1
|
Luo J, Wang S, Yang Q, Fu Q, Zhu C, Li T, Yang S, Zhao Y, Guo R, Ben X, Zheng Y, Li S, Yang G, Zhang H, Xiao H, Jiang Z, Yan N, Kabelitz D, Sun G, Granot Z, Lu L, You F, Hao J, Yin Z. γδ T Cell-mediated Tumor Immunity is Tightly Regulated by STING and TGF-β Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404432. [PMID: 39573933 PMCID: PMC11727375 DOI: 10.1002/advs.202404432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Indexed: 01/14/2025]
Abstract
The STING pathway plays a critical role in tumor immunosurveillance. However, the precise mechanisms by which STING regulates gamma delta (γδ) T cell function during tumor progression remain unclear. Herein, we find that tumor-derived cyclic GMP-AMP (cGAMP) activates a distinct STING pathway by inducing TBK1-mediated phosphorylation of Eomes in γδ T cells during the early stage of tumor development is demonstrated. This activation leads to interferon-gamma (IFN-γ) production and consequent tumor surveillance. However, at advanced stages of tumor progression, the accumulation of immune-suppressive cytokine transforming growth factor-beta (TGF-β) downregulates STING levels, compromising the function of γδ T cells. Notably, the synergism between TGF-β inhibition and STING agonists effectively counteracts the immunosuppressive tumor microenvironment, thereby augmenting the antitumoral effects of γδ T cells. These findings present a novel mechanism involving STING-mediated IFN-γ production in γδ T cells and hold significant implications for the development of potent immunotherapeutic approaches against cancer.
Collapse
|
2
|
Lan J, Zeng R, Li Z, Yang X, Liu L, Chen L, Sun L, Shen Y, Zhang T, Ding Y. Biomimetic Nanomodulators With Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408511. [PMID: 39180264 DOI: 10.1002/adma.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Yang J, Zhang N, Luo T, Yang M, Shen W, Tan Z, Xia Y, Zhang L, Zhou X, Lei Q, Guo A. TCellSI: A novel method for T cell state assessment and its applications in immune environment prediction. IMETA 2024; 3:e231. [PMID: 39429885 PMCID: PMC11487559 DOI: 10.1002/imt2.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 10/22/2024]
Abstract
T cell is an indispensable component of the immune system and its multifaceted functions are shaped by the distinct T cell types and their various states. Although multiple computational models exist for predicting the abundance of diverse T cell types, tools for assessing their states to characterize their degree of resting, activation, and suppression are lacking. To address this gap, a robust and nuanced scoring tool called T cell state identifier (TCellSI) leveraging Mann-Whitney U statistics is established. The TCellSI methodology enables the evaluation of eight distinct T cell states-Quiescence, Regulating, Proliferation, Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion, and Senescence-from transcriptome data, providing T cell state scores (TCSS) for samples through specific marker gene sets and a compiled reference spectrum. Validated against sizeable pseudo-bulk and actual bulk RNA-seq data across a range of T cell types, TCellSI not only accurately characterizes T cell states but also surpasses existing well-discovered signatures in reflecting the nature of T cells. Significantly, the tool demonstrates predictive value in the immune environment, correlating T cell states with patient prognosis and responses to immunotherapy. For better utilization, the TCellSI is readily accessible through user-friendly R package and web server (https://guolab.wchscu.cn/TCellSI/). By offering insights into personalized cancer therapies, TCellSI has the potential to improve treatment outcomes and efficacy.
