1
|
Sun Y, Wei L, Liu H, Zong G, Xia Z, Li X, Yin Z, Huang D, Zhang Y. Deficiency of myeloid discoidin domain receptor 2 aggravates melanoma lung and bone metastasis. Invest New Drugs 2024:10.1007/s10637-024-01496-2. [PMID: 39725777 DOI: 10.1007/s10637-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Melanoma, one of the most prevalent cancers worldwide, frequently metastasizes to the lung and bones. Tumor-associated macrophages play essential roles in melanoma metastasis but the underlying mechanism remains obscure. We previously demonstrated that specific knockout of Ddr2, a receptor tyrosine kinase, exacerbates systemic inflammation via modulating macrophage repolarization. To investigate whether myeloid Ddr2 regulates melanoma growth and metastasis, we injected B16BL6 melanoma cells into Ddr2LysM (cKO) mice via subcutaneous neck, tail vein, and left ventricle, respectively. We found that the growth of melanoma cells in cKO mice was significantly retarded, as demonstrated by the subcutaneous transplantation tumor model. Unexpectedly, the melanoma metastasis to the lung or bone was significantly stimulated in cKO mice, indicating the complicated role of Ddr2 in macrophages in melanoma development. Furthermore, Ddr2 in macrophages regulated the migration of B16BL6 cells in the co-culture system. Bioinformatics analysis showed that Ddr2 expression correlates with improved prognostic outcomes in melanoma, and high expression of Ddr2 is protective in melanoma metastasis. Our results enrich the current knowledge of Ddr2 in tumor biology and indicate that more consideration should be taken when applying Ddr2 inhibition as a melanoma treatment strategy.
Collapse
Affiliation(s)
- Yue Sun
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liangliang Wei
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Gaoyang Zong
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhihao Xia
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiangyang Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dageng Huang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Yan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
2
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Shi Y, Zhao W, Ding Y, Ge X, Ju M. Research on the influence of radiotherapy-related genes on immune infiltration, immunotherapy response and prognosis in melanoma based on multi-omics. Front Immunol 2024; 15:1467098. [PMID: 39687627 PMCID: PMC11647020 DOI: 10.3389/fimmu.2024.1467098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is a significant oncological challenge due to its aggressive nature and poor treatment outcomes. This study explores the comprehensive effects of radiotherapy (RT) in SKCM, focusing on cell signaling pathways, immune infiltration, immune gene correlations, immunotherapy response, and prognosis. Methods Using the Cancer Genome Atlas (TCGA) database, differentially expressed genes (DEGs) in SKCM patients undergoing RT were identified. A risk score model based on these DEGs was developed to assess the effects of RT-related genes on drug sensitivity, immune cell infiltration, immunotherapy response, and prognosis through multi-omics analysis. Human melanoma cells UACC62 and UACC257 were irradiated with 8 Gy gamma ray to establish an in vitro model, verifying the impact of radiotherapy on gene expression. Results The risk score demonstrated significant prognostic value and emerged as an independent prognostic factor. miRNA-mRNA and transcription factor regulatory networks underscored its clinical significance. Four key genes were identified: DUSP1, CXCL13, SLAMF7, and EVI2B. Analysis of single-cell and immunotherapy datasets indicated that these genes enhance immune response and immunotherapy efficacy in melanoma patients. PCR results confirmed that gamma rays increased the expression of these genes in human melanoma cells UACC62 and UACC257. Conclusion Using a multi-omics approach, we analyzed and validated the impact of RT on the immune landscape of melanoma patients. Our findings highlight the critical role of RT-related genes in predicting SKCM prognosis and guiding personalized therapy strategies, particularly in the context of immunotherapy. These contribute to understanding the role of radiotherapy combined with immunotherapy in melanoma.
