1
|
Ray A, Bassette M, Hu KH, Pass LF, Courau T, Samad B, Combes A, Johri V, Davidson B, Wai K, Ha P, Hernandez G, Zaleta-Linares I, Krummel MF. Multimodal delineation of a layer of effector function among exhausted CD8 T cells in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.26.559470. [PMID: 37808790 PMCID: PMC10557647 DOI: 10.1101/2023.09.26.559470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The anti-tumor function of CD8 T cells is limited through well-established pathways of T cell exhaustion (TEX). Strategies to capture emergent functional states amongst this dominant trajectory of dysfunction are necessary to find pathways to durable anti-tumor immunity. By leveraging transcriptional reporting (by the fluorescent protein TFP) of the T cell activation marker Cd69, related to upstream AP-1 transcription factors, we define a classifier for potent versus suboptimal CD69+ activation states arising from T cell stimulation. In tumors, this delineation acts an additional functional readout along the TEX differentiation trajectory, within and across TEX subsets, marked by enhanced effector cytokine and granzyme B production. The more potent state remains differentially prominent in a T cell-mediated tumor clearance model, where they also show increased engagement in the microenvironment and are superior in tumor cell killing. Employing multimodal CITE-Seq in human head and neck tumors enables a similar strategy to identify Cd69RNAhiCD69+ cells that also have enhanced functional features in comparison to Cd69RNAloCD69+ cells, again within and across intratumoral CD8 T cell subsets. Refining the contours of the T cell functional landscape in tumors in this way paves the way for the identification of rare exceptional effectors, with imminent relevance to cancer treatment.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Molly Bassette
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Lomax F. Pass
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vrinda Johri
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Brittany Davidson
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Katherine Wai
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Grace Hernandez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Kim SA, Kim S, Hong Y, Choi Y, Lee Y, Kwon M, Park SY, Jeong C, Nam GH, Han RT, Kim IS. Immunogenic clearance combined with PD-1 blockade elicits antitumor effect by promoting the recruitment and expansion of the effector memory-like CD8 +T cell. Transl Oncol 2025; 51:102209. [PMID: 39608213 PMCID: PMC11635775 DOI: 10.1016/j.tranon.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Immune checkpoint inhibition shows promise for cancer treatment, but only a minority of patients respond. Combination strategies have been explored to overcome this resistance. Combining immunogenic clearance using immunogenic cell death inducers with a rho kinase inhibitor enhances phagocytosis of immunogenically dying cancer cells by antigen-presenting cells, stimulating tumor-specific immune responses by activating CD8+T cells via dendritic cell-mediated priming. This approach increases the responsiveness of immune checkpoint blockade (ICB)-resistant cancer to ICB. However, the precise mechanisms remain unclear. This study elucidates cellular mechanisms of immunogenic clearance enhancing ICB response. Using single-cell RNA sequencing, we observed an increase in effector memory-like CD8+T cells within the tumor microenvironment with combined treatment. We propose this cell cluster may originate from proliferating CD8+T cells elevated by immunogenic clearance. Notably, abundant effector memory-like CD8+T cells in ICB-responsive patients suggest their antitumor effect. Thus, increasing this cell population through enhanced T cell priming may improve the response of ICB-resistant tumors.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeji Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsu Kwon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Cherlhyun Jeong
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, KIST Campus, 02841, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Rafael T Han
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Guerrero-Murillo M, Rill-Hinarejos A, Trincado JL, Bataller A, Ortiz-Maldonado V, Benítez-Ribas D, Español-Rego M, González-Navarro EA, Martínez-Cibrián N, Marchese D, Martín-Martín L, Martín García-Sancho A, Rives S, Heyn H, Juan M, Urbano-Ispizúa Á, Delgado J, Orfao A, Mereu E, Bueno C, Menendez P. Integrative single-cell multi-omics of CD19-CAR pos and CAR neg T cells suggest drivers of immunotherapy response in B cell neoplasias. Cell Rep Med 2024; 5:101803. [PMID: 39471818 PMCID: PMC11604525 DOI: 10.1016/j.xcrm.2024.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/31/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
The impact of phenotypic, clonal, and functional heterogeneity of chimeric antigen receptor (CAR)-T cells on clinical outcome remains understudied. Here, we integrate clonal kinetics with transcriptomic heterogeneity resolved by single-cell omics to interrogate cellular dynamics of non-transduced (CARneg) and transduced (CARpos) T cells, in the infusion product (IP) and at the CAR-T cell expansion peak in five B cell acute lymphoblastic leukemia (B-ALL) patients treated with CD19CAR-T cells (varni-cel). We identify significant differences in cellular dynamics in response to therapy. CARpos T cells at IP of complete response patients exhibit a significantly higher CD4:CD8 ratio, validated in a larger cohort B-ALL patients (n = 47). Conversely, at the expansion peak, there is a clonal expansion of CD8+ effector memory and cytotoxic T cells. Cytotoxic CARpos γδ-T cells expansion correlates with treatment efficacy validated in a cohort of B-ALL (n = 18) and diffuse large B cell lymphoma (DLBCL) patients (n = 58). Our data provide insights into the complexity of T cell responses following CAR-T cell therapy and suggest drivers of immunotherapy response.
Collapse
Affiliation(s)
- Mercedes Guerrero-Murillo
- Josep Carreras Leukemia Research Institute, Barcelona, Spain; Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; PhD programme in Biomedicine, University of Barcelona, Barcelona, Spain
| | - Aina Rill-Hinarejos
- Josep Carreras Leukemia Research Institute, Barcelona, Spain; PhD programme in Biomedicine, University of Barcelona, Barcelona, Spain
| | - Juan L Trincado
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Alex Bataller
- Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Daniel Benítez-Ribas
- Department of Immunology and immunotherapy, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Español-Rego
- Department of Immunology and immunotherapy, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Azucena González-Navarro
- Department of Immunology and immunotherapy, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Doménica Marchese
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lourdes Martín-Martín
- Cancer Research Centre (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL) and Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC, University of Salamanca and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Susana Rives
- Pediatric Oncology and Hematology Department, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manel Juan
- Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Department of Immunology and immunotherapy, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Urbano-Ispizúa
- Josep Carreras Leukemia Research Institute, Barcelona, Spain; Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Spanish Collaborative Cancer Network, CIBERONC, ISCIII, Spain
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL) and Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain; Spanish Collaborative Cancer Network, CIBERONC, ISCIII, Spain
| | | | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Barcelona, Spain; Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Spanish Collaborative Cancer Network, CIBERONC, ISCIII, Spain.