Collapse
Affiliation(s)
- Jing‐Min Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - Nan Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - Tao Luo
- BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina
| | - Mei Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wen‐Kang Shen
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhen‐Lin Tan
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yun Xia
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Libin Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Qian Lei
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| | - An‐Yuan Guo
- Department of Thoracic SurgeryWest China Biomedical Big Data Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Sheehy T, Kwiatkowski AJ, Arora K, Kimmel BR, Schulman JA, Gibson-Corley KN, Wilson JT. STING-Activating Polymer-Drug Conjugates for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:1765-1781. [PMID: 39345818 PMCID: PMC11428287 DOI: 10.1021/acscentsci.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
The stimulator of interferon genes (STING) pathway links innate and adaptive antitumor immunity and therefore plays an important role in cancer immune surveillance. This has prompted widespread development of STING agonists for cancer immunotherapy, but pharmacological barriers continue to limit the clinical impact of STING agonists and motivate the development of drug delivery systems to improve their efficacy and/or safety. We developed SAPCon, a STING-activating polymer-drug conjugate platform based on strain-promoted azide-alkyne cycloaddition of a novel dimeric amidobenzimidazole (diABZI) STING prodrug to hydrophilic poly(dimethylacrylamide-co-azido-ethylmethacrylate) polymer chains through a cathepsin B-responsive linker to increase circulation time and enable passive tumor accumulation. We found that intravenously administered SAPCon accumulated at tumor sites, where it was endocytosed by tumor-associated myeloid cells, resulting in increased STING activation in the tumor tissue. Consequently, SAPCon promoted an immunogenic tumor microenvironment characterized by increased frequency of activated macrophages and dendritic cells and improved infiltration of CD8+ T cells, resulting in inhibition of tumor growth, prolonged survival, and enhanced response to anti-PD-1 immune checkpoint blockade in orthotopic breast cancer models. Collectively, these studies position SAPCon as a modular and programmable platform for improving the efficacy of systemically administered STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Taylor
L. Sheehy
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Yang J, Luo Z, Ma J, Wang Y, Cheng N. A next-generation STING agonist MSA-2: From mechanism to application. J Control Release 2024; 371:273-287. [PMID: 38789087 DOI: 10.1016/j.jconrel.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.
Collapse
Affiliation(s)
- Junhan Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingyi Ma
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Chen D, Ren H, Zhao N, Hao J. Expression and prognostic value of DNA sensors in hepatocellular carcinoma. J Leukoc Biol 2023; 114:68-78. [PMID: 37171016 DOI: 10.1093/jleuko/qiad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
DNA sensor proteins play an important role in transducing DNA signals to induce immune responses that initiate inflammation or clear pathogens. It has been previously shown that several DNA sensors are involved in regulating tumor biology and/or cancer immunology. However, a systemic analysis of DNA sensor expression and its correlation with prognosis has not been conducted. Here, we analyzed messenger RNA expression and protein abundance in liver cancer databases and found that the genes of 5 DNA sensors (POLR3A, PRKDC, DHX9, cGAS, and MRE11) were consistently upregulated in tumor tissue. Moreover, the expression of these DNA sensor genes correlated with patient survival. Using a gene alterations analysis, we discovered that patients with genetically altered DNA sensors had significantly lower survival compared with an unaltered group. Furthermore, receiver-operating characteristic curves confirmed that the signatures of the 5 DNA sensors were independent prognostic factors in hepatocellular carcinoma. Tumor-infiltrating immune cell analysis revealed that expression of all 5 DNA sensors correlated with the amount of B cells, CD8 T cells, CD4 T cells, Tregs, DCs, Mϕs, and neutrophils. Surprisingly, 4 of the DNA sensors (POLR3A, PRKDC, DHX9, and MRE11) were inversely correlated with the amount of γδ T cells. Gene set enrichment analysis showed that all 5 DNA sensor genes were enriched for oxidative phosphorylation and xenobiotic metabolism. These results suggest that expression of these DNA sensors is associated with a unique immune profile and metabolic regulation in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Danchun Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 157 Baojian Road, Harbin 150076, Heilongjiang, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, Tianjin, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, 79 Kangning Road, Zhuhai 519000, Guangdong, China
