of multiple myeloma (MM) is influenced by a variety of factors, including the specificity of the tumour microenvironment (TME). The aim of this review is to provide insight into the interplay of treatment modalities used in the current clinical practice and TME. Bortezomib-based triplets are the standard for MM first-line treatment. Bortezomib is a proteasome inhibitor (PI) which inhibits the nuclear factor kappa B (NF-κB) pathway. However, bortezomib is decreasing the expression of chemokine receptor CXCR4 as well, possibly leading to the escape of extramedullary disease. Immunomodulatory drugs (IMiDs), lenalidomide, and pomalidomide downregulate regulatory T cells (Tregs). Daratumumab, anti-cluster of differentiation 38 (anti-CD38) monoclonal antibody (MoAb), downregulates Tregs CD38+. Bisphosphonates inhibit osteoclasts and angiogenesis. Sustained suppression of bone resorption characterises the activity of MoAb denosumab. The plerixafor, used in the process of stem cell mobilisation and harvesting, block the interaction of chemokine receptors CXCR4-CXCL12, leading to disruption of MM cells’ interaction with the TME, and mobilisation into the circulation. The introduction of several T-cell-based immunotherapeutic modalities, such as chimeric-antigen-receptor-transduced T cells (CAR T cells) and bispecific antibodies, represents a new perspective in MM treatment affecting TME immune evasion. The optimal treatment approach to MM patients should be adjusted to all aspects of the individual profile including the TME niche.
Collapse
Affiliation(s)
- Jelena Bila
- Clinic of Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-638-292-992
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, 54639 Thessaloniki, Greece;
| | - Margarita Guenova
- Laboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, 1756 Sofia, Bulgaria;
| | - Sandra Basic-Kinda
- Divison of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daniel Coriu
- Centre of Hematology and Bone Marrow Transplant, “Fundeni” Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania;
| | - Milena Dapcevic
- Division of Hematology, Clinical Center of Montenegro, Podgorica 81000, Montenegro;
| | - Lejla Ibricevic-Balic
- Clinic of Hematology, University Clinical Center of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Arben Ivanaj
- Department of Hematology, University Medical Center “Mother Teresa”, 1001 Tirana, Albania;
| | - Oliver Karanfilski
- University Clinic of Hematology, Faculty of Medicine, University of Skopje, 1000 Skopje, North Macedonia;
| | - Samo Zver
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Meral Beksac
- Department of Hematology, Tissue Typing Laboratory and Donor Registry, Faculty of Medicine, University of Ankara, Ankara 06590, Turkey;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| | - Meletios Athanassios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| |
Collapse
|
24
|
Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules 2021; 26:molecules26154658. [PMID: 34361811 PMCID: PMC8348492 DOI: 10.3390/molecules26154658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023] Open
Abstract
Recently, we designed an inventive paradigm in nanomedicine—drug-free macromolecular therapeutics (DFMT). The ability of DFMT to induce apoptosis is based on biorecognition at cell surface, and crosslinking of receptors without the participation of low molecular weight drugs. The system is composed of two nanoconjugates: a bispecific engager, antibody or Fab’ fragment—morpholino oligonucleotide (MORF1) conjugate; the second nanoconjugate is a multivalent effector, human serum albumin (HSA) decorated with multiple copies of complementary MORF2. Here, we intend to demonstrate that DFMT is a platform that will be effective on other receptors than previously validated CD20. We appraised the impact of daratumumab (DARA)- and isatuximab (ISA)-based DFMT to crosslink CD38 receptors on CD38+ lymphoma (Raji, Daudi) and multiple myeloma cells (RPMI 8226, ANBL-6). The biological properties of DFMTs were determined by flow cytometry, confocal fluorescence microscopy, reactive oxygen species determination, lysosomal enlargement, homotypic cell adhesion, and the hybridization of nanoconjugates. The data revealed that the level of apoptosis induction correlated with CD38 expression, the nanoconjugates meet at the cell surface, mitochondrial signaling pathway is strongly involved, insertion of a flexible spacer in the structure of the macromolecular effector enhances apoptosis, and simultaneous crosslinking of CD38 and CD20 receptors increases apoptosis.