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain; Spanish Network for Advanced Therapies, RICORS-TERAV, ISCIII, Spain; Spanish Collaborative Cancer Network, CIBERONC, ISCIII, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Miao W, Jain V, Han M, Jin YJ, Beasley GM, Starczysnowski DT, Gregory SG, Zhang JY. Inhibition of UBE2N in regulatory T-cells boosts immunity against cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619436. [PMID: 39484562 PMCID: PMC11526935 DOI: 10.1101/2024.10.22.619436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulatory T (Treg) cells prevent autoimmunity and facilitate cancer immune evasion. Depletion of Tregs is a promising cancer therapy, but risks of autoimmune reactions hamper its clinical translation. Here, we demonstrate that temporally induced deletion of Ube2n in Tregs (Ube2n Treg-KO ) of adult mice results in a robust expansion and activation of cytotoxic CD8 + T-cells in response to cancer cell challenges, producing a long-lasting survival benefit without autoimmune complications. The anti-tumor effect persists following adoptive T-cell transfer to T-cell-deficient Rag1-knockout mice. Single-cell transcriptomic analysis revealed that UBE2N deletion shifted immunosuppressive Tregs to effector-like T-cells. This shift is characterized by the downregulation of c-Myc target genes, resembling that observed in tumor-infiltrating Tregs of melanoma patients. Further analyses confirm that UBE2N maintains c-Myc protein stability via suppression of K48-Ubiquitin-mediated proteasomal degradation. Taken together, our studies uncover a hitherto unexplored and potentially druggable UBE2N/c-Myc signaling axis to eradicate Treg-enabled cancer immune escape.
Collapse
|
5
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
6
|
Steiner C, Denlinger N, Huang X, Yang Y. Stem-like CD8 + T cells in cancer. Front Immunol 2024; 15:1426418. [PMID: 39211052 PMCID: PMC11357971 DOI: 10.3389/fimmu.2024.1426418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Stem-like CD8+ T cells (TSL) are a subset of immune cells with superior persistence and antitumor immunity. They are TCF1+ PD-1+ and important for the expansion of tumor specific CD8+ T cells in response to checkpoint blockade immunotherapy. In acute infections, naïve CD8+ T cells differentiate into effector and memory CD8+ T cells; in cancer and chronic infections, persistent antigen stimulation can lead to T cell exhaustion. Recent studies have highlighted the dichotomy between late dysfunctional (or exhausted) T cells (TLD) that are TCF1- PD-1+ and self-renewing TCF1+ PD-1+ TSL from which they derive. TCF1+ TSL cells are considered to have stem cell-like properties akin to memory T cell populations and can give rise to cytotoxic effector and transitory T cell phenotypes (TTE) which mediate tumor control. In this review, we will discuss recent advances made in research on the formation and expansion of TSL, as well as distinct niches required for their differentiation and maintenance in the setting of cancer. We will also discuss potential strategies to generate these cells, with clinical implications for stemness enhancement in vaccine design, immune checkpoint blockade (ICB), and adoptive T cell therapies.
Collapse
Affiliation(s)
| | | | - Xiaopei Huang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yiping Yang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
7
|
Gong M, Myster F, Azouz A, Sanchez Sanchez G, Li S, Charloteaux B, Yang B, Nichols J, Lefevre L, Javaux J, Leemans S, Nivelles O, van Campe W, Roels S, Mostin L, van den Berg T, Davison AJ, Gillet L, Connelley T, Vermijlen D, Goriely S, Vanderplasschen A, Dewals BG. Unraveling clonal CD8 T cell expansion and identification of essential factors in γ-herpesvirus-induced lymphomagenesis. Proc Natl Acad Sci U S A 2024; 121:e2404536121. [PMID: 39088396 PMCID: PMC11317613 DOI: 10.1073/pnas.2404536121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.
Collapse
Affiliation(s)
- Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Françoise Myster
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Shifang Li
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Benoit Charloteaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), GIGA-Genomics core facility, University of Liège, Liège4000, Belgium
| | - Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Jenna Nichols
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - Justine Javaux
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Sylvain Leemans
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Olivier Nivelles
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Andrew J. Davison
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - David Vermijlen
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Alain Vanderplasschen
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Benjamin G. Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| |
Collapse
|
8
|
Tran MA, Youssef D, Shroff S, Chowhan D, Beaumont KG, Sebra R, Mehrazin R, Wiklund P, Lin JJ, Horowitz A, Farkas AM, Galsky MD, Sfakianos JP, Bhardwaj N. Urine scRNAseq reveals new insights into the bladder tumor immune microenvironment. J Exp Med 2024; 221:e20240045. [PMID: 38847806 PMCID: PMC11157455 DOI: 10.1084/jem.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.
Collapse
Affiliation(s)
- Michelle A. Tran
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dina Youssef
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjana Shroff
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Disha Chowhan
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G. Beaumont
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny J. Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M. Farkas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
9
|
Bennion KB, Liu D, Dawood AS, Wyatt MM, Alexander KL, Abdel-Hakeem MS, Paulos CM, Ford ML. CD8 + T cell-derived Fgl2 regulates immunity in a cell-autonomous manner via ligation of FcγRIIB. Nat Commun 2024; 15:5280. [PMID: 38902261 PMCID: PMC11190225 DOI: 10.1038/s41467-024-49475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
The regulatory circuits dictating CD8+ T cell responsiveness versus exhaustion during anti-tumor immunity are incompletely understood. Here we report that tumor-infiltrating antigen-specific PD-1+ TCF-1- CD8+ T cells express the immunosuppressive cytokine Fgl2. Conditional deletion of Fgl2 specifically in mouse antigen-specific CD8+ T cells prolongs CD8+ T cell persistence, suppresses phenotypic and transcriptomic signatures of T cell exhaustion, and improves control of the tumor. In a mouse model of chronic viral infection, PD-1+ CD8+ T cell-derived Fgl2 also negatively regulates virus-specific T cell responses. In humans, CD8+ T cell-derived Fgl2 is associated with poorer survival in patients with melanoma. Mechanistically, the dampened responsiveness of WT Fgl2-expressing CD8+ T cells, when compared to Fgl2-deficient CD8+ T cells, is underpinned by the cell-intrinsic interaction of Fgl2 with CD8+ T cell-expressed FcγRIIB and concomitant caspase 3/7-mediated apoptosis. Our results thus illuminate a cell-autonomous regulatory axis by which PD-1+ CD8+ T cells both express the receptor and secrete its ligand in order to mediate suppression of anti-tumor and anti-viral immunity.