Collapse
Affiliation(s)
- Yujing Shi
- Department of Oncology, Affiliated Jurong Hospital of Jiangsu University, Zhenjiang, ;China
| | - Wantong Zhao
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, ;China
| | - Yuanjian Ding
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, ;Japan
| | - Xiaolin Ge
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, ;China
| | - Mengyang Ju
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, ;Japan
| |
Collapse
|
4
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Verkhovskaia S, Falcone R, Di Pietro FR, Carbone ML, Samela T, Perez M, Poti G, Morelli MF, Zappalà AR, Di Rocco ZC, Morese R, Piesco G, Chesi P, Marchetti P, Abeni D, Failla CM, De Galitiis F. Survival of Patients with Metastatic Melanoma Treated with Ipilimumab after PD-1 Inhibitors: A Single-Center Real-World Study. Cancers (Basel) 2024; 16:3397. [PMID: 39410017 PMCID: PMC11475497 DOI: 10.3390/cancers16193397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND When monotherapy with PD-1 inhibitors in metastatic melanoma fails, there are currently no standard second-line choices. In case of the unavailability of clinical trials, ipilimumab represents a possible alternative treatment. METHODS We collected data of 44 patients who received ipilimumab after the failure of PD-1 inhibitors from July 2017 to May 2023 at our Institute. Overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) based on BRAF or NRAS mutation status, sex, and the presence of brain metastases were estimated using the Kaplan-Meier method. Cox regression was used to evaluate independence in multivariate analysis. The objective response rate (ORR) was estimated based on RECIST 1.1. RESULTS Among the 44 patients enrolled in this study, 28 BRAF-wildtype, 9 BRAF-mutated, and 7 NRAS-mutated patients were identified. OS analysis showed a significant difference between wildtype and BRAF- or NRAS-mutated patients: 23.2 months vs 5.3 and 4.59, respectively, p = 0.017. The presence of brain metastases and BRAF or NRAS mutation were independent factors for mortality in multivariate analysis. CONCLUSIONS In case of failure to enroll patients in innovative clinical trials, second-line ipilimumab still represents an effective therapy in patients with metastatic wildtype melanoma and in the absence of brain metastases.
Collapse
Affiliation(s)
- Sofia Verkhovskaia
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Rosa Falcone
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Francesca Romana Di Pietro
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Tonia Samela
- Epidemiology Units, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (T.S.); (D.A.)
| | - Marie Perez
- Department of Histopathology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy;
| | - Giulia Poti
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Maria Francesca Morelli
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Albina Rita Zappalà
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Zorika Christiana Di Rocco
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Roberto Morese
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Gabriele Piesco
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Paolo Chesi
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Paolo Marchetti
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| | - Damiano Abeni
- Epidemiology Units, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (T.S.); (D.A.)
| | - Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy;
| | - Federica De Galitiis
- Department of Oncology, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy; (S.V.); (R.F.); (F.R.D.P.); (G.P.); (M.F.M.); (A.R.Z.); (Z.C.D.R.); (R.M.); (G.P.); (P.C.); (P.M.); (F.D.G.)
| |
Collapse
|
6
|
Nkune NW, Abrahamse H. Combinatorial approach of cannabidiol and active-targeted-mediated photodynamic therapy in malignant melanoma treatment. JOURNAL OF BIOPHOTONICS 2024; 17:e202400191. [PMID: 39074910 DOI: 10.1002/jbio.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Malignant melanoma (MM) continues to claim millions of lives around the world due to its limited therapeutic alternatives. Photodynamic therapy (PDT) has gained popularity in cancer treatment due it increased potency and low off-target toxicity. Studies have pointed out that the heterogeneity of MM tumours reduces the efficacy of current therapeutic approaches, including PDT, leading to high chances of recurrences post-treatment. Accumulating evidence suggests that cannabidiol (CBD), a non-psychoactive derivative of cannabis, can synergise with various anticancer agents to increase their efficacy. However, CBD demonstrates low bioavailability, which is attributed to factors relating to poor water compatibility, poor absorption and rapid metabolism. Nanotechnology offers tools that address these issues and enhance the biological efficiency and targeted specificity of anticancer agents. Herein, we highlighted the standard therapeutic modalities of MM and their pitfalls, as well as pointed out the need for further investigation into PDT combination therapy with CBD.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
7
|
Hung SK, Lee MS, Chiou WY, Liu DW, Yu CC, Chen LC, Lin RI, Chew CH, Hsu FC, Yang HJ, Chan MWY, Lin HY. Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Med J 2024; 36:396-406. [PMID: 39421493 PMCID: PMC11483092 DOI: 10.4103/tcmj.tcmj_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 10/19/2024] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities in managing cancer patients. Recently, combined RT and immunotherapy (IT) (i.e., radio-IT [RIT]) have been aggressively investigated in managing cancer patients. However, several issues in conducting RIT are challenging, such as incorporating advanced irradiation techniques, predictive/prognostic biomarkers, and other treatment modalities. Several clinical efforts and novel biomarkers have been introduced and developed to solve these challenges. For example, stereotactic radiosurgery/stereotactic radiotherapy, stereotactic body radiotherapy/stereotactic ablative body radiotherapy, and FLASH-RT have been applied for delivering precise irradiation to lung and liver tumors in conjunction with IT. Besides, several novel IT agents and incorporations of other therapies, such as targeted and thermal therapies, have been further investigated. The present study reviewed the emerging challenges of RIT in modern oncology. We also evaluated clinical practice, bench research, and multimodality treatments. In addition to several clinically applicable biomarkers, we emphasize the roles of advanced irradiation techniques and epigenetic modification as predictive/prognostic biomarkers and potential therapeutic targets. For example, 6(m) A-based epigenetic agents demonstrate the potential to enhance the treatment effects of RIT. However, further prospective randomized trials should be conducted to confirm their roles.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