- Fuda Cancer Hospital, Jinan University, 2 Tangdexi Road, Guangzhou 510399, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou 510632, Guangdong, China
| |
Collapse
|
7
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Huang S, Tan YQ, Zhou G. Aberrant Activation of the STING-TBK1 Pathway in γδ T Cells Regulates Immune Responses in Oral Lichen Planus. Biomedicines 2023; 11:biomedicines11030955. [PMID: 36979934 PMCID: PMC10046253 DOI: 10.3390/biomedicines11030955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease. Interferon (IFN)-γ has been suggested to be vital for the OLP immune responses. A prominent innate-like lymphocyte subset, γδ T cells, span the innate-adaptive continuum and exert immune effector functions by producing a wide spectrum of cytokines, including IFN-γ. The involvement and mechanisms of γδ T cells in the pathogenesis of OLP remain obscure. The expression of γδ T cells in lesion tissues and in the peripheral blood of OLP patients was determined via flow cytometry and immunohistochemistry, respectively. Human leukocyte antigen-DR (HLA-DR), cluster of differentiation (CD) 69, Toll-like receptors (TLRs), natural killer group 2, member D (NKG2D) and IFN-γ were detected in γδ T cells of OLP patients using flow cytometry. Additionally, the involvement of stimulator of the interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway in γδ T cells was evaluated by multi-color immunofluorescence. Western blotting was employed to investigate the regulatory mechanisms of γδ T cells in OLP. γδ T cells were significantly upregulated in the lesion tissues, whereas their peripheral counterparts were downregulated in OLP patients. Meanwhile, increased frequencies of local CD69+ and NKG2D+ γδ T cells and peripheral HLA-DR+ and TLR4+ γδ T cells were detected in OLP. Furthermore, significant co-localization of STING and TBK1 was observed in the γδ T cells of OLP lesions. In addition, enhanced IFN-γ and interleukin (IL)-17A were positively associated with the activated STING-TBK1 pathway and γδ T cells in OLP. Taken together, the upregulated STING-TBK1 pathway in activated γδ T cells might participate in the regulation of immune responses in OLP.
Collapse
Affiliation(s)
- Shan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Kabelitz D, Zarobkiewicz M, Heib M, Serrano R, Kunz M, Chitadze G, Adam D, Peters C. Signal strength of STING activation determines cytokine plasticity and cell death in human monocytes. Sci Rep 2022; 12:17827. [PMID: 36280676 PMCID: PMC9590392 DOI: 10.1038/s41598-022-20519-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway is a cytosolic sensor of microbial and host-derived DNA and plays a key role in innate immunity. Activation of STING by cyclic dinucleotide (CDN) ligands in human monocytes induces a type I interferon response and production of pro-inflammatory cytokines associated with the induction of massive cell death. In this study we have re-evaluated the effect of signal strength of STING activation on the cytokine plasticity of human monocytes. CDN (2'3'c-GAMP) and non-CDN (diABZI, MSA-2) STING ligands in the range of EC50 concentrations (15 μM 2'3'c-GAMP, 100 nM diABZI, 25 μM MSA-2) induced IFN-β, IP-10, and large amounts of IL-1β and TNF-α, but no IL-10 or IL-19. Interestingly, LPS-induced production of IL-10 and IL-19 was abolished in the presence of diABZI or MSA-2, whereas IL-1β and TNF-α were not inhibited. Surprisingly, we observed that tenfold lower (MSA-2, i.e. 2.5 μM) or 100-fold lower (diABZI, i.e. 1 nM) concentrations strongly stimulated secretion of anti-inflammatory IL-10 and IL-19, but little of IL-1β and TNF-α. Induction of IL-10 was associated with up-regulation of PRDM1 (Blimp-1). While cytokine secretion stimulated by the higher concentrations was accompanied by apoptosis as shown by cleavage of caspase-3 and PARP-1, the low concentrations did not trigger overt cell death yet induced cleavage of gasdermin-D. Our results reveal a previously unrecognized plasticity of human monocytes in their signal strength-dependent production of pro- versus anti-inflammatory cytokines upon STING activation.