Collapse
Affiliation(s)
- Kelsey B Bennion
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Emory Winship Cancer Institute, Atlanta, GA, USA
- Cancer Biology PhD Program, Emory University, Atlanta, GA, USA
| | - Danya Liu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdelhameed S Dawood
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan M Wyatt
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Emory Winship Cancer Institute, Atlanta, GA, USA
- Cancer Biology PhD Program, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katie L Alexander
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis PhD Program, Emory University, Atlanta, GA, USA
| | - Mohamed S Abdel-Hakeem
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Chrystal M Paulos
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Emory Winship Cancer Institute, Atlanta, GA, USA
- Cancer Biology PhD Program, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Winship Cancer Institute, Atlanta, GA, USA.
- Cancer Biology PhD Program, Emory University, Atlanta, GA, USA.
- Immunology and Molecular Pathogenesis PhD Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Tang Y, Wei J, Ge X, Yu C, Lu W, Qian Y, Yang H, Fu D, Fang Y, Zhou X, Wang Z, Xiao Q, Ding K. Intratumoral injection of interferon gamma promotes the efficacy of anti-PD1 treatment in colorectal cancer. Cancer Lett 2024; 588:216798. [PMID: 38467181 DOI: 10.1016/j.canlet.2024.216798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer new options for the treatment of patients with solid cancers worldwide. The majority of colorectal cancers (CRC) are proficient in mismatch-repair (pMMR) genes, harboring fewer tumor antigens and are insensitive to ICIs. These tumors are often found to be immune-deserted. We hypothesized that forcing immune cell infiltration into the tumor microenvironment followed by immune ignition by PD1 blockade may initiate a positive immune cycle that can boost antitumor immunity. Bioinformatics using a public database suggested that IFNγ was a key indicator of immune status and prognosis in CRC. Intratumoral administration of IFNγ increased immune cells infiltration into the tumor, but induced PD-L1 expression. A combined treatment strategy using IFNγ and anti-PD-1 antibody significantly increased T cell killing of tumor cells in vitro and showed synergistic inhibition of tumor growth in a mouse model of CRC. CyTOF found drastic changes in the immune microenvironment upon combined immunotherapy. Treatment with IFNγ and anti-PD1 antibody in CT26 tumors significantly increased infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). IFNγ had a more pronounced effect in decreasing intratumoral M2-like macrophages, while PD1 blockade increased the population of CD8+Ly6C + T cells in the tumor microenvironment, creating a more pro-inflammatory microenvironment. Additionally, PD1 induced increased expression of lymphocyte activating 3 (LAG3) in a significant fraction of CD8+ T cells and Treg cells, indicating potential drug resistance and feedback mechanisms. In conclusion, our work provides preclinical data for the Combined immunotherapy of CRC using intratumoral delivery of IFNγ and systemic anti-PD1 monoclonoal antibody.
Collapse
Affiliation(s)
- Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Xiaoxu Ge
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Hang Yang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Xinyi Zhou
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Zhanhuai Wang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China.
| |
Collapse
|
11
|
Xiong D, Yin Z, Huang M, Wang Y, Hardy M, Kalyanaraman B, Wong ST, You M. Mitochondria-targeted atovaquone promotes anti-lung cancer immunity by reshaping tumor microenvironment and enhancing energy metabolism of anti-tumor immune cells. Cancer Commun (Lond) 2024; 44:448-452. [PMID: 37930151 PMCID: PMC10958673 DOI: 10.1002/cac2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Donghai Xiong
- Center for Cancer PreventionHouston Methodist Neal Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| | - Zheng Yin
- Department of Systems Medicine and BioengineeringHouston Methodist Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| | - Mofei Huang
- Center for Cancer PreventionHouston Methodist Neal Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| | - Yian Wang
- Center for Cancer PreventionHouston Methodist Neal Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| | - Micael Hardy
- Aix Marseille UnivCentre National de la Recherche Scientifique (CNRS)Institut de Chimie Radicalaire (ICR)Unité Mixte de Recherche (UMR) 7273MarseilleFrance
| | | | - Stephen T Wong
- Department of Systems Medicine and BioengineeringHouston Methodist Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| | - Ming You
- Center for Cancer PreventionHouston Methodist Neal Cancer CenterHouston Methodist HospitalWeill Cornell MedicineHoustonTexasUSA
| |
Collapse
|
12
|
Gershoni A, Hassin O, Nataraj NB, Baruch S, Avioz‐Seligman A, Pirona AC, Fellus‐Alyagor L, Meir Salame T, Mukherjee S, Mallel G, Yarden Y, Aylon Y, Oren M. TAZ facilitates breast tumor growth by promoting an immune-suppressive tumor microenvironment. Mol Oncol 2023; 17:2675-2693. [PMID: 37716913 PMCID: PMC10701768 DOI: 10.1002/1878-0261.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
The core Hippo pathway module consists of a tumour-suppressive kinase cascade that inhibits the transcriptional coactivators Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1; also known as TAZ). When the Hippo pathway is downregulated, as often occurs in breast cancer, YAP/TAZ activity is induced. To elaborate the roles of TAZ in triple-negative breast cancer (TNBC), we depleted Taz in murine TNBC 4T1 cells, using either CRISPR/Cas9 or small hairpin RNA (shRNA). TAZ-depleted cells and their controls, harbouring wild-type levels of TAZ, were orthotopically injected into the mammary fat pads of syngeneic BALB/c female mice, and mice were monitored for tumour growth. TAZ depletion resulted in smaller tumours compared to the tumours generated by control cells, in line with the notion that TAZ functions as an oncogene in breast cancer. Tumours, as well as their corresponding in vitro cultured cells, were then subjected to gene expression profiling by RNA sequencing (RNA-seq). Interestingly, pathway analysis of the RNA-seq data indicated a TAZ-dependent enrichment of 'Inflammatory Response', a pathway correlated with TAZ expression levels also in human breast cancer tumours. Specifically, the RNA-seq analysis predicted a significant depletion of regulatory T cells (Tregs) in TAZ-deficient tumours, which was experimentally validated by the staining of tumour sections and by quantitative cytometry by time of flight (CyTOF). Strikingly, the differences in tumour size were completely abolished in immune-deficient mice, demonstrating that the immune-modulatory capacity of TAZ is critical for its oncogenic activity in this setting. Cytokine array analysis of conditioned medium from cultured cells revealed that TAZ increased the abundance of a small group of cytokines, including plasminogen activator inhibitor 1 (Serpin E1; also known as PAI-1), CCN family member 4 (CCN4; also known as WISP-1) and interleukin-23 (IL-23), suggesting a potential mechanistic explanation for its in vivo immunomodulatory effect. Together, our results imply that TAZ functions in a non-cell-autonomous manner to modify the tumour immune microenvironment and dampen the anti-tumour immune response, thereby facilitating tumour growth.