8
|
Nassief G, Anaeme A, Moussa K, Mansour AN, Ansstas G. Recent Advancements in Cell-Based Therapies in Melanoma. Int J Mol Sci 2024; 25:9848. [PMID: 39337333 PMCID: PMC11432154 DOI: 10.3390/ijms25189848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Malignant melanoma outcomes have drastically changed in recent years due to the introduction of immune checkpoint inhibitors (ICIs). However, many patients still experience intolerable side effects, therapy resistance, and disease progression on ICI therapy. Therefore, there remains a need for novel therapeutics that address this gap in treatment options. Cell-based therapies have gained wide attention as a therapeutic option that could address this gap in treatment options for advanced melanoma. These therapies work by extracting certain cell types produced in the human body such as T-cells, modifying them based on a specific target, and transfusing them back into the patient. In the realm of cancer therapy, cell-based therapies utilize immune cells to target tumor cells while sparing healthy cells. Recently, the Food and Drug Administration (FDA) has approved the usage of lifileucel, a tumor-infiltrating lymphocyte (TIL) therapy, in advanced melanoma. This came following recent results from the C-144-01 study (NCT02360579), which demonstrated the efficacy and safety of TILs in metastatic melanoma patients who otherwise failed on standard ICI/targeted therapy. Thus, the results of this trial as well as the recent FDA approval have proven the viability of utilizing cell-based therapies to fill the gap in treatment options for patients with advanced melanoma. This review aims to provide a comprehensive overview of major cell-based therapies that have been utilized in melanoma by delineating results of the most recent multi-center phase II/ III clinical trials that evaluate the efficacy and safety of major cell-based therapies in melanoma. Additionally, we provide a summary of current limitations in each cell-based therapeutic option as well as a future direction of how to further extrapolate these cell-based therapies in advanced melanoma.
Collapse
Affiliation(s)
- George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Angela Anaeme
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Karen Moussa
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Abdallah N Mansour
- Department of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| |
Collapse
|
9
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Ji X, Jiang R, Liu T, Provencio M, Lee SC, Zhan Q, Zhou X. Efficacy and safety of immune checkpoint inhibitors for advanced non-small cell lung cancer with leptomeningeal metastases harboring targetable mutations. Transl Lung Cancer Res 2024; 13:1695-1707. [PMID: 39118876 PMCID: PMC11304138 DOI: 10.21037/tlcr-24-477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
Background Driver gene-positive non-small cell lung cancer (NSCLC) patients are prone to develop leptomeningeal metastasis (LM), leading to an extremely high mortality. The objective of this study was to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) treatments for patients with NSCLC and LM harboring targetable mutations. Methods We retrospectively collected records of patients with NSCLC harboring targetable mutations and prescribed ICIs following the diagnosis of LM at Huashan Hospital, Fudan University. In addition, we reviewed relevant literature and enrolled patients who met the inclusion criteria. Clinical characteristics were statistically analyzed, and the Kaplan-Meier method and log-rank test were employed to assess the median progression-free survival (mPFS) and median overall survival (mOS). Results A total of 37 patients with NSCLC harboring targetable mutations who received ICIs after LM diagnosis were included. The median age of the enrolled patients was 54 years (range, 33-70 years), and 62.2% were female. Following ICI administration, the intracranial objective response rate (iORR) and intracranial disease control rate (iDCR) for all enrolled patients were 18.9% and 62.2%, respectively. The mPFS of all patients was 2.5 months [95% confidence interval (CI): 2.166-2.834 months] and the mOS was 5.8 months (95% CI: 5.087-6.513 months). Both univariate and multivariate analyses revealed a significant increase in mOS or individuals who had previously undergone cranial radiation therapy compared to those who had not. Furthermore, different histology molecular types were found to be potentially associated with survival time. Conclusions Some patients with NSCLC harboring targetable gene mutations following LM diagnosis may benefit from ICI treatment with relatively good tolerance. However, further screening of the most suitable patient populations for ICIs is required.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rongrong Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Sang Chul Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Duan JL, Yang J, Zhang YL, Huang WT. Amelanotic primary cervical malignant melanoma: A case report and review of literature. World J Clin Oncol 2024; 15:953-960. [PMID: 39071457 PMCID: PMC11271727 DOI: 10.5306/wjco.v15.i7.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Primary malignant melanoma of the cervix (PMMC) is an extremely rare disease that originates from primary cervical malignant melanoma and frequently represents a challenge in disease diagnosis due to unclarified clinical and histological presentations, particularly those without melanin. CASE SUMMARY Here, we report a case of amelanotic PMMC, with a history of breast cancer and thyroid carcinoma. The patient was finally diagnosed by immunohistochemical staining and staged as IB2 based on the International Federation of Gynecology and Obstetrics with reference to National Comprehensive Cancer Network guidelines and was treated with radical hysterectomy, bilateral salpingo-oophorectomy and pelvic lymphadenectomy. She then received combination therapy consisting of immunotherapy with tislelizumab and radiofrequency hyperthermia. She has remained free of disease for more than 1 year. CONCLUSION The differential diagnosis process reenforced the notion that immunohistochemical staining is the most reliable approach for amelanotic PMMC diagnosis. Due to the lack of established therapeutic guidelines, empirical information from limited available studies does not provide the rationale for treatment-decision making. By integrating 'omics' technologies and patient-derived xenografts or mini-patient-derived xenograft models this will help to identify selective therapeutic window(s) and screen the appropriate therapeutics for targeted therapies, immune checkpoint blockade or combination therapy strategies effectively and precisely that will ultimately improve patient survival.