Collapse
Affiliation(s)
- M. Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| |
Collapse
|
25
|
Matula Z, Mikala G, Lukácsi S, Matkó J, Kovács T, Monostori É, Uher F, Vályi-Nagy I. Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells. Cancers (Basel) 2021; 13:cancers13143461. [PMID: 34298674 PMCID: PMC8307863 DOI: 10.3390/cancers13143461] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mitochondrial transfer plays a crucial role in the acquisition of drug resistance in multiple myeloma, but its exact mechanism is not yet clear; moreover, overcoming the drug resistance that it causes is also a major challenge. Our research on primary myeloma cell cultures reveals that mitochondrial transfer is bi-directional between bone marrow stromal cells and myeloma cells, occurring via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, whereupon survival and adenosine triphosphate levels increase, while mitochondrial superoxide levels decrease in myeloma cells. These changes and the elevation of superoxide levels in stromal cells are proportional to the amount of incorporated mitochondria derived from the other cell type and to the concentration of the used drug. Although the inhibition of mitochondrial transfer is limited between stromal and myeloma cells, the supportive effect of stromal cells can be effectively averted by influencing the tumor metabolism with an inhibitor of oxidative phosphorylation in addition to chemotherapeutics. Abstract Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.
Collapse
Affiliation(s)
- Zsolt Matula
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
- Correspondence:
| | - Gábor Mikala
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary;
| | - János Matkó
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary;
| | - Tamás Kovács
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary;
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary;
| | - Ferenc Uher
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| | - István Vályi-Nagy
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.M.); (F.U.); (I.V.-N.)
| |
Collapse
|
26
|
Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv 2021; 4:5194-5202. [PMID: 33095874 DOI: 10.1182/bloodadvances.2020002603] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
18F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is one of the most widely used imaging techniques to detect multiple myeloma (MM). Intracellular FDG uptake depicts in vivo metabolic activity, which can be seen in both malignant and nonmalignant cells, resulting in limited sensitivity and specificity. Our group showed preclinically that tracing MM dissemination using a CD38-directed human antibody, daratumumab, that is radioconjugated with 64Cu via the chelator DOTA (64Cu-daratumumab), led to improved sensitivity and specificity over that of FDG. Here, we report the results of a phase 1 trial designed to (1) assess the safety and feasibility of 64Cu-daratumumab PET/CT and (2) preliminarily evaluate and characterize the ability of 64Cu-daratumumab to accurately detect or exclude MM lesions. A total of 12 daratumumab-naive patients were imaged. Prior to the injection of 15 mCi/5 mg of 64Cu-daratumumab, patients were treated with 0 (n = 3), 10 (n = 3), 45 (n = 3), or 95 mg (n = 3) of unlabeled daratumumab to assess its effect on image quality. No significant adverse events were observed from either unlabeled daratumumab or 64Cu-daratumumab. Of the dose levels tested, 45 mg unlabeled daratumumab was the most optimal in terms of removing background signal without saturating target sites. 64Cu-daratumumab PET/CT provided safe whole-body imaging of MM. A trial comparing the sensitivity and specificity of 64Cu-daratumumab PET/CT with that of FDG PET/CT is planned. This trial was registered at www.clinicaltrials.gov as #NCT03311828.
Collapse
|
27
|
Cho N, Ko S, Shokeen M. Preclinical Development of Near-Infrared-Labeled CD38-Targeted Daratumumab for Optical Imaging of CD38 in Multiple Myeloma. Mol Imaging Biol 2021; 23:186-195. [PMID: 32964391 PMCID: PMC8475634 DOI: 10.1007/s11307-020-01542-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Cluster of differentiation 38 (CD38) is a promising therapeutic target in multiple myeloma (MM) patients and has resulted in the development of several CD38 immunotherapies. Current methods to evaluate CD38 expression in the preclinical setting include ex vivo flow cytometry and immunohistochemistry, which can be cumbersome and do not give whole-body information. In vivo imaging technologies such as positron emission tomography rely on decay of radioisotopes, limiting the number of molecular interactions observed at any given time point. Here, we demonstrate the use of near-infrared (NIR) fluorescence imaging for spatiotemporal monitoring of CD38 expression in preclinical MM using the anti-CD38 daratumumab (DARA) conjugated to the NIR fluorophore IRDye800CW (DARA-IRDye800). PROCEDURES Stability studies with human serum and binding assays with human myeloma cells were performed with DARA-IRDye800. Immunocompromised mice with intra- and extramedullary tumors (n = 5/group) were administered with DARA-IRDye800 for in vivo imaging up to 7 days after injection. Ex vivo biodistribution and flow cytometry studies were performed to validate in vivo imaging results. A separate therapy study was performed in mice with intramedullary tumors that were treated and not treated with DARA at a therapeutic dose (n = 7/group). DARA-IRDye800 was administered for subsequent in vivo and ex vivo imaging in both cohorts of mice. RESULTS DARA-IRDye800 maintained stability and had high affinity for CD38 (KD = 3.5 ± 0.05 nM). DARA-IRDye800 demonstrated a 5- and 18-fold increase in contrast in tumor-bearing regions of mice with extra- and intramedullary MM. Finally, mice treated with therapeutic doses of DARA and imaged with DARA-IRDye800 showed an 11-fold decrease in fluorescence intensities in vivo compared with untreated controls. CONCLUSIONS Our studies establish DARA-IRDye800 as a promising contrast agent for preclinical evaluation of CD38 expression and for further investigating myeloma engraftment and kinetics in relation to anti-CD38 therapies.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sooah Ko