Collapse
Affiliation(s)
- Anat Gershoni
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Ori Hassin
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Sivan Baruch
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Adi Avioz‐Seligman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Anna Chiara Pirona
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus‐Alyagor
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Tomer Meir Salame
- Flow Cytometry Unit, Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Giuseppe Mallel
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Yael Aylon
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Moshe Oren
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
13
|
Bonté PE, Metoikidou C, Heurtebise-Chretien S, Arribas YA, Sutra Del Galy A, Ye M, Niborski LL, Zueva E, Piaggio E, Seguin-Givelet A, Girard N, Alanio C, Burbage M, Goudot C, Amigorena S. Selective control of transposable element expression during T cell exhaustion and anti-PD-1 treatment. Sci Immunol 2023; 8:eadf8838. [PMID: 37889984 DOI: 10.1126/sciimmunol.adf8838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/01/2023] [Indexed: 10/29/2023]
Abstract
In chronic infections and cancer, T cells are exposed to prolonged antigen stimulation, resulting in loss of function (or exhaustion) and impairment of effective immunological protection. Exhausted T cells are heterogeneous and include early progenitors (Tpex) and terminally exhausted cells (Tex). Here, we used bulk and single-cell transcriptomics to analyze expression of transposable elements (TEs) in subpopulations of mouse and human CD8+ tumor-infiltrating T lymphocytes (TILs). We show that in mice, members of the virus-like murine VL30 TE family (mostly intact, evolutionary young ERV1s) are strongly repressed in terminally exhausted CD8+ T cells in both tumor and viral models of exhaustion. Tpex expression of these VL30s, which are mainly intergenic and transcribed independently of their closest gene neighbors, was driven by Fli1, a transcription factor involved in progression from Tpex to Tex. Immune checkpoint blockade (ICB) in both mice and patients with cancer increased TE expression (including VL30 in mice), demonstrating that TEs may be applicable as ICB response biomarkers. We conclude that expression of TEs is tightly regulated in TILs during establishment of exhaustion and reprogramming by ICB. Analyses of TE expression on single cells and bulk populations open opportunities for understanding immune cell identity and heterogeneity, as well as for defining cellular gene expression signatures and disease biomarkers.
Collapse
Affiliation(s)
- Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Yago A Arribas
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Mengliang Ye
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Elina Zueva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Eliane Piaggio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Nicolas Girard
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Institut Curie, Institut du Thorax Curie Montsouris, Paris 75005, France
- Paris Saclay, UVSQ, UFR Simmone Veil, Versailles 78000, France
| | - Cécile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Marianne Burbage
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| |
Collapse
|
14
|
Lee SB, Pan J, Xiong D, Palen K, Johnson B, Lubet RA, Shoemaker RH, Green JE, Fernando RI, Sei S, You M, Wang Y. Striking efficacy of a vaccine targeting TOP2A for triple-negative breast cancer immunoprevention. NPJ Precis Oncol 2023; 7:108. [PMID: 37880313 PMCID: PMC10600249 DOI: 10.1038/s41698-023-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has a poor prognosis. TOP2A is a key enzyme in DNA replication and is a therapeutic target for breast and other cancers. TOP2A-specific Th1-promoting epitopes with optimal binding affinity to MHC II were identified using a combined scoring system. The multi-peptide TOP2A vaccine elicited a robust immunologic response in immunized mice, as demonstrated by the significant production of Th1 cytokines from immunized animals' splenocytes stimulated in vitro with TOP2A peptides. Anti-tumor efficacy of the TOP2A vaccine was demonstrated in a syngeneic TNBC mouse model, in which pre-graft preventive vaccination was associated with significantly decreased tumor growth as compared to adjuvant control. In a genetically engineered mouse (GEM) model of TNBC, vaccinated animals demonstrated a significant reduction in tumor incidence and average tumor volume compared to adjuvant control. Finally, we examined TCR sequences in CD4 tumor Infiltrating lymphocytes (TIL) from vaccinated mice and found that the TIL contained TCR sequences specific to the three vaccine peptides. These data indicate that our newly developed multi-peptide TOP2A vaccine is highly immunogenic, elicits TILs with vaccine specific TCRs, and is highly effective in preventing and intercepting TNBC development and progression in vivo.
Collapse
Affiliation(s)
- Sang Beom Lee
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Katie Palen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryon Johnson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey E Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Romaine Ingrid Fernando
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Leung CON, Yang Y, Leung RWH, So KKH, Guo HJ, Lei MML, Muliawan GK, Gao Y, Yu QQ, Yun JP, Ma S, Zhao Q, Lee TKW. Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resistance in hepatocellular carcinoma. Nat Commun 2023; 14:6699. [PMID: 37872167 PMCID: PMC10593849 DOI: 10.1038/s41467-023-42360-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Increasing evidence has demonstrated that drug resistance can be acquired in cancer cells by kinase rewiring, which is an obstacle for efficient cancer therapy. However, it is technically challenging to measure the expression of protein kinases on large scale due to their dynamic range in human proteome. We employ a lysine-targeted sulfonyl fluoride probe, named XO44, which binds to 133 endogenous kinases in intact lenvatinib-resistant hepatocellular carcinoma (HCC) cells. This analysis reveals cyclin-dependent kinase 6 (CDK6) upregulation, which is mediated by ERK/YAP1 signaling cascade. Functional analyses show that CDK6 is crucial in regulation of acquired lenvatinib resistance in HCC via augmentation of liver cancer stem cells with clinical significance. We identify a noncanonical pathway of CDK6 in which it binds and regulates the activity of GSK3β, leading to activation of Wnt/β-catenin signaling. Consistently, CDK6 inhibition by palbociclib or degradation by proteolysis targeting chimeras (PROTACs) is highly synergistic with lenvatinib in vitro. Interestingly, palbociclib not only exerts maximal growth suppressive effect with lenvatinib in lenvatinib-resistant HCC models but also reshapes the tumor immune microenvironment. Together, we unveil CDK6 as a druggable target in lenvatinib-resistant HCC and highlight the use of a chemical biology approach to understand nongenetic resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hai Jun Guo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gregory Kenneth Muliawan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'An, China
| | - Qian Qian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Qian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Tillé L, Cropp D, Charmoy M, Reichenbach P, Andreatta M, Wyss T, Bodley G, Crespo I, Nassiri S, Lourenco J, Leblond MM, Lopez-Rodriguez C, Speiser DE, Coukos G, Irving M, Carmona SJ, Held W, Verdeil G. Activation of the transcription factor NFAT5 in the tumor microenvironment enforces CD8 + T cell exhaustion. Nat Immunol 2023; 24:1645-1653. [PMID: 37709986 DOI: 10.1038/s41590-023-01614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Persistent exposure to antigen during chronic infection or cancer renders T cells dysfunctional. The molecular mechanisms regulating this state of exhaustion are thought to be common in infection and cancer, despite obvious differences in their microenvironments. Here we found that NFAT5, an NFAT family transcription factor that lacks an AP-1 docking site, was highly expressed in exhausted CD8+ T cells in the context of chronic infections and tumors but was selectively required in tumor-induced CD8+ T cell exhaustion. Overexpression of NFAT5 in CD8+ T cells reduced tumor control, while deletion of NFAT5 improved tumor control by promoting the accumulation of tumor-specific CD8+ T cells that had reduced expression of the exhaustion-associated proteins TOX and PD-1 and produced more cytokines, such as IFNɣ and TNF, than cells with wild-type levels of NFAT5, specifically in the precursor exhausted PD-1+TCF1+TIM-3-CD8+ T cell population. NFAT5 did not promote T cell exhaustion during chronic infection with clone 13 of lymphocytic choriomeningitis virus. Expression of NFAT5 was induced by TCR triggering, but its transcriptional activity was specific to the tumor microenvironment and required hyperosmolarity. Thus, NFAT5 promoted the exhaustion of CD8+ T cells in a tumor-selective fashion.