Collapse
Affiliation(s)
- Jin-Lin Duan
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| | - Jing Yang
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| | - Yong-Long Zhang
- Laboratory of Targeted Therapy and Precision Medicine, Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wen-Tao Huang
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| |
Collapse
|
13
|
Greene AC, Ziegler O, Quattrone M, Stack MJ, Becker B, Pameijer CR, Shen C. Association between Medicaid Expansion and Cutaneous Melanoma Diagnosis and Outcomes: Does Where You Live Make a Difference? Ann Surg Oncol 2024; 31:4584-4593. [PMID: 38553653 DOI: 10.1245/s10434-024-15214-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Early detection and standardized treatment are crucial for enhancing outcomes for patients with cutaneous melanoma, the commonly diagnosed skin cancer. However, access to quality health care services remains a critical barrier for many patients, particularly the uninsured. Whereas Medicaid expansion (ME) has had a positive impact on some cancers, its specific influence on cutaneous melanoma remains understudied. METHODS The National Cancer Database identified 87,512 patients 40-64 years of age with a diagnosis of non-metastatic cutaneous melanoma between 2004 and 2017. In this study, patient demographics, disease characteristics, and treatment variables were analyzed, and ME status was determined based on state policies. Standard univariate statistics were used to compare patients with a diagnosis of non-metastatic cutaneous melanoma between ME and non-ME states. The Kaplan-Meier method and log-rank tests were used to evaluate overall survival (OS) between ME and non-ME states. Multivariable Cox regression models were used to examine associations with OS. RESULTS Overall, 28.6 % (n = 25,031) of the overall cohort was in ME states. The patients in ME states were more likely to be insured, live in neighborhoods with higher median income quartiles, receive treatment at academic/research cancer centers, have lower stages of disease, and receive surgery than the patients in non-ME states. Kaplan-Meier analysis found enhanced 5-year OS for the patients in ME states across all stages. Cox regression showed improved survival in ME states for stage II (hazard ratio [HR], 0.84) and stage III (HR, 0.75) melanoma. CONCLUSIONS This study underscores the positive association between ME and improved diagnosis, treatment, and outcomes for patients with non-metastatic cutaneous melanoma. These findings advocate for continued efforts to enhance health care accessibility for vulnerable populations.
Collapse
Affiliation(s)
- Alicia C Greene
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Olivia Ziegler
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - McKell Quattrone
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael J Stack
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Benjamin Becker
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Colette R Pameijer
- Division of Surgical Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Chan Shen
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
14
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
15
|
Ren X, Xue R, Luo Y, Wang S, Ge X, Yao X, Li L, Min J, Li M, Luo Z, Wang F. Programmable melanoma-targeted radio-immunotherapy via fusogenic liposomes functionalized with multivariate-gated aptamer assemblies. Nat Commun 2024; 15:5035. [PMID: 38866788 PMCID: PMC11169524 DOI: 10.1038/s41467-024-49482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Radio-immunotherapy exploits the immunostimulatory features of ionizing radiation (IR) to enhance antitumor effects and offers emerging opportunities for treating invasive tumor indications such as melanoma. However, insufficient dose deposition and immunosuppressive microenvironment (TME) of solid tumors limit its efficacy. Here we report a programmable sequential therapeutic strategy based on multifunctional fusogenic liposomes (Lip@AUR-ACP-aptPD-L1) to overcome the intrinsic radio-immunotherapeutic resistance of solid tumors. Specifically, fusogenic liposomes are loaded with gold-containing Auranofin (AUR) and inserted with multivariate-gated aptamer assemblies (ACP) and PD-L1 aptamers in the lipid membrane, potentiating melanoma-targeted AUR delivery while transferring ACP onto cell surface through selective membrane fusion. AUR amplifies IR-induced immunogenic death of melanoma cells to release antigens and damage-associated molecular patterns such as adenosine triphosphate (ATP) for triggering adaptive antitumor immunity. AUR-sensitized radiotherapy also upregulates matrix metalloproteinase-2 (MMP-2) expression that combined with released ATP to activate ACP through an "and" logic operation-like process (AND-gate), thus triggering the in-situ release of engineered cytosine-phosphate-guanine aptamer-based immunoadjuvants (eCpG) for stimulating dendritic cell-mediated T cell priming. Furthermore, AUR inhibits tumor-intrinsic vascular endothelial growth factor signaling to suppress infiltration of immunosuppressive cells for fostering an anti-tumorigenic TME. This study offers an approach for solid tumor treatment in the clinics.
