1
|
Bermúdez-Abreut E, Bergado Báez G, Martínez Pestano M, Attanasio G, Gonzales Castillo CY, Hernández Fernández DR, Alvarez-Arzola R, Alimonti A, Sánchez-Ramírez B. Antitumor activity of PAbs generated by immunization with a novel HER3-targeting protein-based vaccine candidate in preclinical models. Front Oncol 2024; 14:1472607. [PMID: 39479017 PMCID: PMC11521786 DOI: 10.3389/fonc.2024.1472607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Despite the cumulative evidence supporting HER3 as a target for antitumor therapies, no agents targeting HER3 have been approved for cancer treatment. Most of the agents evaluated in preclinical and clinical trials have been specific monoclonal antibodies (MAbs), with few examples of active immunotherapy directed against this receptor. However, some cancer vaccine formats may generate polyclonal antibodies (PAbs) that replicate the diverse effector mechanisms of MAbs, including ligand neutralization and receptor degradation. In this study, we developed a protein subunit-based monovalent vaccine candidate targeting the extracellular domain (ECD) of HER3. Immunization of mice with a formulation targeting murine ErbB3-ECD successfully overcome tolerance to this self-antigen, inducing high titers of ErbB3-specific PAbs. The antitumor potential of this formulation and the induced PAbs was demonstrated in vivo and in vitro in an ErbB3-overexpressing 3LL-D122-derived tumor model. The immunogenicity of the HER3-ECD-based vaccine candidate was confirmed by the induction of high titers of HER3-specific PAbs. Consistent with the initial results, HER3-ECD-targeting PAbs were cytotoxic in several human epithelial tumor cell lines and exerted antitumor effects in vivo. These results support the value of HER3 as a tumor antigen and the effector mechanisms of HER3-specific therapeutic MAbs, while suggesting the potential of the proposed vaccine candidate for the treatment of HER3-expressing carcinomas.
Collapse
Affiliation(s)
| | - Gretchen Bergado Báez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Giuseppe Attanasio
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | | | - Rydell Alvarez-Arzola
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Andrea Alimonti
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Medicine, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padua, Padua, Italy
- Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | |
Collapse
|
2
|
Sanwick AM, Chaple IF. Targeted radionuclide therapy for head and neck squamous cell carcinoma: a review. Front Oncol 2024; 14:1445191. [PMID: 39239273 PMCID: PMC11374632 DOI: 10.3389/fonc.2024.1445191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy. Chemotherapy is notorious for its detrimental side effects including nausea, fatigue, hair loss, and more. Radiation therapy can be a challenge due to the anatomy of the head and neck area and presence of normal tissues. In addition to the drawbacks of chemotherapy and radiation therapy, high morbidity and mortality rates for HNSCC highlight the urgent need for alternative treatment options. Immunotherapy has recently emerged as a possible treatment option for cancers including HNSCC, in which monoclonal antibodies are used to help the immune system fight disease. Combining monoclonal antibodies approved by the US Food and Drug Administration, such as cetuximab and pembrolizumab, with radiotherapy or platinum-based chemotherapy for patients with locally advanced, recurrent, or metastatic HNSCC is an accepted first-line therapy. Targeted radionuclide therapy can potentially be used in conjunction with the first-line therapy, or as an additional treatment option, to improve patient outcomes and quality of life. Epidermal growth factor receptor is a known molecular target for HNSCC; however, other targets such as human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, programmed cell death protein 1, and programmed death-ligand 1 are emerging molecular targets for the diagnosis and treatment of HNSCC. To develop successful radiopharmaceuticals, it is imperative to first understand the molecular biology of the disease of interest. For cancer, this understanding often means detection and characterization of molecular targets, such as cell surface receptors, that can be used as sensitive targeting agents. The goal of this review article is to explore molecular targets for HNSCC and dissect previously conducted research in nuclear medicine and provide a possible path forward for the development of novel radiopharmaceuticals used in targeted radionuclide therapy for HNSCC, which has been underexplored to date.
Collapse
Affiliation(s)
- Alexis M Sanwick
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| | - Ivis F Chaple
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Ujlaky-Nagy L, Szöllősi J, Vereb G. Disrupting EGFR-HER2 Transactivation by Pertuzumab in HER2-Positive Cancer: Quantitative Analysis Reveals EGFR Signal Input as Potential Predictor of Therapeutic Outcome. Int J Mol Sci 2024; 25:5978. [PMID: 38892166 PMCID: PMC11173106 DOI: 10.3390/ijms25115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.
Collapse
Affiliation(s)
- László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Becker AK, Puladi B, Xie K, Cassataro A, Götzl R, Hölzle F, Beier JP, Knüchel-Clarke R, Braunschweig T. HER3 (ERBB3) amplification in liposarcoma - a putative new therapeutic target? World J Surg Oncol 2024; 22:131. [PMID: 38760830 PMCID: PMC11100077 DOI: 10.1186/s12957-024-03406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Liposarcomas are among the most common mesenchymal malignancies. However, the therapeutic options are still very limited and so far, targeted therapies had not yet been established. Immunotherapy, which has been a breakthrough in other oncological entities, seems to have no efficacy in liposarcoma. Complicating matters further, classification remains difficult due to the diversity of morphologies and nonspecific or absent markers in immunohistochemistry, leaving molecular pathology using FISH or sequencing as best options. Many liposarcomas harbor MDM2 gene amplifications. In close relation to the gene locus of MDM2, HER3 (ERBB3) gene is present and co-amplification could occur. Since the group of HER/EGFR receptor tyrosine kinases and its inhibitors/antibodies play a role in a broad spectrum of oncological diseases and treatments, and some HER3 inhibitors/antibodies are already under clinical investigation, we hypothesized that in case of HER3 co-amplifications a tumor might bear a further potential therapeutic target. METHODS We performed FISH analysis (MDM2, DDIT3, HER3) in 56 archived cases and subsequently performed reclassification to confirm the diagnosis of liposarcoma. RESULTS Next to 16 out of 56 cases needed to be re-classified, in 20 out of 54 cases, a cluster-amplification of HER3 could be detected, significantly correlating with MDM2 amplification. Our study shows that the entity of liposarcomas show specific molecular characteristics leading to reclassify archived cases by modern, established methodologies. Additionally, in 57.1% of these cases, HER3 was cluster-amplified profusely, presenting a putative therapeutic target for targeted therapy. CONCLUSION Our study serves as the initial basis for further investigation of the HER3 gene as a putative therapeutic target in liposarcoma.
Collapse
Affiliation(s)
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Kunpeng Xie
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Angela Cassataro
- Institute of Pathology, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Rebekka Götzl
- Department of Plastic, Hand Surgery - Burn Center, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Justus P Beier
- Department of Plastic, Hand Surgery - Burn Center, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Ruth Knüchel-Clarke
- Institute of Pathology, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, University Hospital RWTH Aachen, 52074, Aachen, Germany.
- Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Strasse 36, 80337, Munich, Germany.
| |
Collapse
|
5
|
Vogt M, Unnikrishnan MK, Heinig N, Schumann U, Schmidt MHH, Barth K. c-Cbl Regulates Murine Subventricular Zone-Derived Neural Progenitor Cells in Dependence of the Epidermal Growth Factor Receptor. Cells 2023; 12:2400. [PMID: 37830613 PMCID: PMC10572332 DOI: 10.3390/cells12192400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.