Collapse
Affiliation(s)
- Laure Tillé
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Daniela Cropp
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mélanie Charmoy
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Massimo Andreatta
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tania Wyss
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabrielle Bodley
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Isaac Crespo
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sina Nassiri
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joao Lourenco
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marine M Leblond
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Cristina Lopez-Rodriguez
- Immunology Unit, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel E Speiser
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Santiago J Carmona
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Werner Held
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Grégory Verdeil
- Department of Oncology, UNIL CHUV, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
Wang Z, Ahmed S, Labib M, Wang H, Wu L, Bavaghar-Zaeimi F, Shokri N, Blanco S, Karim S, Czarnecka-Kujawa K, Sargent EH, McGray AJR, de Perrot M, Kelley SO. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat Biomed Eng 2023; 7:1188-1203. [PMID: 37037966 DOI: 10.1038/s41551-023-01023-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nastaran Shokri
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Soraly Blanco
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kasia Czarnecka-Kujawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - A J Robert McGray
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Le Moine M, Azouz A, Sanchez Sanchez G, Dejolier S, Nguyen M, Thomas S, Shala V, Dreidi H, Denanglaire S, Libert F, Vermijlen D, Andris F, Goriely S. Homeostatic PD-1 signaling restrains EOMES-dependent oligoclonal expansion of liver-resident CD8 T cells. Cell Rep 2023; 42:112876. [PMID: 37543948 DOI: 10.1016/j.celrep.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The co-inhibitory programmed death (PD)-1 signaling pathway plays a major role in the context of tumor-specific T cell responses. Conversely, it also contributes to the maintenance of peripheral tolerance, as patients receiving anti-PD-1 treatment are prone to developing immune-related adverse events. Yet, the physiological role of the PD-1/PDL-1 axis in T cell homeostasis is still poorly understood. Herein, we show that under steady-state conditions, the absence of PD-1 signaling led to a preferential expansion of CD8+ T cells in the liver. These cells exhibit an oligoclonal T cell receptor (TCR) repertoire and a terminally differentiated exhaustion profile. The transcription factor EOMES is required for the clonal expansion and acquisition of this differentiation program. Finally, single-cell transcriptomics coupled with TCR repertoire analysis support the notion that these cells arise locally from liver-resident memory CD8+ T cells. Overall, we show a role for PD-1 signaling in liver memory T cell homeostasis.
Collapse
Affiliation(s)
- Marie Le Moine
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium
| | - Solange Dejolier
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Valdrin Shala
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Hacene Dreidi
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sébastien Denanglaire
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM) and Brightcore, ULB, Brussels, Belgium
| | - David Vermijlen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Andris
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
19
|
Corria-Osorio J, Carmona SJ, Stefanidis E, Andreatta M, Ortiz-Miranda Y, Muller T, Rota IA, Crespo I, Seijo B, Castro W, Jimenez-Luna C, Scarpellino L, Ronet C, Spill A, Lanitis E, Romero P, Luther SA, Irving M, Coukos G. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8 + T cells. Nat Immunol 2023; 24:869-883. [PMID: 37081150 PMCID: PMC10154250 DOI: 10.1038/s41590-023-01477-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8+ tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rβγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions. These cells successfully overcame homeostatic barriers in the host and led-in the absence of lymphodepletion or exogenous cytokine support-to high levels of engraftment and tumor regression. Our work unlocks a new opportunity of rationally engineering synthetic CD8+ T-cell states endowed with the ability to avoid exhaustion and control advanced solid tumors.
Collapse
Affiliation(s)
- Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Evangelos Stefanidis
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Massimo Andreatta
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Yaquelin Ortiz-Miranda
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Tania Muller
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Ioanna A Rota
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Cristina Jimenez-Luna
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | | | - Catherine Ronet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Aodrenn Spill
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
20
|
Pan J, Xiong D, Zhang Q, Palen K, Shoemaker RH, Johnson B, Sei S, Wang Y, You M. Precision immunointerception of EGFR-driven tumorigenesis for lung cancer prevention. Front Immunol 2023; 14:1036563. [PMID: 36875137 PMCID: PMC9982083 DOI: 10.3389/fimmu.2023.1036563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in about 50% of lung adenocarcinomas in Asia and about 15% in the US. EGFR mutation-specific inhibitors have been developed and made significant contributions to controlling EGFR mutated non-small cell lung cancer. However, resistance frequently develops within 1 to 2 years due to acquired mutations. No effective approaches that target mutant EGFR have been developed to treat relapse following tyrosine kinase inhibitor (TKI) treatment. Vaccination against mutant EGFR is one area of active exploration. In this study, we identified immunogenic epitopes for the common EGFR mutations in humans and formulated a multi-peptide vaccine (Emut Vax) targeting the EGFR L858R, T790M, and Del19 mutations. The efficacy of the Emut Vax was evaluated in both syngeneic and genetic engineered EGFR mutation-driven murine lung tumor models with prophylactic settings, where the vaccinations were given before the onset of the tumor induction. The multi-peptide Emut Vax effectively prevented the onset of EGFR mutation-driven lung tumorigenesis in both syngeneic and genetically engineered mouse models (GEMMs). Flow cytometry and single-cell RNA sequencing were conducted to investigate the impact of Emut Vax on immune modulation. Emut Vax significantly enhanced Th1 responses in the tumor microenvironment and decreased suppressive Tregs to enhance anti-tumor efficacy. Our results show that multi-peptide Emut Vax is effective in preventing common EGFR mutation-driven lung tumorigenesis, and the vaccine elicits broad immune responses that are not limited to anti-tumor Th1 response.