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
29
|
Plesner T. Optimizing the Outcome of Anti-Myeloma Treatment with Daratumumab. J Clin Med 2021; 10:1002. [PMID: 33801271 PMCID: PMC7958124 DOI: 10.3390/jcm10051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
A search of the scientific literature for Daratumumab and myeloma gives more than 600 results (January 2021), which reflects the interest and activity around this antibody, an interest that was also reflected by the assignment of breakthrough designation for Daratumumab as a treatment for multiple myeloma by FDA in 2013. The high expectations have been supported and met due to a very active clinical development program, and our insight into Daratumumab's modes of action have been expanded by a concomitant, systematic activity of translational research. The scope of this article is to point to some areas where the outcome of treatment with Daratumumab for multiple myeloma may be improved with a focus on areas such as when to initiate treatment with Daratumumab, the use of supportive treatment, duration of therapy and some general thoughts about anti-myeloma treatment as a two-step process involving initial de-bulking followed by reprogramming of the host's immune system and immune-mediated control of myeloma.
Collapse
Affiliation(s)
- Torben Plesner
- Department of Hematology, Vejle Hospital, Institute of Regional Health Science, University of Southern Denmark, Beriderbakken 4 DK, 7100 Vejle, Denmark
| |
Collapse
|
30
|
Malavasi F, Faini AC, Morandi F, Castella B, Incarnato D, Oliviero S, Horenstein AL, Massaia M, van de Donk NWCJ, Richardson PG. Molecular dynamics of targeting CD38 in multiple myeloma. Br J Haematol 2021; 193:581-591. [PMID: 33570193 DOI: 10.1111/bjh.17329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Multiple functions of CD38 need exploring to expand clinical application of anti-CD38 antibodies in multiple myeloma (MM). We investigated membrane dynamics of MM cells and subsequent events when CD38 is targeted by therapeutic antibodies. Human MM cells (BF01) were co-cultured in vitro with therapeutic antibody (or control immunoglobulin G) and analysed using gene expression profiling. Microvesicles from antibody-exposed cells were analysed for differential gene and microRNA (miRNA) expression, and for phenotypic characterisation. Exposure of BF01 cells to anti-CD38 antibody resulted in CD38 membrane redistribution, upregulation of metabolism-related genes and downregulation of genes involved in cell cycle processes. Microvesicles derived from antibody-exposed cells showed increased CD73 and CD39 expression, presence of programmed death-ligand 1 and significant up-/down-modulation of miRNAs. Microvesicles accumulated around immunoglobulin Fc receptor-positive (FcR+ ) cells. Upon internalisation, natural killer cells displayed significantly increased expression of genes related to activation and immune response, and downregulation of genes involved in the cell cycle. Cells may use microvesicles to transmit signals distally as part of a survival strategy. Microvesicles are equipped on their surface with enzymatic machinery leading to production of tolerogenic adenosine. Further, they are internalised in FcR+ cells with significant functional modifications. These observations have relevance for improving anti-CD38 therapeutic antibodies through targeting this mechanism and its sequelae.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Angelo C Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Turin, Turin, Italy
| | - Danny Incarnato
- Department of Life Science and Systems Biology, University of Turin, and Italian Institute for Genomic Medicine (IIGM) Candiolo, Turin, Italy
| | - Salvatore Oliviero
- Department of Life Science and Systems Biology, University of Turin, and Italian Institute for Genomic Medicine (IIGM) Candiolo, Turin, Italy
| | - Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Turin, Turin, Italy
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Treatment Strategies Considering Micro-Environment and Clonal Evolution in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020215. [PMID: 33435539 PMCID: PMC7827913 DOI: 10.3390/cancers13020215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Multiple myeloma is an uncurable hematological malignancy, although the prognosis of myeloma patients is getting better using proteasome inhibitors (PIs), immune modulatory drugs (IMiDs), monoclonal antibodies (MoAbs), and cytotoxic agents. Drug resistance makes myeloma difficult to treat and it can be subdivided into two broad categories: de novo and acquired. De novo drug resistance is associated with the bone marrow microenvironment including bone marrow stromal cells, the vascular niche and endosteal niche. Acquired drug resistance is related to clonal evolution and non-genetic diversity. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAbs, and autologous stem cell transplantation because these treatments improve the bone marrow microenvironment and might prevent clonal evolution via sustained deep response including minimal residual disease negativity. Abstract Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is dependent on the microenvironment and escape of immunological surveillance while the linear and neutral evolution is independent of the microenvironment and associated with aggressive recurrence and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prognosis of myeloma via improvement of the microenvironment. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment and clonal evolution and treatment strategies to overcome drug resistance.