Collapse
|
6
|
Leng R, Meng Y, Sun X, Zhao Y. NUF2 overexpression contributes to epithelial ovarian cancer progression via ERBB3-mediated PI3K-AKT and MAPK signaling axes. Front Oncol 2022; 12:1057198. [PMID: 36620547 PMCID: PMC9811817 DOI: 10.3389/fonc.2022.1057198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction NDC80 kinetochore complex component (NUF2) is upregulated and plays an important role in various human cancers. However, the function and mechanism of NUF2 in epithelial ovarian cancer (EOC) remain unclear. Methods NUF2 expression was detected in EOC tissues and cell lines. The effects of NUF2 downregulation on cell proliferation, migration and invasion in EOC were analyzed by CCK-8 and Transwell assays. Meanwhile, the effect of NUF2 downregulation on tumor growth in vivo was determined by xenograft tumor models. The mechanisms by which NUF2 regulates EOC progression were detected by RNA sequencing and a series of in vitro assays. Results We showed that NUF2 was significantly upregulated in EOC tissues and cell lines, and high NUF2 expression was associated with FIGO stage, pathological grade and poor EOC prognosis. NUF2 downregulation decreased cell proliferation, migration, invasion and tumor growth in nude mice. RNA sequencing studies showed that NUF2 knockdown inhibited several genes enriched in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT serine/threonine kinase (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. Erb-B2 receptor tyrosine kinase 3 (ERBB3) was the key factor involved in both of the above pathways. We found that ERBB3 silencing could inhibit EOC progression and repress activation of the PI3K-AKT and MAPK signaling pathways. Furthermore, the exogenous overexpression of ERBB3 partially reversed the inhibitory effects on EOC progression induced by NUF2 downregulation, while LY294002 and PD98059 partially reversed the effects of ERBB3 upregulation. Conclusion These results showed that NUF2 promotes EOC progression through ERBB3-induced activation of the PI3K-AKT and MAPK signaling axes. These findings suggest that NUF2 might be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Ruobing Leng
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Ruobing Leng,
| | - Yunfang Meng
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomei Sun
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingzi Zhao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
8
|
Hassani D, Jeddi-Tehrani M, Yousefi P, Mansouri-Fard S, Mobini M, Ahmadi-Zare H, Golsaz-Shirazi F, Amiri MM, Shokri F. Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies. Cancer Chemother Pharmacol 2022; 89:347-361. [PMID: 35079876 DOI: 10.1007/s00280-021-04390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The therapeutic potential of targeting the human epidermal growth factor receptor-3 (ErbB3/HER3) has long been ignored due to impaired tyrosine kinase function and low expression level in tumor cells compared with EGFR and HER2. Although recent investigations have explored the potential benefit of HER3 targeting and several anti-HER3 agents have been developed, there is still a critical need to design and produce more efficient therapeutics. This study was designed to develop tumor inhibitory monoclonal antibodies (MAbs) against different extracellular subdomains of HER3. METHODS Distinct extracellular subdomains of HER3 (DI+II and DIII+IV) were utilized to produce MAbs by hybridoma technology. Biochemical and functional characteristics of these MAbs were then investigated by various methodologies, including immunoblotting, flow cytometry, cell proliferation, cell signaling, and enzyme-linked immunosorbent assays. RESULTS Four anti-DI+II and six anti-DIII+IV MAbs were obtained, selected based on their ability to bind recombinant full HER3 extracellular domain (ECD). Our data showed that only one anti-DI+II and four anti-DIII+IV MAbs recognized the native form of HER3 by immunoblotting. Four MAbs recognized the membranous HER3 by flow cytometry leading to induction of different levels of receptor internalization and subsequent degradation. Results of cell proliferation assays using these MAbs indicated that they differentially inhibited proliferation of HER3-expressing cancer cells and showed considerable synergistic effects in combination with trastuzumab. Selected MAb with the highest inhibitory effect significantly inhibited the phosphorylation of AKT and ERK1/2 molecules. CONCLUSION Some of the anti-HER3 MAbs produced in this study displayed tumor inhibitory function and may be considered promising candidates for future HER3-targeted cancer therapy.
Collapse
Affiliation(s)
- Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parisa Yousefi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi-Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ghalamfarsa F, Khatami SH, Vakili O, Taheri-Anganeh M, Tajbakhsh A, Savardashtaki A, Fazli Y, Uonaki LR, Shabaninejad Z, Movahedpour A, Ghalamfarsa G. Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy 2021; 13:1355-1367. [PMID: 34641708 DOI: 10.2217/imt-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is identified as a life-threatening malignancy. Despite several efforts and proceedings available for CRC therapy, it is still a health concern. Among a vast array of novel therapeutic procedures, employing bispecific antibodies (BsAbs) is currently considered to be a promising approach for cancer therapy. BsAbs, as a large family of molecules designed to realize two distinct epitopes or antigens, can be beneficial microgadgets to target the tumor-associated antigen pairs. On the other hand, applying the immune system's capabilities to attack malignant cells has been proven as a tremendous development in cancer therapeutic projects. The current study has attempted to overview some of the approved BsAbs in CRC therapy and those under clinical trials. For this purpose, reputable scientific search engines and databases, such as PubMed, ScienceDirect, Google Scholar, Scopus, etc., were explored using the keywords 'bispecific antibodies', 'colorectal cancer', 'immunotherapy' and 'tumor markers'.
Collapse
Affiliation(s)
- Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Fazli
- Dena Clinical Diagnostic Laboratory, Yasuj, Iran
| | - Leila Rezaei Uonaki
- Department of Biotechnology, School of Science, Shahrekord University, Shahrekord, Iran
| | - Zahra Shabaninejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Department of Microbiology & Immunology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
10
|
Wu L, Islam MR, Lee J, Takase H, Guo S, Andrews AM, Buzhdygan TP, Mathew J, Li W, Arai K, Lo EH, Ramirez SH, Lok J. ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: Implications for vascular remodeling and blood brain barrier modulation. J Cereb Blood Flow Metab 2021; 41:2242-2255. [PMID: 33583260 PMCID: PMC8393293 DOI: 10.1177/0271678x20984976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuregulin (NRG)1 - ErbB receptor signaling has been shown to play an important role in the biological function of peripheral microvascular endothelial cells. However, little is known about how NRG1/ErbB signaling impacts brain endothelial function and blood-brain barrier (BBB) properties. NRG1/ErbB pathways are affected by brain injury; when brain trauma was induced in mice in a controlled cortical impact model, endothelial ErbB3 gene expression was reduced to a greater extent than that of other NRG1 receptors. This finding suggests that ErbB3-mediated processes may be significantly compromised after injury, and that an understanding of ErbB3 function would be important in the of study of endothelial biology in the healthy and injured brain. Towards this goal, cultured brain microvascular endothelial cells were transfected with siRNA to ErbB3, resulting in alterations in F-actin organization and microtubule assembly, cell morphology, migration and angiogenic processes. Importantly, a significant increase in barrier permeability was observed when ErbB3 was downregulated, suggesting ErbB3 involvement in BBB regulation. Overall, these results indicate that neuregulin-1/ErbB3 signaling is intricately connected with the cytoskeletal processes of the brain endothelium and contributes to morphological and angiogenic changes as well as to BBB integrity.