Collapse
Affiliation(s)
- Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qi Zhang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie Palen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Bryon Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Nah J, Seong RH. Krüppel-like factor 4 regulates the cytolytic effector function of exhausted CD8 T cells. SCIENCE ADVANCES 2022; 8:eadc9346. [PMID: 36427304 PMCID: PMC9699681 DOI: 10.1126/sciadv.adc9346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Exhausted CD8 T cells during chronic inflammatory responses against viral infections and cancer are phenotypically and functionally heterogeneous. In particular, CD8 T cells with cytolytic effector function have been recently identified among the exhausted CD8 T cell subsets. However, the regulation of their differentiation and function remains largely unknown. Here, we report that Krüppel-like factor 4 (KLF4) is a critical regulator of the exhaustion process, promoting the cytolytic effector function of exhausted CD8 T cells. KLF4-expressing CD8 T cells in exhaustion contexts showed the features of transitory effector CD8 T cells. Enforced KLF4 expression increased CD8 T cell differentiation into transitory effector subsets and enhanced their antitumor immunity. We further demonstrated that KLF4 also showed a capacity of reinvigorating exhausted CD8 T cells. Last, high KLF4 expression was positively correlated with a favorable prognosis in human patients with cancer. Our study highlights the potential impacts of KLF4 on CD8 T cell exhaustion and antitumor immune therapy.
Collapse
|
22
|
Bilous M, Tran L, Cianciaruso C, Gabriel A, Michel H, Carmona SJ, Pittet MJ, Gfeller D. Metacells untangle large and complex single-cell transcriptome networks. BMC Bioinformatics 2022; 23:336. [PMID: 35963997 PMCID: PMC9375201 DOI: 10.1186/s12859-022-04861-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) technologies offer unique opportunities for exploring heterogeneous cell populations. However, in-depth single-cell transcriptomic characterization of complex tissues often requires profiling tens to hundreds of thousands of cells. Such large numbers of cells represent an important hurdle for downstream analyses, interpretation and visualization. RESULTS We develop a framework called SuperCell to merge highly similar cells into metacells and perform standard scRNA-seq data analyses at the metacell level. Our systematic benchmarking demonstrates that metacells not only preserve but often improve the results of downstream analyses including visualization, clustering, differential expression, cell type annotation, gene correlation, imputation, RNA velocity and data integration. By capitalizing on the redundancy inherent to scRNA-seq data, metacells significantly facilitate and accelerate the construction and interpretation of single-cell atlases, as demonstrated by the integration of 1.46 million cells from COVID-19 patients in less than two hours on a standard desktop. CONCLUSIONS SuperCell is a framework to build and analyze metacells in a way that efficiently preserves the results of scRNA-seq data analyses while significantly accelerating and facilitating them.
Collapse
Affiliation(s)
- Mariia Bilous
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Loc Tran
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Chiara Cianciaruso
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Aurélie Gabriel
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Hugo Michel
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Santiago J Carmona
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
23
|
Zhu J, Yan M, Yan H, Xu L, Jiang Z, Liao G, Zhou Y, Liu W, Liang X, Li X, Xiao Y, Zhang Y. Single-Cell Transcriptomic Analysis Reveals the Crosstalk Propensity Between the Tumor Intermediate State and the CD8+ T Exhausted State to be Associated with Clinical Benefits in Melanoma. Front Immunol 2022; 13:766852. [PMID: 35903095 PMCID: PMC9314667 DOI: 10.3389/fimmu.2022.766852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous crosstalk between tumor cells and CD8+ T cells leads to substantial variation in clinical benefits from immunotherapy in melanoma. Due to spatial distribution and functional state heterogeneity, it is still unknown whether there is a crosstalk propensity between tumor cells and CD8+ T cells in melanoma, and how this crosstalk propensity affects the clinical outcome of patients. Using public single-cell transcriptome data, extensive heterogeneous functional states and ligand–receptor interactions of tumor cells and CD8+ T cells were revealed in melanoma. Furthermore, based on the association between cell–cell communication intensity and cell state activity in a single cell, we identified a crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state. This crosstalk propensity was further verified by pseudo-spatial proximity, spatial co-location, and the intra/intercellular signal transduction network. At the sample level, the tumor intermediate state and the CD8+ T exhausted state synergistically indicated better prognosis and both reduced in immunotherapy-resistant samples. The risk groups defined based on these two cell states could comprehensively reflect tumor genomic mutations and anti-tumor immunity information. The low-risk group had a higher BRAF mutation fraction as well as stronger antitumor immune response. Our findings highlighted the crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state, which may serve as a reference to guide the development of diagnostic biomarkers for risk stratification and therapeutic targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoteng Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zedong Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| |
Collapse
|
24
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
26
|
Xiao M, Xie L, Cao G, Lei S, Wang P, Wei Z, Luo Y, Fang J, Yang X, Huang Q, Xu L, Guo J, Wen S, Wang Z, Wu Q, Tang J, Wang L, Chen X, Chen C, Zhang Y, Yao W, Ye J, He R, Huang J, Ye L. CD4 + T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004022. [PMID: 35580929 PMCID: PMC9114852 DOI: 10.1136/jitc-2021-004022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Antitumor therapeutic vaccines are generally based on antigenic epitopes presented by major histocompatibility complex (MHC-I) molecules to induce tumor-specific CD8+ T cells. Paradoxically, continuous T cell receptor (TCR) stimulation from tumor-derived CD8+ T-cell epitopes can drive the functional exhaustion of tumor-specific CD8+ T cells. Tumor-specific type-I helper CD4+ T (TH1) cells play an important role in the population maintenance and cytotoxic function of exhausted tumor-specific CD8+ T cells in the tumor microenvironment. Nonetheless, whether the vaccination strategy targeting MHC-II-restricted CD4+ T-cell epitopes to induce tumor-specific TH1 responses can confer effective antitumor immunity to restrain tumor growth is not well studied. Here, we developed a heterologous prime-boost vaccination strategy to effectively induce tumor-specific TH1 cells and evaluated its antitumor efficacy and its capacity to potentiate PD-1/PD-L1 immunotherapy. METHODS Listeria monocytogenes vector and influenza A virus (PR8 strain) vector stably expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein-specific I-Ab-restricted CD4+ T cell epitope (GP61-80) or ovalbumin-specific CD4+ T cell epitope (OVA323-339) were constructed and evaluated their efficacy against mouse models of melanoma and colorectal adenocarcinoma expressing lymphocytic choriomeningitis virus glycoprotein and ovalbumin. The impact of CD4+ T cell epitope-based heterologous prime-boost vaccination was detected by flow-cytometer, single-cell RNA sequencing and single-cell TCR sequencing. RESULTS CD4+ T cell epitope-based heterologous prime-boost vaccination efficiently suppressed both mouse melanoma and colorectal adenocarcinoma. This vaccination primarily induced tumor-specific TH1 response, which in turn enhanced the expansion, effector function and clonal breadth of tumor-specific CD8+ T cells. Furthermore, this vaccination strategy synergized PD-L1 blockade mediated tumor suppression. Notably, prime-boost vaccination extended the duration of PD-L1 blockade induced antitumor effects by preventing the re-exhaustion of tumor-specific CD8+ T cells. CONCLUSION CD4+ T cell epitope-based heterologous prime-boost vaccination elicited potent both tumor-specific TH1 and CTL response, leading to the efficient tumor control. This strategy can also potentiate PD-1/PD-L1 immune checkpoint blockade (ICB) against cancer.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China.,Department of Dermatology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Luoyingzi Xie