Collapse
Affiliation(s)
- Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Rui Xue
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yan Luo
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Shuang Wang
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xinyue Ge
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital School of Public Health Institute of Translational Medicine State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital School of Public Health Institute of Translational Medicine State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
- The First Affiliated Hospital Basic Medical Sciences, School of Public Health Hengyang Medical School University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
16
|
Villani A, Potestio L, Lallas A, Apalla Z, Scalvenzi M, Martora F. Unaddressed Challenges in the Treatment of Cutaneous Melanoma? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:884. [PMID: 38929501 PMCID: PMC11205306 DOI: 10.3390/medicina60060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: While the management of noninvasive cutaneous melanoma (CM) is typically limited to a secondary excision to reduce recurrence risk and periodic follow-up, treating patients with advanced melanoma presents ongoing challenges. Materials and Methods: This review provides a comprehensive examination of both established and emerging pharmacologic strategies for advanced CM management, offering an up-to-date insight into the current therapeutic milieu. The dynamic landscape of advanced CM treatment is explored, highlighting the efficacy of immune checkpoint inhibitors and targeted therapies, either in monotherapy or combination regimens. Additionally, ongoing investigations into novel treatment modalities are thoroughly discussed, reflecting the evolving nature of melanoma management. Results: The therapeutic landscape for melanoma management is undergoing significant transformation. Although various treatment modalities exist, there remains a critical need for novel therapies, particularly for certain stages of melanoma or cases resistant to current options. Conclusions: Consequently, further studies are warranted to identify new treatment avenues and optimize the utilization of existing drugs.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Aimilios Lallas
- First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Zoe Apalla
- Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy (F.M.)
| |
Collapse
|
17
|
Tinca AC, Szoke AR, Lazar BA, Szász EA, Tomuț AN, Sabău AH, Cocuz IG, Cotoi TC, Niculescu R, Chiorean DM, Ungureanu IA, Turdean SG, Cotoi OS. H-VISTA Immunohistochemistry Score Is Associated with Advanced Stages in Cutaneous and Ocular Melanoma. Int J Mol Sci 2024; 25:4335. [PMID: 38673920 PMCID: PMC11049914 DOI: 10.3390/ijms25084335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma represents a public health issue. One of the biggest goals of current research is to develop new therapeutic options for patients affected by this aggressive tumor. We conducted a retrospective study including 105 patients diagnosed with cutaneous and ocular melanoma, with stages varying from pT1a to pT4b and pT4e, respectively, and we performed immunohistochemistry reactions with the new potential prognostic marker, VISTA (V-domain Ig suppressor of T cell activation). We quantified the expression by applying the H-score adapted for VISTA and divided the patients, based on the median value, into groups that presented high, low, and negative expression. Therefore, we obtained 65 cases with positive expression for cutaneous melanoma and 8 cases with positive expression for ocular melanoma. Forty-one cases presented high expression in cutaneous melanoma and three cases presented high expression in ocular melanoma. In cutaneous melanoma, analytic statistics showed that VISTA expression was associated with a high Breslow index, high mitotic count, high Ki67 expression, and advanced clinicopathological stage. The majority of ocular melanoma cases demonstrating a positive reaction were classified as stage pT3, whereas earlier stages showed a negative reaction. Our findings underscore a significant correlation between VISTA expression and key prognostic factors in melanoma. Looking ahead, the prospect of future randomized studies holds promise in corroborating the clinical relevance of our findings. By further elucidating the intricate relationship between VISTA expression and melanoma progression, new treatment strategies could be found, improving patient outcomes in this challenging neoplasm.