Collapse
Affiliation(s)
- Limin Wu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Mohammad R Islam
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Janice Lee
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Allison M Andrews
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA
| | - Tetyana P Buzhdygan
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA
| | - Justin Mathew
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.,Department of Radiology, Massachusetts General Hospital, Boston, USA.,Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Servio H Ramirez
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA.,The Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Ptáková N, Martínek P, Holubec L, Janovský V, Vančurová J, Grossmann P, Navarro PA, Rodriguez Moreno JF, Alaghehbandan R, Hes O, Májek O, Pešek M, Michal M, Ondič O. Identification of tumors with NRG1 rearrangement, including a novel putative pathogenic UNC5D-NRG1 gene fusion in prostate cancer by data-drilling a de-identified tumor database. Genes Chromosomes Cancer 2021; 60:474-481. [PMID: 33583086 DOI: 10.1002/gcc.22942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion genes containing neuregulin-1 (NRG1) are newly described potentially actionable oncogenic drivers. Initial clinical trials have shown a positive response to targeted treatment in some cases of NRG1 rearranged lung adenocarcinoma, cholangiocarcinoma, and pancreatic carcinoma. The cost-effective large scale identification of NRG1 rearranged tumors is an open question. We have tested a data-drilling approach by performing a retrospective assessment of a de-identified molecular profiling database of 3263 tumors submitted for fusion testing. Gene fusion detection was performed by RNA-based targeted next-generation sequencing using the Archer Fusion Plex kits for Illumina (ArcherDX Inc., Boulder, CO). Novel fusion transcripts were confirmed by a custom-designed RT-PCR. Also, the aberrant expression of CK20 was studied immunohistochemically. The frequency of NRG1 rearranged tumors was 0.2% (7/3263). The most common histologic type was lung adenocarcinoma (n = 5). Also, renal carcinoma (n = 1) and prostatic adenocarcinoma (n = 1) were found. Identified fusion partners were of a wide range (CD74, SDC4, TNC, VAMP2, UNC5D), with CD74, SDC4 being found twice. The UNC5D is a novel fusion partner identified in prostate adenocarcinoma. There was no co-occurrence with the other tested fusions nor KRAS, BRAF, and the other gene mutations specified in the applied gene panels. Immunohistochemically, the focal expression of CK20 was present in 2 lung adenocarcinomas. We believe it should be considered as an incidental finding. In conclusion, the overall frequency of tumors with NRG1 fusion was 0.2%. All tumors were carcinomas. We confirm (invasive mucinous) lung adenocarcinoma as being the most frequent tumor presenting NRG1 fusion. Herein novel putative pathogenic gene fusion UNC5D-NRG1 is described. The potential role of immunohistochemistry in tumor identification should be further addressed.
Collapse
Affiliation(s)
- Nikola Ptáková
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Martínek
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic
| | - Luboš Holubec
- Department of Clinical Oncology, Na Homolce Hospital, Prague, Czech Republic
- Second Department of Internal Medicine, Medical Faculty in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Václav Janovský
- Department of Oncology, Hospital České Budějovice, České Budějovice, Czech Republic
| | - Jana Vančurová
- Department of Oncology, Hospital České Budějovice, České Budějovice, Czech Republic
| | - Petr Grossmann
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic
| | - Paloma Alcaraz Navarro
- Department of Pathology, FiHM-Centro Integral Oncológico Hospital de Madrid Clara Campal, Madrid, Spain
| | - Juan F Rodriguez Moreno
- Department of Pathology, FiHM-Centro Integral Oncológico Hospital de Madrid Clara Campal, Madrid, Spain
| | - Reza Alaghehbandan
- Department of Pathology, University of British Columbia, Royal Columbian Hospital, Vancouver, British Columbia, Canada
| | - Ondřej Hes
- Department of Pathology, Medical Faculty in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Ondřej Májek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miloš Pešek
- Department of Pneumology and Phthisiology, Medical Faculty in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Medical Faculty in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Ondrej Ondič
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic
- Department of Pathology, Medical Faculty in Pilsen, Charles University Prague, Pilsen, Czech Republic
| |
Collapse
|
12
|
Capone E, Lattanzio R, Gasparri F, Orsini P, Rossi C, Iacobelli V, De Laurenzi V, Natali PG, Valsasina B, Iacobelli S, Sala G. EV20/NMS-P945, a Novel Thienoindole Based Antibody-Drug Conjugate Targeting HER-3 for Solid Tumors. Pharmaceutics 2021; 13:pharmaceutics13040483. [PMID: 33918158 PMCID: PMC8066800 DOI: 10.3390/pharmaceutics13040483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
HER-3 is becoming an attractive target for antibody-drug conjugate (ADC)-based therapy. Indeed, this receptor and its ligands are found to be overexpressed in several malignancies, and re-activation of its downstream signaling axis is known to play a critical role in modulating the sensitivity of targeted therapeutics in different tumors. In this study, we generated a novel ADC named EV20/NMS-P945 by coupling the anti-HER-3 antibody EV20 with a duocarmycin-like derivative, the thienoindole (TEI) NMS-P528, a DNA minor groove alkylating agent through a peptidic cleavable linker. This ADC showed target-dependent cytotoxic activity in vitro on several tumor cell lines and therapeutic activity in mouse xenograft tumor models, including those originating from pancreatic, prostatic, head and neck, gastric and ovarian cancer cells and melanoma. Pharmacokinetics and toxicological studies in monkeys demonstrated that this ADC possesses a favorable terminal half-life and stability and it is well tolerated. These data support further EV20/NMS-P945 clinical development as a therapeutic agent against HER-3-expressing malignancies.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Fabio Gasparri
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Paolo Orsini
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Cosmo Rossi
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Valentina Iacobelli
- Department of Gynecology and Obstetrics, Catholic University, 00168 Rome, Italy;
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | | | - Barbara Valsasina
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Stefano Iacobelli
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| |
Collapse
|
13
|
Biancur DE, Kapner KS, Yamamoto K, Banh RS, Neggers JE, Sohn ASW, Wu W, Manguso RT, Brown A, Root DE, Aguirre AJ, Kimmelman AC. Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. Cell Metab 2021; 33:199-210.e8. [PMID: 33152323 PMCID: PMC7790858 DOI: 10.1016/j.cmet.2020.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer characterized by complex metabolic adaptations that promote survival in a severely hypoxic and nutrient-limited tumor microenvironment (TME). Modeling microenvironmental influences in cell culture has been challenging, and technical limitations have hampered the comprehensive study of tumor-specific metabolism in vivo. To systematically interrogate metabolic vulnerabilities in PDA, we employed parallel CRISPR-Cas9 screens using in vivo and in vitro systems. This work revealed striking overlap of in vivo metabolic dependencies with those in vitro. Moreover, we identified that intercellular nutrient sharing can mask dependencies in pooled screens, highlighting a limitation of this approach to study tumor metabolism. Furthermore, metabolic dependencies were similar between 2D and 3D culture, although 3D culture may better model vulnerabilities that influence certain oncogenic signaling pathways. Lastly, our work demonstrates the power of genetic screening approaches to define in vivo metabolic dependencies and pathways that may have therapeutic utility.