Collapse
Affiliation(s)
- Dieter Kabelitz
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany
| | - Michal Zarobkiewicz
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany ,grid.411484.c0000 0001 1033 7158Present Address: Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michelle Heib
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany
| | - Ruben Serrano
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany ,grid.10423.340000 0000 9529 9877Present Address: Institute of Immunology, Medical University Hannover, 30625 Hannover, Germany
| | - Monika Kunz
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany
| | - Guranda Chitadze
- grid.412468.d0000 0004 0646 2097Unit for Hematological Diagnostics, Department of Internal Medicine II, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Dieter Adam
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany
| | - Christian Peters
- grid.9764.c0000 0001 2153 9986Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany
| |
Collapse
|
10
|
Bustos X, Snedal S, Tordesillas L, Pelle E, Abate-Daga D. γδ T Cell-Based Adoptive Cell Therapies Against Solid Epithelial Tumors. Cancer J 2022; 28:270-277. [PMID: 35880936 PMCID: PMC9335899 DOI: 10.1097/ppo.0000000000000606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Conventionally, adoptive cell therapies have been developed and optimized using αβ T cells. However, the understudied and less abundant γδ T cells offer unique advantages to the immunotherapy field especially for therapies against solid tumors. Recently, γδ T-cell potential against a broad spectrum of malignant cells has been demonstrated in the preclinical setting. In the clinic, γδ T-cell-based immunotherapies have proven to be safe; however, their efficacy needs improvement. Considering the growing body of literature reflecting the increasing interest in γδ T cells, we sought to capture the current topics of discussion in the field, pertaining to their use in adoptive immunotherapy. We aimed to compile information about γδ T-cell enhancement in terms of expansion, phenotype, and inhibitory receptors, in addition to the latest advances in preclinical and clinical research using γδ T cells specifically against solid epithelial tumors.
Collapse
|
11
|
Bernicke B, Engelbogen N, Klein K, Franzenburg J, Borzikowsky C, Peters C, Janssen O, Junker R, Serrano R, Kabelitz D. Analysis of the Seasonal Fluctuation of γδ T Cells and Its Potential Relation with Vitamin D 3. Cells 2022; 11:1460. [PMID: 35563767 PMCID: PMC9099506 DOI: 10.3390/cells11091460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
In addition to its role in bone metabolism, vitamin D3 exerts immunomodulatory effects and has been proposed to contribute to seasonal variation of immune cells. This might be linked to higher vitamin D3 levels in summer than in winter due to differential sun exposure. γδ T cells comprise a numerically small subset of T cells in the blood, which contribute to anti-infective and antitumor immunity. We studied the seasonal fluctuation of γδ T cells, the possible influence of vitamin D3, and the effect of the active metabolite 1α,25(OH)2D3 on the in vitro activation of human γδ T cells. In a retrospective analysis with 2625 samples of random blood donors, we observed higher proportions of γδ T cells in winter when compared with summer. In a prospective study over one year with a small cohort of healthy adults who did or did not take oral vitamin D3 supplementation, higher proportions of γδ T cells were present in donors without oral vitamin D3 uptake, particularly in spring. However, γδ T cell frequency in blood did not directly correlate with serum levels of 25(OH)D3. The active metabolite 1α,25(OH)2D3 inhibited the in vitro activation of γδ T cells at the level of proliferation, cytotoxicity, and interferon-γ production. Our study reveals novel insights into the seasonal fluctuation of γδ T cells and the immunomodulatory effects of vitamin D3.
Collapse
Affiliation(s)
- Birthe Bernicke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Nils Engelbogen
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Katharina Klein
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Jeanette Franzenburg
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Christoph Borzikowsky
- Institute of Bioinformatics and Statistics, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ralf Junker
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Ruben Serrano
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| |
Collapse
|
12
|
Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Rev Med Virol 2022; 32:e2343. [DOI: 10.1002/rmv.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yiyun Michelle Fan
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Yizhuo Lyanne Zhang
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Honglin Luo
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Yasir Mohamud
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|