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Shun Lei
- Institute of Immunology, Third Military Medical University, Chongqing, China.,Department of Aviation Physiology Training, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Pengcheng Wang
- Key Laboratory of Nephrology, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, Jiangsu, China
| | - Zhengping Wei
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuan Luo
- Department of Immunology, Huazhong University of Science and Technology Tongji Medical College School of Basic Medicine, Wuhan, Hubei, China
| | - Jingyi Fang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xingxing Yang
- Institute of Cancer, Third Military Medical University Second Affiliated Hospital, Chongqing, China
| | - Qizhao Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Junyi Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuqiong Wen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiming Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qing Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yanyan Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wei Yao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ran He
- Department of Immunology, Huazhong University of Science and Technology Tongji Medical College School of Basic Medicine, Wuhan, Hubei, China
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Toma G, Lemnian IM, Karapetian E, Grosse I, Seliger B. Transcriptional Analysis of Total CD8 + T Cells and CD8 +CD45RA - Memory T Cells From Young and Old Healthy Blood Donors. Front Immunol 2022; 13:806906. [PMID: 35154123 PMCID: PMC8829550 DOI: 10.3389/fimmu.2022.806906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Memory CD8+ T cells accumulate with aging, while the naïve T cell compartment decreases, leading to an increased susceptibility to infections and a decreased vaccine efficiency. To get deeper insights into the underlying mechanisms, this study aims to determine the age-dependent expression profile of total versus memory CD8+ T cells from young and old donors. Total CD8+ and CD8+CD45RA- memory T cells isolated from young (<30 years) and old (>60 years) donors were stimulated with anti-CD3 and anti-CD28 antibodies for 48h before analyzing the cytokine secretion and activation markers by flow cytometry and changes in the expression profiles using RNA sequencing. Gene ontology (GO) term enrichment analyses were performed for up-regulated and uniquely expressed transcripts identified in the T cell populations of both age groups. Total and memory CD8+ T cells from old donors expressed significantly higher CD25 levels and have an increased cytokine secretion. While approximately 1,500 up-regulated transcripts were identified in all groups, CD8+CD45RA- memory T cells of old donors had approximately 500 more uniquely expressed transcripts. Four GO terms related to the JAK-STAT pathway were identified for up-regulated transcripts in the total CD8+ T cells of old donors, whereas CD8+CD45RA- memory T cells GO terms related to adjacent pathways, like JNK and MAPK/ERK, were found. Additionally, the unique transcripts of CD8+CD45RA- memory T cells of old donors were related to the JNK, MAPK and IL-12 pathways. For both T cell populations of the old donors, cytokine and JAK-STAT pathway transcripts were up-regulated. Thus, an age-dependent effect was observed on the transcriptomes of total and memory CD8+ T cells. The CD8+ CD45RA- memory T cells from old donors maintained the increased cytokine secretion of the total CD8+ T cell population and the increased JAK-STAT pathway transcripts, which have an impact on inflammation and senescence.
Collapse
Affiliation(s)
- Georgiana Toma
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ioana Maria Lemnian
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Institute for Human Genetics, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Eliza Karapetian
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ivo Grosse
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Department for Therapeutics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
28
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
29
|
Bai Y, Hu M, Chen Z, Wei J, Du H. Single-Cell Transcriptome Analysis Reveals RGS1 as a New Marker and Promoting Factor for T-Cell Exhaustion in Multiple Cancers. Front Immunol 2021; 12:767070. [PMID: 34956194 PMCID: PMC8692249 DOI: 10.3389/fimmu.2021.767070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in which Pre_exhaust and exhausted T cells participated in negative regulation of immune system process. By analyzing the coexpression network patterns and differentially expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35 genes related to T-cell exhaustion, whose high GSVA scores were associated with significantly poor prognosis in various cancers. In the differentially expressed genes, RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three cancers compared with effector T cells, and high expression of RGS1 was also associated with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1 displayed positive correlation with the 35 genes, especially highly correlated with PDCD1, CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide theoretical basis for research and immunotherapy of exhausted cells.
Collapse
Affiliation(s)
- Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital, Shenzhen, China
| | - Meiling Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Liu Y, Debo B, Li M, Shi Z, Sheng W, Shi Y. LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun 2021; 12:6831. [PMID: 34819502 PMCID: PMC8613218 DOI: 10.1038/s41467-021-27179-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Exhausted CD8+ T cells are key targets of immune checkpoint blockade therapy and their ineffective reinvigoration limits the durable benefit in some cancer patients. Here, we demonstrate that histone demethylase LSD1 acts to enforce an epigenetic program in progenitor exhausted CD8+ T cells to antagonize the TCF1-mediated progenitor maintenance and to promote terminal differentiation. Consequently, genetic perturbation or small molecules targeting LSD1 increases the persistence of the progenitor exhausted CD8+ T cells, which provide a sustained source for the proliferative conversion to numerically larger terminally exhausted T cells with tumor-killing cytotoxicity, thereby leading to effective and durable responses to anti-PD1 therapy. Collectively, our findings provide important insights into epigenetic mechanisms that regulate T cell exhaustion and have important implications for durable immunotherapy.