Collapse
Affiliation(s)
- Douglas E Biancur
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keisuke Yamamoto
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Robert S Banh
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Jasper E Neggers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Warren Wu
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
14
|
Hafeez U, Parslow AC, Gan HK, Scott AM. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 2020; 20:1057-1074. [PMID: 32981377 DOI: 10.1080/14737140.2020.1829485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The importance of ErbB3 receptor tyrosine kinase in cancer progression, primary and acquired drug resistance, has become steadily evident since its discovery in 1989. ErbB3 overexpression in various solid organ malignancies is associated with shorter survival of patients. However, initial strategies to therapeutically target ErbB3 have not been rewarding. AREAS COVERED Here, we provide an overview of ErbB3 biology in carcinogenesis. We outline the role of ErbB3 as a critical pathway for resistance to other anti-cancer drugs. We focus on emerging clinical data, which will steer the potential future development of ErbB3 directed therapies. EXPERT OPINION Initial approaches to ErbB3 targeting have been challenging. However, the lack of success of anti-ErbB3 therapies in ongoing clinical trials may relate more to the complex biology of the receptor and challenges with the biomarkers used to date. Furthermore, it seems certain that the expression of the receptor per se is necessary but not sufficient for the response to ErbB3 therapies. Emerging data suggest that more sophisticated biomarkers are needed. Nonetheless, it is also likely that ErbB3 therapies may have the most efficacy in combination therapy, and their favorable toxicity profile makes this feasible.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health , Melbourne, Australia
| |
Collapse
|
15
|
Kumar R, George B, Campbell MR, Verma N, Paul AM, Melo-Alvim C, Ribeiro L, Pillai MR, da Costa LM, Moasser MM. HER family in cancer progression: From discovery to 2020 and beyond. Adv Cancer Res 2020; 147:109-160. [PMID: 32593399 DOI: 10.1016/bs.acr.2020.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTKs) are among the first layer of molecules that receive, interpret, and transduce signals leading to distinct cancer cell phenotypes. Since the discovery of the tooth-lid factor-later characterized as the epidermal growth factor (EGF)-and its high-affinity binding EGF receptor, HER kinases have emerged as one of the commonly upregulated or hyperactivated or mutated kinases in epithelial tumors, thus allowing HER1-3 family members to regulate several hallmarks of cancer development and progression. Each member of the HER family exhibits shared and unique structural features to engage multiple receptor activation modes, leading to a range of overlapping and distinct phenotypes. EGFR, the founding HER family member, provided the roadmap for the development of the cell surface RTK-directed targeted cancer therapy by serving as a prototype/precursor for the currently used HER-directed cancer drugs. We herein provide a brief account of the discoveries, defining moments, and historical context of the HER family and guidepost advances in basic, translational, and clinical research that solidified a prominent position of the HER family in cancer research and treatment. We also discuss the significance of HER3 pseudokinase in cancer biology; its unique structural features that drive transregulation among HER1-3, leading to a superior proximal signaling response; and potential role of HER3 as a shared effector of acquired therapeutic resistance against diverse oncology drugs. Finally, we also narrate some of the current drawbacks of HER-directed therapies and provide insights into postulated advances in HER biology with extensive implications of these therapies in cancer research and treatment.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; Department of Medicine, Division of Hematology & Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Marcia R Campbell
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Luis Marques da Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
16
|
Gandullo-Sánchez L, Capone E, Ocaña A, Iacobelli S, Sala G, Pandiella A. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies. EMBO Mol Med 2020; 12:e11498. [PMID: 32329582 PMCID: PMC7207167 DOI: 10.15252/emmm.201911498] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Despite impressive clinical benefit obtained with anti‐HER2‐targeted therapies, in advances stages, especially in the metastatic setting, HER2‐positive tumors remain incurable. Therefore, it is important to develop novel strategies to fight these tumors, especially when they become resistant to available therapies. We show here that the anti‐HER3 antibody–drug conjugate EV20/MMAF exerted potent anti‐tumoral properties against several models of primary resistance and secondary resistance to common anti‐HER2 available therapies, including trastuzumab, lapatinib, neratinib, and trastuzumab‐emtansine. HER3 was expressed in these HER2+ breast cancer cells and knockdown experiments demonstrated that HER3 expression was required for the action of EV20/MMAF. In mice injected with trastuzumab‐resistant HER2+ cells, a single dose of EV20/MMAF caused complete and long‐lasting tumor regression. Mechanistically, EV20/MMAF bound to cell surface HER3 and became internalized to the lysosomes. Treatment with EV20/MMAF caused cell cycle arrest in mitosis and promoted cell death through mitotic catastrophe. These findings encourage the clinical testing of EV20/MMAF for several indications in the HER2+ cancer clinic, including situations in which HER2+ tumors become refractory to approved anti‐HER2 therapies.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | | | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l, Chieti, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| |
Collapse
|
17
|
Kim H, Choi JY, Rah YC, Ahn JC, Kim H, Jeong WJ, Ahn SH. ErbB3, a possible prognostic factor of head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:377-387. [PMID: 32081558 DOI: 10.1016/j.oooo.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We aimed to identify the prognostic factors in head and neck squamous cell carcinoma (HNSCC) by using gene expression analysis and candidate biomarkers for adjuvant therapy. STUDY DESIGN Complementary DNA (cDNA) microarray analysis was performed by using samples from 8 patients, who had died as a result of fulminant recurrence shortly after postoperative radiation therapy, and the results were compared with those from patients with HNSCC of similar stage, but without recurrence. Tissue microarray and immunohistochemistry of samples from 69 patients with oral cavity squamous cell carcinoma indicated ErbB3 to be a prognostic marker, and its expression was analyzed in the HNSCC cell lines. Sapitinib was tested as a concurrent inhibitor of EGFR, ErbB2, and ErbB3. In 15 mice, tumor xenograft was implanted at the lateral tongue, and tumor growth was evaluated. RESULTS ErbB3 overexpression in patients with treatment-resistant HNSCC was associated with relapse-free survival, disease-free survival, and overall survival (P = .018, P = .006, and P = .003, respectively). In the HNSCC cell line, ErbB2 and ErbB3 overexpression was inhibited by postoperative adjuvant therapy with sapitinib, which was also seen to improve survival in an animal model. CONCLUSIONS ErbB3 overexpression predicts a poor clinical outcome. Sapitinib was shown to be an effective inhibitor in the HNSCC cell line and animal models of cancer but with no statistical significance. Further studies with larger groups are needed to better support these results.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Joo Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, South Korea
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang CHA Medical Center, Seongnam, South Korea
| | - Hyunchul Kim
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
18
|
Higher Anti-Tumor Efficacy of the Dual HER3-EGFR Antibody MEHD7945a Combined with Ionizing Irradiation in Cervical Cancer Cells. Int J Radiat Oncol Biol Phys 2020; 106:1039-1051. [PMID: 31959545 DOI: 10.1016/j.ijrobp.2019.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The outcome of locally advanced cervical cancer (LACC) is dismal. Biomarkers are needed to individualize treatments and to improve patient outcomes. Here, we investigated whether coexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 3 (HER3) could be an outcome prognostic biomarker, and whether targeting both EGFR and HER3 with a dual antibody (MEHD7945A) enhanced ionizing radiation (IR) efficacy. METHODS AND MATERIALS Expression of EGFR and HER3 was evaluated by immunohistochemistry in cancer biopsies (n = 72 patients with LACC). The antitumor effects of the MEHD7945A and IR combotherapy were assessed in 2 EGFR- and HER3-positive cervical cancer cell lines (A431 and CaSki) and in A431 cell xenografts. The mechanisms involved in tumor cell radiosensitization were also studied. The interaction of MEHD7945A, IR, and cisplatin was evaluated using dose-response matrix data. RESULTS EGFR and HER3 were coexpressed in only in 7 of the 22 biopsies of FIGO IVB cervix cancer. The median overall survival was 14.6 months and 23.1 months in patients with FIGO IVB tumors that coexpressed or did not coexpress EGFR and HER3, respectively. In mice xenografted with A431 (squamous cell carcinoma) cells, MEHD7945A significantly increased IR response by reducing tumor growth and increasing cleaved caspase-3 expression. In A431 and CaSki cells, the combotherapy increased DNA damage and cell death, particularly immunogenic cell death, and decreased survival by inhibiting the MAPK and AKT pathways. An additive effect was observed when IR, MEHD7945A, and cisplatin were combined. CONCLUSIONS Targeting EGFR and HER3 with a specific dual antibody enhanced IR efficacy. These preliminary results and the prognostic value of EGFR and HER3 coexpression should be confirmed in a larger sample.