Collapse
Affiliation(s)
- Andreea Cătălina Tinca
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (A.H.S.); (R.N.); (D.M.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Andreea Raluca Szoke
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (A.H.S.); (R.N.); (D.M.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Bianca Andreea Lazar
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
| | - Emőke Andrea Szász
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Faculty of Medicine, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.N.T.); (I.A.U.)
| | - Alexandru Nicușor Tomuț
- Faculty of Medicine, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.N.T.); (I.A.U.)
| | - Adrian Horațiu Sabău
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (A.H.S.); (R.N.); (D.M.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Iuliu-Gabriel Cocuz
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Titiana-Cornelia Cotoi
- Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania;
| | - Raluca Niculescu
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (A.H.S.); (R.N.); (D.M.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Diana Maria Chiorean
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (A.H.S.); (R.N.); (D.M.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
| | - Ioana Ancuța Ungureanu
- Faculty of Medicine, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.N.T.); (I.A.U.)
| | - Sabin Gligore Turdean
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Faculty of Medicine, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania; (A.N.T.); (I.A.U.)
| | - Ovidiu Simion Cotoi
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania; (B.A.L.); (E.A.S.); (I.-G.C.); (S.G.T.); (O.S.C.)
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
18
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Sinclair R, Wong XL, Shumack S, Baker C, MacMahon B. The role of micrometastasis in high-risk skin cancers. Australas J Dermatol 2024; 65:143-152. [PMID: 38156714 DOI: 10.1111/ajd.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The propensity to metastasize is the most important prognostic indicator for solid cancers. New insights into the mechanisms of early carcinogenesis have revealed micrometastases are generated far earlier than previously thought. Evidence supports a synergistic relationship between vascular and lymphatic seeding which can occur before there is clinical evidence of a primary tumour. Early vascular seeding prepares distal sites for colonisation while regional lymphatics are co-opted to promote facilitative cancer cell mutations. In response, the host mounts a global inflammatory and immunomodulatory response towards these cells supporting the concept that cancer is a systemic disease. Cancer staging systems should be refined to better reflect cancer cell loads in various tissue compartments while clinical perspectives should be broadened to encompass this view when approaching high-risk cancers. Measured adjunctive therapies implemented earlier for low-volume, in-transit cancer offers the prospect of preventing advanced disease and the need for heroic therapeutic interventions. This review seeks to re-appraise how we view the metastatic process for solid cancers. It will explore in-transit metastasis in the context of high-risk skin cancer and how it dictates disease progression. It will also discuss how these implications will influence our current staging systems and its consequences on management.
Collapse
Affiliation(s)
- Robert Sinclair
- Queensland Institute of Dermatology, Brisbane, QLD, Australia
| | - Xin Lin Wong
- St George Dermatology and Skin Cancer Centre, New South Wales, Kogarah, Australia
| | - Stephen Shumack
- St George Dermatology and Skin Cancer Centre, New South Wales, Kogarah, Australia
- Department of Dermatology, Royal North Shore Hospital, New South Wales, Sydney, Australia
| | - Christopher Baker
- Department of Dermatology, St Vincents Hospital, Victoria, Melbourne, Australia
| | | |
Collapse
|
20
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Sener U, Webb M, Breen WG, Neth BJ, Laack NN, Routman D, Brown PD, Mahajan A, Frechette K, Dudek AZ, Markovic SN, Block MS, McWilliams RR, Dimou A, Kottschade LA, Montane HN, Kizilbash SH, Campian JL. Proton Craniospinal Irradiation with Immunotherapy in Two Patients with Leptomeningeal Disease from Melanoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:1-6. [PMID: 38327758 PMCID: PMC10846635 DOI: 10.36401/jipo-23-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/12/2024] [Indexed: 02/09/2024]
Abstract
Introduction Proton craniospinal irradiation (pCSI) is a treatment option for leptomeningeal disease (LMD), which permits whole neuroaxis treatment while minimizing toxicity. Despite this, patients inevitably experience progression. Adding systemic therapy to pCSI may improve outcomes. Methods In this single-institution retrospective case series, we present the feasibility of treatment with pCSI (30Gy, 10 fractions) and an immune checkpoint inhibitor (ICI) in two sequential patients with LMD from melanoma. Results The first patient developed LMD related to BRAF V600E-mutant melanoma after prior ICI and BRAF-targeted therapy. After pCSI with concurrent nivolumab, the addition of relatlimab, and BRAF-targeted therapy, he remained alive 7 months after LMD diagnosis despite central nervous system progression. The second patient developed LMD related to BRAF-wildtype melanoma after up-front ICI. He received pCSI with concurrent ipilimumab and nivolumab, then nivolumab maintenance. Though therapy was held for ICI hepatitis, the patient remained progression-free 5 months after LMD diagnosis. Conclusion Adding an ICI to pCSI is feasible for patients with LMD and demonstrates a tolerable toxicity profile. While prospective evaluation is ultimately warranted, pCSI with ICI may confer survival benefits, even after prior ICI.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mason Webb
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kelsey Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
He W, Zhang Y, Qu Y, Liu M, Li G, Pan L, Xu X, Shi G, Hao Q, Liu F, Gao Y. Research progress on hydrogel-based drug therapy in melanoma immunotherapy. BMB Rep 2024; 57:71-78. [PMID: 38053295 PMCID: PMC10910090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration. [BMB Reports 2024; 57(2): 71-78].