Collapse
|
32
|
Kleinot W, Aguilera N, Courville EL. Daratumumab Interference in Flow Cytometry Producing a False Kappa Light Chain Restriction in Plasma Cells. Lab Med 2020; 52:403-409. [PMID: 33345283 DOI: 10.1093/labmed/lmaa107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
False kappa light chain restriction on hematogones (normal B-lineage precursors) has been described in patients on the therapeutic anti-CD38 monoclonal antibody daratumumab. In this article, we present a novel case report of pseudo-kappa light chain restriction on lambda-restricted neoplastic plasma cells in a patient with progressive plasma cell myeloma while on daratumumab. Flow cytometric technologists and pathologists need to be aware of this potential diagnostic pitfall.
Collapse
Affiliation(s)
- William Kleinot
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Nadine Aguilera
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Sherbenou DW, Su Y, Behrens CR, Aftab BT, Perez de Acha O, Murnane M, Bearrows SC, Hann BC, Wolf JL, Martin TG, Liu B. Potent Activity of an Anti-ICAM1 Antibody-Drug Conjugate against Multiple Myeloma. Clin Cancer Res 2020; 26:6028-6038. [PMID: 32917735 PMCID: PMC7669584 DOI: 10.1158/1078-0432.ccr-20-0400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE New therapies have changed the outlook for patients with multiple myeloma, but novel agents are needed for patients who are refractory or relapsed on currently approved drug classes. Novel targets other than CD38 and BCMA are needed for new immunotherapy development, as resistance to daratumumab and emerging anti-BCMA approaches appears inevitable. One potential target of interest in myeloma is ICAM1. Naked anti-ICAM1 antibodies were active in preclinical models of myeloma and safe in patients, but showed limited clinical efficacy. Here, we sought to achieve improved targeting of multiple myeloma with an anti-ICAM1 antibody-drug conjugate (ADC). EXPERIMENTAL DESIGN Our anti-ICAM1 human mAb was conjugated to an auristatin derivative, and tested against multiple myeloma cell lines in vitro, orthotopic xenografts in vivo, and patient samples ex vivo. The expression of ICAM1 was also measured by quantitative flow cytometry in patients spanning from diagnosis to the daratumumab-refractory state. RESULTS The anti-ICAM1 ADC displayed potent anti-myeloma cytotoxicity in vitro and in vivo. In addition, we have verified that ICAM1 is highly expressed on myeloma cells and shown that its expression is further accentuated by the presence of bone marrow microenvironmental factors. In primary samples, ICAM1 is differentially overexpressed on multiple myeloma cells compared with normal cells, including daratumumab-refractory patients with decreased CD38. In addition, ICAM1-ADC showed selective cytotoxicity in multiple myeloma primary samples. CONCLUSIONS We propose that anti-ICAM1 ADC should be further studied for toxicity, and if safe, tested for clinical efficacy in patients with relapsed or refractory multiple myeloma.