Collapse
|
19
|
Abstract
AbstractImmunotherapy, especially immune checkpoint inhibitors, is becoming a promising treatment for hepatocellular carcinoma (HCC). However, the response rate remains limited due to the heterogeneity of HCC samples. Molecular subtypes of HCC vary in genomic background, clinical features, and prognosis. This study aims to compare the immune profiles between HCC subtypes and find subtype-specific immune characteristics that might contribute to the prognosis and potential of immunotherapy. The immune profiles consist of immune-related genes, cytolytic
activity, immune pathways, and tumor-infiltrating lymphocytes. HCC-c1 samples showed an overall higher activation level of immune genes and pathways, and this pattern was consistent in validation sets. We associated the difference in immune profiles with the activation level of cancer hallmarks and genomic mutations. There was a negative correlation between most of the metabolism pathway
and immune-related pathways in HCC samples. CTNNB1/WNT signaling pathway mutation, one of the common mutations in HCC, appears to be associated with the expression of immune genes as well. These results reveal the difference of immune profiles between HCC subtypes and possible reasons and influence, which may also deepen our understanding of the carcinogenesis process.
Collapse
|
20
|
ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 2019; 39:487-502. [DOI: 10.1038/s41388-019-1001-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023]
|
21
|
Zhan W, Liao X, Li L, Chen Z, Tian T, Yu L, Chen Z. In vitro mitochondrial-targeted antioxidant peptide induces apoptosis in cancer cells. Onco Targets Ther 2019; 12:7297-7306. [PMID: 31686844 PMCID: PMC6738130 DOI: 10.2147/ott.s207640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Reactive oxygen species (ROS) are major contributors to cancer and involved in numerous tumor proliferation signaling pathways. Mitochondria are the major ROS-producing organelles, and ROS are produced from the synthesis of adenosine triphosphate and cell metabolism. Methods A novel mitochondria-targeted peptide, namely KRSH, was synthesized and characterized. KRSH consists of four amino acids; lysine and arginine contain positively charged groups that help KRSH target the mitochondria, while tyrosine and cysteine neutralize excessive endogenous ROS, thereby inhibiting tumorigenesis. Results The results indicated that KRSH is specifically inhibiting the growth of HeLa and MCF-7 cancer cell lines. However, MCF10A cells can resist the effects of KRSH even in a relative higher concentration. The dichloro-dihydro-fluorescein diacetate and MitoSOXTM Red assay suggested that KRSH drastically decreased the level of ROS in cancer cells. The mitochondrial depolarization assay indicated that treatment with KRSH at a dose of 50 nM may decrease the mitochondrial membrane potential leading to apoptosis of HeLa and MCF-7 cells. Conclusion In other studies, investigating rat liver mitochondria, the uptake of KRSH may reach 80% compared with that for mitoquinone. Therefore, KRSH was designed as a superior peptide antioxidant and a mitochondria-targeting anticancer agent.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Xin Liao
- Department of Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Lianghe Li
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Zhongsheng Chen
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Tian Tian
- Department of Pathophysiology, Basic Medical College, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang 550004, People's Republic of China
| | - Zupeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, People's Republic of China
| |
Collapse
|
22
|
Menke-van der Houven van Oordt CW, McGeoch A, Bergstrom M, McSherry I, Smith DA, Cleveland M, Al-Azzam W, Chen L, Verheul H, Hoekstra OS, Vugts DJ, Freedman I, Huisman M, Matheny C, van Dongen G, Zhang S. Immuno-PET Imaging to Assess Target Engagement: Experience from 89Zr-Anti-HER3 mAb (GSK2849330) in Patients with Solid Tumors. J Nucl Med 2019; 60:902-909. [PMID: 30733323 PMCID: PMC6604691 DOI: 10.2967/jnumed.118.214726] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
PET imaging with radiolabeled drugs provides information on tumor uptake and dose-dependent target interaction to support selection of an optimal dose for future efficacy testing. In this immuno-PET study of the anti-human epidermal growth factor receptor (HER3) mAb GSK2849330, we investigated the biodistribution and tumor uptake of 89Zr-labeled GSK2849330 and evaluated target engagement as a function of antibody mass dose. Methods: 89Zr-GSK2849330 distribution was monitored in 6 patients with HER3-positive tumors not amenable to standard treatment. Patients received 2 administrations of 89Zr-GSK2849330. Imaging after tracer only was performed at baseline; dose-dependent inhibition of 89Zr-GSK2849330 uptake in tumor tissues was evaluated 2 wk later using increasing doses of unlabeled GSK2849330 in combination with the tracer. Up to 3 PET scans (2 hours post infusion [p.i.] and days 2 and 5 p.i.) were performed after tracer administration. Biodistribution and tumor targeting were assessed visually and quantitatively using SUV. The 50% and 90% inhibitory mass doses (ID50 and ID90) of target-mediated antibody uptake were calculated using a Patlak transformation. Results: At baseline, imaging with tracer showed good tumor uptake in all evaluable patients. Predosing with unlabeled mAb reduced the tumor uptake rate in a dose-dependent manner. Saturation of 89Zr-mAb uptake by tumors was seen at the highest dose (30 mg/kg). Despite the limited number of patients, an exploratory ID50 of 2 mg/kg and ID90 of 18 mg/kg have been determined. Conclusion: In this immuno-PET study, dose-dependent inhibition of tumor uptake of 89Zr-GSK2849330 by unlabeled mAb confirmed target engagement of mAb to the HER3 receptor. This study further validates the use of immuno-PET to directly visualize tissue drug disposition in patients with a noninvasive approach and to measure target engagement at the site of action, offering the potential for dose selection.
Collapse
Affiliation(s)
| | - Adam McGeoch
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Iain McSherry
- Clinical Pharmacology, Science, and Study Operations, GlaxoSmithKline, Uxbridge, United Kingdom
| | | | - Matthew Cleveland
- Bioimaging, Platform Technology and Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wasfi Al-Azzam
- Biopharm Product Development and Supply, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Liangfu Chen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Henk Verheul
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Marc Huisman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Matheny
- Oncology R&D, GlaxoSmithKline, King of Prussia, Pennsylvania; and
| | - Guus van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sean Zhang
- Hengrui Therapeutics, Inc., Princeton, New Jersey
| |
Collapse
|
23
|
Nevenzal H, Noach-Hirsh M, Skornik-Bustan O, Brio L, Barbiro-Michaely E, Glick Y, Avrahami D, Lahmi R, Tzur A, Gerber D. A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery. Commun Biol 2019; 2:42. [PMID: 30729180 PMCID: PMC6353932 DOI: 10.1038/s42003-019-0286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
Collapse
Affiliation(s)
- Hadas Nevenzal
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Meirav Noach-Hirsh
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Or Skornik-Bustan
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Lev Brio
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Efrat Barbiro-Michaely
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Yair Glick
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Dorit Avrahami
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| |
Collapse
|
24
|
Turowec JP, Lau EWT, Wang X, Brown KR, Fellouse FA, Jawanda KK, Pan J, Moffat J, Sidhu SS. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem 2019; 294:1396-1409. [PMID: 30523157 DOI: 10.1074/jbc.ra118.004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.