Collapse
Affiliation(s)
- Wei He
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Yanqin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
| | - Yi Qu
- Department of Xi’an Shunmei Medical Cosmetology Outpatient, Xi’an 710075, China
| | - Mengmeng Liu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Guodong Li
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Luxiang Pan
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyao Xu
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Gege Shi
- College of Life Science, Northwest University, Xi’an 710069, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Fen Liu
- Department of Periodontology, Shenzhen Stomatological Hospital (Pingshan), Southern Medical University, Shenzhen 510515, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
23
|
Chen W, Yang C, Chen B, Xi M, Chen B, Li Q. Management of metastatic bone disease of melanoma. Melanoma Res 2024; 34:22-30. [PMID: 37939058 DOI: 10.1097/cmr.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
One of the most aggressive tumors arising from the skin, mucosa, and uvea is malignant melanoma, which easily metastasizes. Bone tissue is one of the most typical locations for distant metastasis, and around 5%-20% of patients eventually acquired skeletal metastases. For decades, the incidence of bone metastases was higher, bringing greater burden on the family, society, and healthcare system owing to the progress of targeted therapy and immunotherapy, which prolonging the survival time substantially. Moreover, bone metastases result in skeletal-related events, which influence the quality of life, obviously. Appropriate intervention is therefore crucial. To obtain the optimum cost-effectiveness, existing treatment algorithm must be integrated, which is still controversial. We have aimed to throw light on current views concerning the formation, biological and clinical features, and treatment protocol of melanoma bone metastases to guide the decision-making process.
Collapse
Affiliation(s)
- Wenyan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Chen Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Biqi Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Baoqing Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Qiaoqiao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| |
Collapse
|
24
|
Xuan L, Bai C, Ju Z, Luo J, Guan H, Zhou PK, Huang R. Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy. Cytokine Growth Factor Rev 2024; 75:1-11. [PMID: 38061920 DOI: 10.1016/j.cytogfr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024]
Abstract
In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
25
|
Rahnea-Nita RA, Rebegea LF, Toma RV, Mocanu H, Soare I, Mihailov R, Nechifor A, Guliciuc M, Constantin GB, Rahnea-Nita G. Immunotherapy Combined with Radiation in Malignant Melanoma without BRAF Mutations Brain Metastases-Favorable Response after Immunotherapy Continued beyond Progression. J Pers Med 2024; 14:86. [PMID: 38248787 PMCID: PMC10817469 DOI: 10.3390/jpm14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
We present the case of a patient who was diagnosed in 2018 with nodular Malignant Melanoma (MM) without BRAF V 600 mutations stage 3 C (pT4b pN1a M0), and who underwent adjuvant citokines treatment with Interferon alpha 2b-48 weeks. Immunotherapy was initiated in January 2021 for lung and lymph node metastases. In June 2021, there was a partial response of the lung and lymph node metastases, but there was also progression to brain metastases. Immunotherapy was continued and Whole Brain Radiotherapy (WBRT) was performed. In September 2023, the imaging investigations revealed a favorable response, with no lesions suggestive of secondary determinations. The combination of Radiotherapy (RT) and Immunotherapy (IT) with Immune Checkpoint Inhibitors (ICI) has an abscopal effect. There is a coordinated action in the combination of RT and IT in order to obtain a common result, with the antitumor effect being greater than if RT or IT acted separately.
Collapse
Affiliation(s)
- Roxana-Andreea Rahnea-Nita
- The Clinical Department, The Faculty of Medicine, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.-A.R.-N.); (R.-V.T.)
- The Oncology-Palliative Care Department, “Sf. Luca” Chronic Disease Hospital, 041915 Bucharest, Romania;
| | - Laura-Florentina Rebegea
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
- The Radiotherapy Department, “Sf. Ap. Andrei” County Emergency Clinical Hospital, 800579 Galati, Romania
- The Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 800010 Galati, Romania
| | - Radu-Valeriu Toma
- The Clinical Department, The Faculty of Medicine, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (R.-A.R.-N.); (R.-V.T.)
- The Radiotherapy Department, The Oncological Institute, 022328 Bucharest, Romania
| | - Horia Mocanu
- The Clinical Department, The Faculty of Medicine, “Titu Maiorescu” University, 040051 Bucharest, Romania; (H.M.); (I.S.)