Collapse
Affiliation(s)
- Yi Liu
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Brian Debo
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.4991.50000 0004 1936 8948Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ UK
| | - Mingfeng Li
- grid.47100.320000000419368710Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA
| | - Zhennan Shi
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wanqiang Sheng
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
31
|
Zhang C, Lei L, Yang X, Ma K, Zheng H, Su Y, Jiao A, Wang X, Liu H, Zou Y, Shi L, Zhou X, Sun C, Hou Y, Xiao Z, Zhang L, Zhang B. Single-cell sequencing reveals antitumor characteristics of intratumoral immune cells in old mice. J Immunother Cancer 2021; 9:jitc-2021-002809. [PMID: 34642245 PMCID: PMC8513495 DOI: 10.1136/jitc-2021-002809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Aging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations. Methods We revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice. Results We found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a ‘progenitor’ and less ‘terminally’ exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice. Conclusions Our data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Kaili Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhengtao Xiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China .,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
32
|
Madhok A, Bhat SA, Philip CS, Sureshbabu SK, Chiplunkar S, Galande S. Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways. Front Immunol 2021; 12:660361. [PMID: 34526984 PMCID: PMC8435775 DOI: 10.3389/fimmu.2021.660361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.
Collapse
Affiliation(s)
- Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India
| | - Sajad Ahmad Bhat
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chinna Susan Philip
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
33
|
Zhang Q, Pan J, Xiong D, Wang Y, Miller MS, Sei S, Shoemaker RH, Izzotti A, You M. Pulmonary Aerosol Delivery of Let-7b microRNA Confers a Striking Inhibitory Effect on Lung Carcinogenesis through Targeting the Tumor Immune Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100629. [PMID: 34236760 PMCID: PMC8425922 DOI: 10.1002/advs.202100629] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/02/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs are potential candidates for lung cancer prevention and therapy. A major limitation is the lack of an efficient delivery system to directly deliver miRNA to cancer cells while limiting systemic exposure. The delivery of miRNA via inhalation is a potential strategy for lung cancer prevention in high-risk individuals. In this study, the authors investigate the efficacy of aerosolized let-7b miRNA treatment in lung cancer prevention. Let-7b shows significant inhibition of B[a]P-induced lung adenoma with no detectable side effects. Single-cell RNA sequencing of tumor-infiltrating T cells from primary tumors reveals that Let-7b post-transcriptionally suppresses PD-L1 and PD-1 expression in the tumor microenvironment, suggesting that let-7b miRNAs may promote antitumor immunity in vivo. Let-7b treatment decreases the expression of PD-1 in CD8+ T cells and reduces PD-L1 expression in lung tumor cells. The results suggest that this aerosolized let-7b mimic is a promising approach for lung cancer prevention, and that the in vivo tumor inhibitory effects of let-7b are mediated, at least in part, by immune-promoting effects via downregulating PD-L1 in tumors and/or PD-1 on CD8+ T cells. These changes potentiate antitumor CD8+ T cell immune responses, and ultimately lead to tumor inhibition.
Collapse
Affiliation(s)
- Qi Zhang
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWI53226USA
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWI53226USA
- Present address:
Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research InstituteHoustonTX 77030USA
| | - Jing Pan
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWI53226USA
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWI53226USA
- Present address:
Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research InstituteHoustonTX 77030USA
| | - Donghai Xiong
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWI53226USA
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWI53226USA
- Present address:
Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research InstituteHoustonTX 77030USA
| | - Yian Wang
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWI53226USA
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWI53226USA
- Present address:
Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research InstituteHoustonTX 77030USA
| | - Mark Steven Miller
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20892USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20892USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20892USA
| | - Alberto Izzotti
- Department of Experimental MedicineUniversity of GenoaGenoa16132Italy
- IRCCS Ospedale Policlinico San MartinoGenoa16132Italy
| | - Ming You
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWI53226USA
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWI53226USA
- Present address:
Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research InstituteHoustonTX 77030USA
| |
Collapse
|
34
|
Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Milenova I, Verhoeff J, Heiniö C, Zafar S, Garcia-Vallejo JJ, van Beusechem VW, de Gruijl TD, Kalervo A, Sorsa S, Kanerva A, Hemminki A. Adenovirus Armed With TNFa and IL2 Added to aPD-1 Regimen Mediates Antitumor Efficacy in Tumors Refractory to aPD-1. Front Immunol 2021; 12:706517. [PMID: 34367166 PMCID: PMC8343222 DOI: 10.3389/fimmu.2021.706517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Ioanna Milenova
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Orca Therapeutics, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Suvi Sorsa
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
35
|
Andreatta M, Carmona SJ. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data. Bioinformatics 2021; 37:882-884. [PMID: 32845323 PMCID: PMC8098019 DOI: 10.1093/bioinformatics/btaa755] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 12/03/2022] Open
Abstract
Summary STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations. Availability and implementation Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.
Collapse
Affiliation(s)
- Massimo Andreatta
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, CH-1066 Epalinges, Switzerland.,Department of Oncology, CHUV, UNIL CHUV, CH-1066 Epalinges, Lausanne, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, CH-1066 Epalinges, Switzerland.,Department of Oncology, CHUV, UNIL CHUV, CH-1066 Epalinges, Lausanne, Switzerland.,University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Andreatta M, Corria-Osorio J, Müller S, Cubas R, Coukos G, Carmona SJ. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun 2021; 12:2965. [PMID: 34017005 PMCID: PMC8137700 DOI: 10.1038/s41467-021-23324-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has revealed an unprecedented degree of immune cell diversity. However, consistent definition of cell subtypes and cell states across studies and diseases remains a major challenge. Here we generate reference T cell atlases for cancer and viral infection by multi-study integration, and develop ProjecTILs, an algorithm for reference atlas projection. In contrast to other methods, ProjecTILs allows not only accurate embedding of new scRNA-seq data into a reference without altering its structure, but also characterizing previously unknown cell states that "deviate" from the reference. ProjecTILs accurately predicts the effects of cell perturbations and identifies gene programs that are altered in different conditions and tissues. A meta-analysis of tumor-infiltrating T cells from several cohorts reveals a strong conservation of T cell subtypes between human and mouse, providing a consistent basis to describe T cell heterogeneity across studies, diseases, and species.
Collapse
Affiliation(s)
- Massimo Andreatta
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Sören Müller
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Rafael Cubas
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - George Coukos
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Santiago J Carmona
- Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
37
|
Woolaver RA, Wang X, Krinsky AL, Waschke BC, Chen SMY, Popolizio V, Nicklawsky AG, Gao D, Chen Z, Jimeno A, Wang XJ, Wang JH. Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts. J Immunother Cancer 2021; 9:jitc-2020-001615. [PMID: 33414263 PMCID: PMC7797305 DOI: 10.1136/jitc-2020-001615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Antitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences. Methods We developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes. Results We discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status. Conclusions We reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Rachel A Woolaver
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoguang Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexandra L Krinsky
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brittany C Waschke
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha M Y Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vince Popolizio
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew G Nicklawsky
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dexiang Gao
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhangguo Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio Jimeno
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jing Hong Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|