Collapse
Affiliation(s)
- Daniel W Sherbenou
- Department of Medicine, University of California at San Francisco, California
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yang Su
- Department of Anesthesia, University of California at San Francisco, California
| | | | - Blake T Aftab
- Department of Medicine, University of California at San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Murnane
- Department of Medicine, University of California at San Francisco, California
| | - Shelby C Bearrows
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Byron C Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jeffery L Wolf
- Department of Medicine, University of California at San Francisco, California
| | - Thomas G Martin
- Department of Medicine, University of California at San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California at San Francisco, California.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
34
|
D’Agostino M, Innorcia S, Boccadoro M, Bringhen S. Monoclonal Antibodies to Treat Multiple Myeloma: A Dream Come True. Int J Mol Sci 2020; 21:E8192. [PMID: 33139668 PMCID: PMC7662679 DOI: 10.3390/ijms21218192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy is increasingly used in the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) are safe and effective ways to elicit immunotherapeutic responses. In 2015, daratumumab has become the first mAb approved by the Food and Drug Administration for clinical use in MM and, in the last 5 years, a lot of clinical and preclinical research has been done to optimize the use of this drug class. Currently, mAbs have already become part of standard-of-care combinations for the treatment of relapsed/refractory MM and very soon they will also be used in the frontline setting. The success of simple mAbs ('naked mAbs') prompted the development of new types of molecules. Antibody-drug conjugates (ADCs) are tumor-targeting mAbs that release a cytotoxic payload into the tumor cells upon antigen binding in order to destroy them. Bispecific antibodies (BiAbs) are mAbs simultaneously targeting a tumor-associated antigen and an immune cell-associated antigen in order to redirect the immune cell cytotoxicity against the tumor cell. These different constructs produced solid preclinical data and promising clinical data in phase I/II trials. The aim of this review article is to summarize all the recent developments in the field, including data on naked mAbs, ADCs and BiAbs.
Collapse
Affiliation(s)
| | | | | | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (M.D.); (S.I.); (M.B.)
| |
Collapse
|
35
|
Minnix M, Adhikarla V, Caserta E, Poku E, Rockne R, Shively JE, Pichiorri F. Comparison of CD38-Targeted α- Versus β-Radionuclide Therapy of Disseminated Multiple Myeloma in an Animal Model. J Nucl Med 2020; 62:795-801. [PMID: 33127621 DOI: 10.2967/jnumed.120.251983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Targeted therapies for multiple myeloma (MM) include the anti-CD38 antibody daratumumab, which, in addition to its inherent cytotoxicity, can be radiolabeled with tracers for imaging and with β- and α-emitter radionuclides for radioimmunotherapy. Methods: We have compared the potential therapeutic efficacy of β- versus α-emitter radioimmunotherapy using radiolabeled DOTA-daratumumab in a preclinical model of disseminated multiple myeloma. Multiple dose levels were investigated to find the dose with the highest efficacy and lowest toxicity. Results: In a dose–response study with the β-emitter 177Lu-DOTA-daratumumab, the lowest tested dose, 1.85 MBq, extended survival from 37 to 47 d but did not delay tumor growth. Doses of 3.7 and 7.4 MBq extended survival to 55 and 58 d, respectively, causing a small equivalent delay in tumor growth, followed by regrowth. The higher dose, 11.1 MBq, eradicated the tumor but had no effect on survival compared with untreated controls, because of whole-body toxicity. In contrast, the α-emitter 225Ac-DOTA-daratumumab had a dose-dependent effect, in which 0.925, 1.85, and 3.7 kBq increased survival, compared with untreated controls (35 d), to 47, 52, and 73 d, respectively, with a significant delay in tumor growth for all 3 doses. Higher doses of 11.1 and 22.2 kBq resulted in equivalent survival to 82 d but with significant whole-body toxicity. Parallel studies with untargeted 225Ac-DOTA-trastuzumab conferred no improvement over untreated controls and resulted in whole-body toxicity. Conclusion: We conclude, and mathematic modeling confirms, that maximal biologic doses were achieved by targeted α-therapy and demonstrated 225Ac to be superior to 177Lu in delaying tumor growth and decreasing whole-body toxicity.