Collapse
Affiliation(s)
- Jacob P Turowec
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Esther W T Lau
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xiaowei Wang
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kevin R Brown
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Frederic A Fellouse
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kamaldeep K Jawanda
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - James Pan
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jason Moffat
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
25
|
Rinne SS, Leitao CD, Mitran B, Bass TZ, Andersson KG, Tolmachev V, Ståhl S, Löfblom J, Orlova A. Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Sci Rep 2019; 9:655. [PMID: 30679757 PMCID: PMC6345776 DOI: 10.1038/s41598-018-36827-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Radionuclide molecular imaging of human epidermal growth factor receptor 3 (HER3) expression using affibody molecules could be used for patient stratification for HER3-targeted cancer therapeutics. We hypothesized that the properties of HER3-targeting affibody molecules might be improved through modification of the radiometal-chelator complex. Macrocyclic chelators NOTA (1,4,7-triazacyclononane-N,N',N''-triacetic acid), NODAGA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), and DOTAGA (1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid) were conjugated to the C-terminus of anti-HER3 affibody molecule Z08698 and conjugates were labeled with indium-111. All conjugates bound specifically and with picomolar affinity to HER3 in vitro. In mice bearing HER3-expressing xenografts, no significant difference in tumor uptake between the conjugates was observed. Presence of the negatively charged 111In-DOTAGA-complex resulted in the lowest hepatic uptake and the highest tumor-to-liver ratio. In conclusion, the choice of chelator influences the biodistribution of indium-111 labeled anti-HER3 affibody molecules. Hepatic uptake of anti-HER3 affibody molecules could be reduced by the increase of negative charge of the radiometal-chelator complex on the C-terminus without significantly influencing the tumor uptake.
Collapse
Affiliation(s)
- Sara S Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Abstract
Since the approval of the first monoclonal antibody (mAb), rituximab, for hematological malignancies, almost 30 additional mAbs have been approved in oncology. Despite remarkable advances, relatively weak responses and resistance to antibody monotherapy remain major open issue. Overcoming resistance might require combinations of drugs blocking both the major target and the emerging secondary target. We review clinically approved combinations of antibodies and either cytotoxic regimens (chemotherapy and irradiation) or kinase inhibitors. Thereafter, we focus on the most promising and currently very active arena that combines mAbs inhibiting immune checkpoints or growth factor receptors. Clinically approved and experimental oligoclonal mixtures of mAbs targeting different antigens (hetero-combinations) or different epitopes of the same antigen (homo-combinations) are described. Effective oligoclonal mixtures of antibodies that mimic the polyclonal immune response will likely become a mainstay of cancer therapy.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Luhtala S, Staff S, Kallioniemi A, Tanner M, Isola J. Clinicopathological and prognostic correlations of HER3 expression and its degradation regulators, NEDD4-1 and NRDP1, in primary breast cancer. BMC Cancer 2018; 18:1045. [PMID: 30367623 PMCID: PMC6204010 DOI: 10.1186/s12885-018-4917-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human epidermal growth factor receptor HER3 (ErbB3), especially in association with its relative HER2 (ErbB2), is known as a key oncogene in breast tumour biology. Nonetheless, the prognostic relevance of HER3 remains controversial. NEDD4–1 and NRDP1 are signalling molecules closely related to the degradation of HER3 via ubiquitination. NEDD4–1 and NRDP1 have been reported to contribute to HER3-mediated signalling by regulating its localization and cell membrane retention. We studied correlations between HER3, NEDD4–1, and NRDP1 protein expression and their association with tumour histopathological characteristics and clinical outcomes. Methods The prevalence of immunohistochemically detectable expression profiles of HER3 (n = 177), NEDD4–1 (n = 145), and NRDP1 (n = 145) proteins was studied in primary breast carcinomas on archival formalin-fixed paraffin-embedded (FFPE) samples. Clinicopathological correlations were determined statistically using Pearson’s Chi-Square test. The Kaplan-Meier method, log-rank test (Mantel-Cox), and Cox regression analysis were utilized for survival analysis. Results HER3 protein was expressed in breast carcinomas without association with HER2 gene amplification status. Absence or low HER3 expression correlated with clinically aggressive features, such as triple-negative breast cancer (TNBC) phenotype, basal cell origin (cytokeratin 5/14 expression combined with ER negativity), large tumour size, and positive lymph node status. Low total HER3 expression was prognostic for shorter recurrence-free survival time in HER2-amplified breast cancer (p = 0.004, p = 0.020 in univariate and multivariate analyses, respectively). The majority (82.8%) of breast cancers demonstrated NEDD4–1 protein expression - while only a minor proportion (8.3%) of carcinomas expressed NRDP1. NEDD4–1 and NRDP1 expression were not associated with clinical outcomes in HER2-amplified breast cancer, irrespective of adjuvant trastuzumab therapy. Conclusions Low HER3 expression is suggested to be a valuable prognostic biomarker to predict recurrence in HER2-amplified breast cancer. Neither NEDD4–1 nor NRDP1 demonstrated relevance in prognostics or in the subclassification of HER2-amplified breast carcinomas. Electronic supplementary material The online version of this article (10.1186/s12885-018-4917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Luhtala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Synnöve Staff
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
28
|
Wang R, Bhattacharya R, Ye X, Fan F, Boulbes DR, Ellis LM. Endothelial Cells Promote Colorectal Cancer Cell Survival by Activating the HER3-AKT Pathway in a Paracrine Fashion. Mol Cancer Res 2018; 17:20-29. [PMID: 30131447 DOI: 10.1158/1541-7786.mcr-18-0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The regulation of colorectal cancer cell survival pathways remains to be elucidated. Previously, it was demonstrated that endothelial cells (EC) from the liver (liver parenchymal ECs or LPEC), the most common site of colorectal cancer metastases, secrete soluble factors in the conditioned medium (CM) that, in turn, increase the cancer stem cell phenotype in colorectal cancer cells. However, the paracrine effects of LPECs on other colorectal cancer cellular functions have not been investigated. Here, results showed that CM from LPECs increased cell growth and chemoresistance by activating AKT in colorectal cancer cells in vitro. Using an unbiased receptor tyrosine kinase array, it was determined that human epidermal growth factor receptor 3 (ERBB3/HER3) was activated by CM from LPECs, and it mediated AKT activation, cell growth, and chemoresistance in colorectal cancer cells. Inhibition of HER3, either by an inhibitor AZD8931 or an antibody MM-121, blocked LPEC-induced HER3-AKT activation and cell survival in colorectal cancer cells. In addition, CM from LPECs increased in vivo tumor growth in a xenograft mouse model. Furthermore, inhibiting HER3 with AZD8931 significantly blocked tumor growth induced by EC CM. These results demonstrated a paracrine role of liver ECs in promoting cell growth and chemoresistance via activating HER3-AKT in colorectal cancer cells. IMPLICATIONS: This study suggested a potential of treating patients with metastatic colorectal cancer with HER3 antibodies/inhibitors that are currently being assessed in clinical trials for various cancer types.