Collapse
Affiliation(s)
- Megan Minnix
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, California
| | - Enrico Caserta
- Briskin Myeloma Center and Department of Hematologic Malignancies Research Institute, City of Hope, Duarte, California; and
| | | | - Russell Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, California
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California
| | - Flavia Pichiorri
- Briskin Myeloma Center and Department of Hematologic Malignancies Research Institute, City of Hope, Duarte, California; and
| |
Collapse
|
36
|
Jiao Y, Yi M, Xu L, Chu Q, Yan Y, Luo S, Wu K. CD38: targeted therapy in multiple myeloma and therapeutic potential for solid cancers. Expert Opin Investig Drugs 2020; 29:1295-1308. [PMID: 32822558 DOI: 10.1080/13543784.2020.1814253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION CD38 is expressed by some cells of hematological malignancies and tumor-related immunosuppressive cells, including regulatory T cells, regulatory B cells, and myeloid-derived suppressor cells. CD38 is an effective target in some hematological malignancies such as multiple myeloma (MM). Daratumumab (Dara), a CD38-targeting antibody, can eliminate CD38high immune suppressor cells and is regarded as a standard therapy for MM because of its outstanding clinical efficacy. Other CD38 monospecific antibodies, such as isatuximab, MOR202, and TAK079, showed promising effects in clinical trials. AREA COVERED This review examines the expression, function, and targeting of CD38 in MM and its potential to deplete immunosuppressive cells in solid cancers. We summarize the distribution and biological function of CD38 and discuss the application of anti-CD38 drugs in hematological malignancies. We also analyz the role of CD38+ immune cells in the tumor microenvironment to encourage additional investigations that target CD38 in solid cancers. PubMed and ClinicalTrials were searched to identify relevant literature from the database inception to 30 April 2020. EXPERT OPINION There is convincing evidence that CD38-targeted immunotherapeutics reduce CD38+ immune suppressor cells. This result suggests that CD38 can be exploited to treat solid tumors by regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yongxiang Yan
- R & D Department, Wuhan YZY Biopharma Co., Ltd , Wuhan, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| |
Collapse
|
37
|
Cerrano M, Castella B, Lia G, Olivi M, Faraci DG, Butera S, Martella F, Scaldaferri M, Cattel F, Boccadoro M, Massaia M, Ferrero D, Bruno B, Giaccone L. Immunomodulatory and clinical effects of daratumumab in T-cell acute lymphoblastic leukaemia. Br J Haematol 2020; 191:e28-e32. [PMID: 32686081 DOI: 10.1111/bjh.16960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Cerrano
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Giuseppe Lia
- Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Olivi
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo G Faraci
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sara Butera
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Martella
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matilde Scaldaferri
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Francesco Cattel
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Mario Boccadoro
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Dario Ferrero
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
38
|
Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia 2020; 35:189-200. [PMID: 32296125 PMCID: PMC7572537 DOI: 10.1038/s41375-020-0810-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
Daratumumab (Dara), a multiple myeloma (MM) therapy, is an antibody against the surface receptor CD38, which is expressed not only on plasma cells but also on NK cells and monocytes. Correlative data have highlighted the immune-modulatory role of Dara, despite the paradoxical observation that Dara regimens decrease the frequency of total NK cells. Here we show that, despite this reduction, NK cells play a pivotal role in Dara anti-MM activity. CD38 on NK cells is essential for Dara-induced immune modulation, and its expression is restricted to NK cells with effector function. We also show that Dara induces rapid CD38 protein degradation associated with NK cell activation, leaving an activated CD38-negative NK cell population. CD38+ NK cell targeting by Dara also promotes monocyte activation, inducing an increase in T cell costimulatory molecules (CD86/80) and enhancing anti-MM phagocytosis activity ex-vivo and in vivo. In support of Dara’s immunomodulating role, we show that MM patients that discontinued Dara therapy because of progression maintain targetable unmutated surface CD38 expression on their MM cells, but retain effector cells with impaired cellular immune function. In summary, we report that CD38+ NK cells may be an unexplored therapeutic target for priming the immune system of MM patients.
Collapse
|
39
|
Storti P, Vescovini R, Costa F, Marchica V, Toscani D, Dalla Palma B, Craviotto L, Malavasi F, Giuliani N. CD14 + CD16 + monocytes are involved in daratumumab-mediated myeloma cells killing and in anti-CD47 therapeutic strategy. Br J Haematol 2020; 190:430-436. [PMID: 32162328 DOI: 10.1111/bjh.16548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
Abstract
A deep elucidation of the mechanisms of action of anti-CD38 monoclonal antibodies (mAbs), such as daratumumab (DARA), is required to identify patients with multiple myeloma (MM) who are more responsive to this treatment. In the present study, an autologous ex vivo approach was established, focussing on the role of the monocytes in the anti CD38-mediated killing of MM cells. In bone marrow (BM) samples from 29 patients with MM, we found that the ratio between monocytes (CD14+ ) and MM cells (CD138+ ) influences the response to DARA. Further, the exposure of the BM samples to DARA is followed by the formation of a CD138+ CD14+ double-positive (DP) population, that quantitatively correlates with the anti-MM cells killing. These effects were dependent on the presence of a CD14+ CD16+ monocyte subset and on high CD16 expression levels. Lastly, the addition of a mAb neutralising the CD47/signal-regulatory protein α (SIRPα) axis was able to increase the killing mediated by DARA. The effects were observed only in coincidence with high CD14+ :CD138+ ratio, with a significant presence of the DP population and were correlated with CD16 expression. In conclusion, the present study underlines the critical role of the CD16+ monocytes in DARA anti-MM killing effects and gives a rationale to test the combination of an anti-CD47 mAb with anti-CD38 mAbs.
Collapse
Affiliation(s)
- Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy.,Fondazione Ricerca Molinette, Turin, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| |
Collapse
|
40
|
Plesner T, van de Donk NWCJ, Richardson PG. Controversy in the Use of CD38 Antibody for Treatment of Myeloma: Is High CD38 Expression Good or Bad? Cells 2020; 9:cells9020378. [PMID: 32041300 PMCID: PMC7072398 DOI: 10.3390/cells9020378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/19/2023] Open
Abstract
During a time span of just a few years, the CD38 antibody, daratumumab, has been established as one of the most important new drugs for the treatment of multiple myeloma, both in the relapsed/refractory setting and, more recently, as a first-line treatment. Although much is known about the pleiotropic modes of action of daratumumab, we are still not sure how to use it in an optimal manner. Daratumumab targets CD38 on myeloma cells and a high level of CD38 expression facilitates complement-mediated cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Since the expression of CD38 by myeloma cells is downregulated during treatment with daratumumab, it may seem reasonable to introduce a wash-out period and retreat with daratumumab at a later time point when CD38 expression has recovered in order to gain the maximum benefit of daratumumab’s capacity to kill myeloma cells by CDC, ADCC and ADCP. In other aspects, CD38 seems to serve as a survival factor for myeloma cells by facilitating protective myeloma cell–stromal-cell interactions, contributing to the formation of nanotubes that transfer mitochondria from the stromal cells to myeloma cells, boosting myeloma cell proliferation and survival and by generation of immunosuppressive adenosine in the bone marrow microenvironment. In addition, continuous exposure to daratumumab may keep immune suppressor cells at a low level, which boosts the anti-tumor activity of T-cells. In fact, one may speculate if in the early phase of treatment of a myeloma patient, the debulking effects of daratumumab achieved by CDC, ADCC and ADCP are more important while at a later stage, reprogramming of the patient’s own immune system and certain metabolic effects may take over and become more essential. This duality may be reflected by what we often observe when we watch the slope of the M-protein from myeloma patients responding to daratumumab: A rapid initial drop followed by a slow decline of the M-protein during several months or even years. Ongoing and future clinical trials will teach us how to use daratumumab in an optimal way.
Collapse
Affiliation(s)
- Torben Plesner
- Vejle Hospital and University of Southern Denmark, 7100 Vejle, Denmark
- Correspondence: ; Tel.: +45-20887692
| | - Niels W. C. J. van de Donk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Paul G. Richardson
- Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
41
|
Therapeutic Monoclonal Antibodies and Antibody Products: Current Practices and Development in Multiple Myeloma. Cancers (Basel) 2019; 12:cancers12010015. [PMID: 31861548 PMCID: PMC7017131 DOI: 10.3390/cancers12010015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is the latest innovation for the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) entered the clinical practice and are under evaluation in clinical trials. MAbs can target highly selective and specific antigens on the cell surface of MM cells causing cell death (CD38 and CS1), convey specific cytotoxic drugs (antibody-drug conjugates), remove the breaks of the immune system (programmed death 1 (PD-1) and PD-ligand 1/2 (L1/L2) axis), or boost it against myeloma cells (bi-specific mAbs and T cell engagers). Two mAbs have been approved for the treatment of MM: the anti-CD38 daratumumab for newly-diagnosed and relapsed/refractory patients and the anti-CS1 elotuzumab in the relapse setting. These compounds are under investigation in clinical trials to explore their synergy with other anti-MM regimens, both in the front-line and relapse settings. Other antibodies targeting various antigens are under evaluation. B cell maturation antigens (BCMAs), selectively expressed on plasma cells, emerged as a promising target and several compounds targeting it have been developed. Encouraging results have been reported with antibody drug conjugates (e.g., GSK2857916) and bispecific T cell engagers (BiTEs®), including AMG420, which re-directs T cell-mediated cytotoxicity against MM cells. Here, we present an overview on mAbs currently approved for the treatment of MM and promising compounds under investigation.