Collapse
Affiliation(s)
- Rui Wang
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Xiangcang Ye
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Delphine R Boulbes
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
29
|
Romaniello D, Mazzeo L, Mancini M, Marrocco I, Noronha A, Kreitman M, Srivastava S, Ghosh S, Lindzen M, Salame TM, Onn A, Bar J, Yarden Y. A Combination of Approved Antibodies Overcomes Resistance of Lung Cancer to Osimertinib by Blocking Bypass Pathways. Clin Cancer Res 2018; 24:5610-5621. [PMID: 29967248 DOI: 10.1158/1078-0432.ccr-18-0450] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Because of emergence of resistance to osimertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), no targeted treatments are available for patients with lung cancer who lose sensitivity due to new mutations or bypass mechanisms. We examined in animals and in vitro an alternative therapeutic approach making use of antibodies.Experimental Design: An osimertinib-sensitive animal model of lung cancer, which rapidly develops drug resistance, has been employed. To overcome compensatory hyperactivation of ERK, which we previously reported, an anti-EGFR antibody (cetuximab) was combined with other antibodies, as well as with a subtherapeutic dose of osimertinib, and cancer cell apoptosis was assayed.Results: Our animal studies identified a combination of three clinically approved drugs, cetuximab, trastuzumab (an anti-HER2 mAb), and osimertinib (low dose), as an effective and long-lasting treatment that is able to prevent onset of resistance to osimertinib. A continuous schedule of concurrent treatment was sufficient for effective tumor inhibition and for prevention of relapses. Studies employing cultured cells and analyses of tumor extracts indicated that the combination of two mAbs and a subtherapeutic TKI dose sorted EGFR and HER2 for degradation; cooperatively enhanced apoptosis; inhibited activation of ERK; and reduced abundance of several bypass proteins, namely MET, AXL, and HER3.Conclusions: Our in vitro assays and animal studies identified an effective combination of clinically approved drugs that might overcome resistance to irreversible TKIs in clinical settings. The results we present attribute the long-lasting effect of the drug combination to simultaneous blockade of several well-characterized mechanisms of drug resistance. Clin Cancer Res; 24(22); 5610-21. ©2018 AACR See related commentary by Fan and Yu, p. 5499.
Collapse
Affiliation(s)
| | - Luigi Mazzeo
- Department of Biological Regulation, Rehovot, Israel
| | | | | | | | | | | | - Soma Ghosh
- Department of Biological Regulation, Rehovot, Israel
| | | | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Onn
- Institute of Pulmonology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Rehovot, Israel.
| |
Collapse
|
30
|
Capone E, Lamolinara A, D'Agostino D, Rossi C, De Laurenzi V, Iezzi M, Iacobelli S, Sala G. EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma. J Control Release 2018; 277:48-56. [PMID: 29550398 DOI: 10.1016/j.jconrel.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Cutaneous melanoma is one of the cancers with the fastest rising incidence and in its advanced metastatic form is a highly lethal disease. Despite the recent approval of several new drugs, the 5-year overall survival rate for advanced cutaneous melanoma is still below 20% and therefore, the development of novel treatments remains a primary need. Antibody-Drug Conjugates are an emerging novel class of anticancer agents, whose preclinical and clinical development has recently seen a remarkable increase in different tumors, including melanoma. Here, we have coupled the anti-HER-3 internalizing antibody EV20 to the cytotoxic drug monomethyl auristatin F (MMAF) to form a novel antibody-drug conjugate (EV20/MMAF). In a panel of human melanoma cell lines, this novel ADC shows a powerful, specific and target-dependent cell killing activity, independently of BRAF status. Efficacy studies demonstrated that a single administration of EV20/MMAF leads to a long-lasting tumor growth inhibition. Remarkably, the effect of this novel ADC was superior to the BRAF inhibitor vemurafenib in preventing kidney, liver and lung melanoma metastases. Overall, these results highlight EV20/MMAF as a novel ADC with promising therapeutic efficacy, warranting extensive pre-clinical evaluation in melanoma with high levels of HER-3 expression.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, CeSi-Met, University of Chieti-Pescara, Chieti, Italy
| | - Daniela D'Agostino
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Cosmo Rossi
- Aging Research Center and Translational Medicine (CeSI-Met), Italy
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, CeSi-Met, University of Chieti-Pescara, Chieti, Italy
| | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy; MediaPharma s.r.l., Via della Colonnetta 50/A, Chieti, Italy.
| |
Collapse
|
31
|
Mancini M, Gal H, Gaborit N, Mazzeo L, Romaniello D, Salame TM, Lindzen M, Mahlknecht G, Enuka Y, Burton DG, Roth L, Noronha A, Marrocco I, Adreka D, Altstadter RE, Bousquet E, Downward J, Maraver A, Krizhanovsky V, Yarden Y. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018; 10:294-308. [PMID: 29212784 PMCID: PMC5801506 DOI: 10.15252/emmm.201708076] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations identify patients with lung cancer who derive benefit from kinase inhibitors. However, most patients eventually develop resistance, primarily due to the T790M second-site mutation. Irreversible inhibitors (e.g., osimertinib/AZD9291) inhibit T790M-EGFR, but several mechanisms, including a third-site mutation, C797S, confer renewed resistance. We previously reported that a triple mixture of monoclonal antibodies, 3×mAbs, simultaneously targeting EGFR, HER2, and HER3, inhibits T790M-expressing tumors. We now report that 3×mAbs, including a triplet containing cetuximab and trastuzumab, inhibits C797S-expressing tumors. Unlike osimertinib, which induces apoptosis, 3×mAbs promotes degradation of the three receptors and induces cellular senescence. Consistent with distinct mechanisms, treatments combining 3×mAbs plus sub-inhibitory doses of osimertinib synergistically and persistently eliminated tumors. Thus, oligoclonal antibodies, either alone or in combination with kinase inhibitors, might preempt repeated cycles of treatment and rapid emergence of resistance.
Collapse
Affiliation(s)
- Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hilah Gal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Luigi Mazzeo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Georg Mahlknecht
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dominick Ga Burton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Adreka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Emilie Bousquet
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Julian Downward
- Signal Transduction Laboratory, Francis Crick Institute, London, UK
- Lung Cancer Group, The Institute of Cancer Research, London, UK
| | - Antonio Maraver
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Booth L, Roberts JL, Avogadri-Connors F, Cutler RE, Lalani AS, Poklepovic A, Dent P. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells. Cancer Biol Ther 2018; 19:239-247. [PMID: 29333953 DOI: 10.1080/15384047.2018.1423927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.