Collapse
|
42
|
Mogollón P, Díaz-Tejedor A, Algarín EM, Paíno T, Garayoa M, Ocio EM. Biological Background of Resistance to Current Standards of Care in Multiple Myeloma. Cells 2019; 8:cells8111432. [PMID: 31766279 PMCID: PMC6912619 DOI: 10.3390/cells8111432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/03/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
A high priority problem in multiple myeloma (MM) management is the development of resistance to administered therapies, with most myeloma patients facing successively shorter periods of response and relapse. Herewith, we review the current knowledge on the mechanisms of resistance to the standard backbones in MM treatment: proteasome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies (mAbs). In some cases, strategies to overcome resistance have been discerned, and an effort should be made to evaluate whether resensitization to these agents is feasible in the clinical setting. Additionally, at a time in which we are moving towards precision medicine in MM, it is equally important to identify reliable and accurate biomarkers of sensitivity/refractoriness to these main therapeutic agents with the goal of having more efficacious treatments and, if possible, prevent the development of relapse.
Collapse
Affiliation(s)
- Pedro Mogollón
- Hospital Universitario de Salamanca (IBSAL), Centro de Investigación del Cáncer-IBMCC (CSIC-USAL), 37007 Salamanca, Spain; (P.M.); (A.D.-T.); (E.M.A.); (T.P.); (M.G.)
| | - Andrea Díaz-Tejedor
- Hospital Universitario de Salamanca (IBSAL), Centro de Investigación del Cáncer-IBMCC (CSIC-USAL), 37007 Salamanca, Spain; (P.M.); (A.D.-T.); (E.M.A.); (T.P.); (M.G.)
| | - Esperanza M. Algarín
- Hospital Universitario de Salamanca (IBSAL), Centro de Investigación del Cáncer-IBMCC (CSIC-USAL), 37007 Salamanca, Spain; (P.M.); (A.D.-T.); (E.M.A.); (T.P.); (M.G.)
| | - Teresa Paíno
- Hospital Universitario de Salamanca (IBSAL), Centro de Investigación del Cáncer-IBMCC (CSIC-USAL), 37007 Salamanca, Spain; (P.M.); (A.D.-T.); (E.M.A.); (T.P.); (M.G.)
| | - Mercedes Garayoa
- Hospital Universitario de Salamanca (IBSAL), Centro de Investigación del Cáncer-IBMCC (CSIC-USAL), 37007 Salamanca, Spain; (P.M.); (A.D.-T.); (E.M.A.); (T.P.); (M.G.)
| | - Enrique M. Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, 39008 Santander, Spain
- Correspondence: ; Tel.: +34-942202520
| |
Collapse
|
43
|
Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, Qing X, Huang X, Luo X, Zhang Z, Shao Z. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis 2019; 10:687. [PMID: 31534119 PMCID: PMC6751204 DOI: 10.1038/s41419-019-1917-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.
Collapse
Affiliation(s)
- Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Cheng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xueying Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| |
Collapse
|
44
|
Yu T, Qiao C, Lv M, Tang L. Novel anti-CD38 humanized mAb SG003 possessed enhanced cytotoxicity in lymphoma than Daratumumab via antibody-dependent cell-mediated cytotoxicity. BMC Biotechnol 2019; 19:28. [PMID: 31118070 PMCID: PMC6530185 DOI: 10.1186/s12896-019-0524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Background In vivo use of monoclonal antibodies has become routine clinical practice in the treatment of human cancer. CD38 is an attractive target, because it has double roles, as a receptor and an ectoenzyme. Daratumumab, an anti-CD38 antibody, is currently in the clinical trials for multiple myeloma. Results Here we obtained a humanized anti-CD38 antibody, SG003, using SDR-grafting method. SG003 possessed stronger antigen binding activity than Daratumumab, and its epitope was far from that of Daratumumab, an anti-CD38 antibody currently in the clinical trials for multiple myeloma; besides, SG003 showed enhanced antibody-dependent cell-mediated cytotoxicity function and in vivo inhibitory efficacy of tumor growth in xenograft mice model. Conclusion SG003 seemed to be a good option to improve the curative effect of CD38-related cancers.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunxia Qiao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ming Lv
- Sumgen Biotech co., Ltd., Hangzhou, 310000, China
| | - Luqun Tang
- Department of Radiation Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|