Collapse
Affiliation(s)
- Laurence Booth
- a Departments of Biochemistry and Molecular Biology , Richmond , VA
| | - Jane L Roberts
- a Departments of Biochemistry and Molecular Biology , Richmond , VA
| | | | | | | | - Andrew Poklepovic
- b Departments of Medicine , Virginia Commonwealth University , Richmond , VA
| | - Paul Dent
- a Departments of Biochemistry and Molecular Biology , Richmond , VA
| |
Collapse
|
33
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
34
|
Capone E, Giansanti F, Ponziani S, Lamolinara A, Iezzi M, Cimini A, Angelucci F, Sorda RL, Laurenzi VD, Natali PG, Ippoliti R, Iacobelli S, Sala G. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget 2017; 8:95412-95424. [PMID: 29221137 PMCID: PMC5707031 DOI: 10.18632/oncotarget.20728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology Temple University, Philadelphia, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | | | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Stefano Iacobelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| |
Collapse
|
35
|
Le Clorennec C, Bazin H, Dubreuil O, Larbouret C, Ogier C, Lazrek Y, Garambois V, Poul MA, Mondon P, Barret JM, Mathis G, Prost JF, Pèlegrin A, Chardès T. Neuregulin 1 Allosterically Enhances the Antitumor Effects of the Noncompeting Anti-HER3 Antibody 9F7-F11 by Increasing Its Binding to HER3. Mol Cancer Ther 2017; 16:1312-1323. [PMID: 28507002 DOI: 10.1158/1535-7163.mct-16-0886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
Exploratory clinical trials using therapeutic anti-HER3 antibodies strongly suggest that neuregulin (NRG1; HER3 ligand) expression at tumor sites is a predictive biomarker of anti-HER3 antibody efficacy in cancer. We hypothesized that in NRG1-expressing tumors, where the ligand is present before antibody treatment, anti-HER3 antibodies that do not compete with NRG1 for receptor binding have a higher receptor-neutralizing action than antibodies competing with the ligand for binding to HER3. Using time-resolved-fluorescence energy transfer (TR-FRET), we demonstrated that in the presence of recombinant NRG1, binding of 9F7-F11 (a nonligand-competing anti-HER3 antibody) to HER3 is increased, whereas that of ligand-competing anti-HER3 antibodies (H4B-121, U3-1287, Ab#6, Mab205.10.2, and MOR09825) is decreased. Moreover, 9F7-F11 showed higher efficacy than antibodies that compete with the ligand for binding to HER3. Specifically, 9F7-F11 inhibition of cell proliferation and of HER3/AKT/ERK1/2 phosphorylation as well as 9F7-F11-dependent cell-mediated cytotoxicity were higher in cancer cells preincubated with recombinant NRG1 compared with cells directly exposed to the anti-HER3 antibody. This translated in vivo into enhanced growth inhibition of NRG1-expressing BxPC3 pancreatic, A549 lung, and HCC-1806 breast cell tumor xenografts in mice treated with 9F7-F11 compared with H4B-121. Conversely, both antibodies had similar antitumor effect in NRG1-negative HPAC pancreatic carcinoma cells. In conclusion, the allosteric modulator 9F7-F11 shows increased anticancer effectiveness in the presence of NRG1 and thus represents a novel treatment strategy for NRG1-addicted tumors. Mol Cancer Ther; 16(7); 1312-23. ©2017 AACR.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | | | | | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | - Charline Ogier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | - Yassamine Lazrek
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | | | | | | | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. .,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,ICM, Institut régional du Cancer de Montpellier, France
| |
Collapse
|
36
|
Schmitt LC, Rau A, Seifert O, Honer J, Hutt M, Schmid S, Zantow J, Hust M, Dübel S, Olayioye MA, Kontermann RE. Inhibition of HER3 activation and tumor growth with a human antibody binding to a conserved epitope formed by domain III and IV. MAbs 2017; 9:831-843. [PMID: 28421882 DOI: 10.1080/19420862.2017.1319023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3-43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3-43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3-43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Lisa C Schmitt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Alexander Rau
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Honer
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Meike Hutt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Simone Schmid
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Zantow
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Michael Hust
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Stefan Dübel
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Monilola A Olayioye
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
37
|
Kennedy SP, Hastings JF, Han JZR, Croucher DR. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family. Front Cell Dev Biol 2016; 4:88. [PMID: 27597943 PMCID: PMC4992703 DOI: 10.3389/fcell.2016.00088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022] Open
Abstract
Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies.
Collapse
Affiliation(s)
- Sean P Kennedy
- Systems Biology Ireland, University College DublinDublin, Ireland; Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydney, NSW, Australia
| | - Jordan F Hastings
- Kinghorn Cancer Centre, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Jeremy Z R Han
- Kinghorn Cancer Centre, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - David R Croucher
- Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydney, NSW, Australia; School of Medicine, University College DublinDublin, Ireland; St Vincent's Hospital Clinical School, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
38
|
Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Mol Cell Biol 2016; 36:2011-26. [PMID: 27185877 DOI: 10.1128/mcb.00180-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/06/2016] [Indexed: 01/11/2023] Open
Abstract
The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.
Collapse
|
39
|
Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, Melino G, Pèlegrin A, Chardès T. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget 2016; 7:37013-37029. [PMID: 27203743 PMCID: PMC5095055 DOI: 10.18632/oncotarget.9455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/28/2023] Open
Abstract
We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4). Overexpression of the ITCH/AIP4 inhibitor N4BP1 or small-interfering RNA-mediated knockdown of ITCH/AIP4 inhibited HER3 ubiquitination/degradation and PI3K/AKT signaling blockade induced by 9F7-F11. Moreover, 9F7-F11-mediated JNK1/2 phosphorylation led to ITCH/AIP4 activation and recruitment to HER3 for receptor ubiquitination and degradation. ITCH/AIP4 activity was activated by the deubiquitinases USP8 and USP9X, as demonstrated by RNA interference. Taken together, our results suggest that 9F7-F11-induced HER3 ubiquitination and degradation in cancer cells mainly occurs through JNK1/2-dependent ITCH/AIP4 activation.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Yassamine Lazrek
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
- Millegen SA, Labège, F-31670, France
- Institut Pasteur de Guyane, BP 6010, 97306, Cayenne Cedex, France
| | - Olivier Dubreuil
- Millegen SA, Labège, F-31670, France
- GamaMabs Pharma SA, Centre Pierre Potier, ONCOPOLE, BP 50624, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Philippe Mondon
- Millegen SA, Labège, F-31670, France
- LFB Biotechnologies, 59000, Lille, France
| | - Gerry Melino
- Biochemistry Laboratory, Instituto Dermopatico Dell'Immacolata, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Toxicology Unit, Medical Research Council, Leicester University, Leicester LE1 9HN, United Kingdom
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| |
Collapse
|
40
|
An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers. Cell Death Discov 2016; 2:16041. [PMID: 27551531 PMCID: PMC4979427 DOI: 10.1038/cddiscovery.2016.41] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT), a crucial mechanism in development, mediates aggressiveness during carcinoma progression and therapeutic refractoriness. The reversibility of EMT makes it an attractive strategy in designing novel therapeutic approaches. Therefore, drug discovery pipelines for EMT reversal are in need to discover emerging classes of compounds. Here, we outline a pre-clinical drug screening platform for EMT reversal that consists of three phases of drug discovery and validation. From the Phase 1 epithelial marker promoter induction (EpI) screen on a library consisting of compounds being approved by Food and Drug Administration (FDA), Vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), is identified to exert EMT reversal effects by restoring the expression of an epithelial marker, E-cadherin. An expanded screen on 41 HDACi further identifies 28 compounds, such as class I-specific HDACi Mocetinosat, Entinostat and CI994, to restore E-cadherin and ErbB3 expressions in ovarian, pancreatic and bladder carcinoma cells. Mocetinostat is the most potent HDACi to restore epithelial differentiation with the lowest concentration required for 50% induction of epithelial promoter activity (EpIC-50).The HDACi exerts paradoxical effects on EMT transcriptional factors such as SNAI and ZEB family and the effects are context-dependent in epithelial- and mesenchymal-like cells. In vitro functional studies further show that HDACi induced significant increase in anoikis and decrease in spheroid formation in ovarian and bladder carcinoma cells with mesenchymal features. This study demonstrates a robust drug screening pipeline for the discovery of compounds capable of restoring epithelial differentiation that lead to significant functional lethality.
Collapse
|