- The E.N.T Department, Gaesti City Hospital, 135200 Gaesti, Romania
| | - Ioana Soare
- The Clinical Department, The Faculty of Medicine, “Titu Maiorescu” University, 040051 Bucharest, Romania; (H.M.); (I.S.)
| | - Raul Mihailov
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
| | - Alexandru Nechifor
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
| | - Mădălin Guliciuc
- The Clinical Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania; (L.-F.R.); (R.M.); (A.N.); (M.G.)
- The Urology Department, “Sf. Ap. Andrei” County Emergency Clinical Hospital, 800579 Galati, Romania
| | - Georgiana Bianca Constantin
- The Morphological and Functional Sciences Department, The Faculty of Medicine and Pharmacy, “Dunarea de Jos” University in Galati, 800008 Galati, Romania
| | - Gabriela Rahnea-Nita
- The Oncology-Palliative Care Department, “Sf. Luca” Chronic Disease Hospital, 041915 Bucharest, Romania;
- The Clinical Department, The Faculty of Midwifery and Nursing, The University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
26
|
Zhang X, Cai X, Yan C. Opportunities and challenges in combining immunotherapy and radiotherapy in esophageal cancer. J Cancer Res Clin Oncol 2023; 149:18253-18270. [PMID: 37985502 PMCID: PMC10725359 DOI: 10.1007/s00432-023-05499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunotherapy has shown promise in the treatment of esophageal cancer, but using it alone only benefits a small number of patients. Most patients either do not have a significant response or develop secondary drug resistance. The combination of radiotherapy and immunotherapy appears to be a promising approach to treating esophageal cancer. PURPOSE We reviewed milestone clinical trials of radiotherapy combined with immunotherapy for esophageal cancer. We then discussed potential biomarkers for radiotherapy combined with immunotherapy, including programmed cell death-ligand 1 (PD-L1) status, tumor mutation burden (TMB), tumor-infiltrating lymphocytes, ct-DNA, imaging biomarkers, and clinical factors. Furthermore, we emphasize the key mechanisms of radiation therapy-induced immune stimulation and immune suppression in order to propose strategies for overcoming immune resistance in radiation therapy (RT). Lastly, we discussed the emerging role of low-dose radiotherapy (LDRT) , which has become a promising approach to overcome the limitations of high-dose radiotherapy. CONCLUSION Radiotherapy can be considered a triggering factor for systemic anti-tumor immune response and, with the assistance of immunotherapy, can serve as a systemic treatment option and potentially become the standard treatment for cancer patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Xinsheng Cai
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China
| | - Chaoguang Yan
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China.
| |
Collapse
|
27
|
Kolb M, Forschner A, Artzner C, Grözinger G, Said I, Dittmann H, Seith F. Selective Internal Radiotherapy (SIRT) and Chemosaturation Percutaneous Hepatic Perfusion (CS-PHP) for Metastasized Uveal Melanoma: A Retrospective Comparative Study. Cancers (Basel) 2023; 15:4942. [PMID: 37894309 PMCID: PMC10605323 DOI: 10.3390/cancers15204942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Even with liver-targeted therapies, uveal melanoma with hepatic metastasis remains a challenge. The aim of this study was to compare the outcome of patients treated with either SIRT or CS-PHP. We included 62 patients with hepatic metastasized uveal melanoma (n = 34 with SIRT, receiving 41 cycles; n = 28 with CS-PHP, receiving 56 cycles) that received their treatments between 12/2013 and 02/2020 at a single center. We evaluated their response according to the RECIST 1.1, as well as progression-free survival (PFS) and overall survival (OS), after the initiation of the first cycle of the liver-directed treatment using Cox regression, adjusted via propensity score analysis for confounders, including the amount of hepatic involvement. The disease control rate was 18% for SIRT and 30% for CS-PHP. The median (range) of PFS was 127.5 (19-1912) days for SIRT and 408.5 (3-1809) days for CS-PHP; adjusted Cox regression showed no significant difference (p = 0.090). The median (range) of OS was 300.5 (19-1912) days for SIRT and 516 (5-1836) days for CS-PHP; adjusted Cox regression showed a significant difference (p = 0.006). In our patient cohort, patients treated with CS-PHP showed a significantly longer OS than patients treated with SIRT. CS-PHP might therefore be preferable for patients with liver-dominant metastatic uveal melanoma.
Collapse
Affiliation(s)
- Manuel Kolb
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, 72076 Tübingen, Germany; (M.K.); (C.A.); (G.G.)
- Department of Radiology, Te Whatu Ora Waikato, Hamilton 3240, New Zealand
| | - Andrea Forschner
- Department of Dermatology, University Hospitals Tubingen, 72076 Tübingen, Germany;
| | - Christoph Artzner
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, 72076 Tübingen, Germany; (M.K.); (C.A.); (G.G.)
- Institute of Radiology, Diakonie Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, 72076 Tübingen, Germany; (M.K.); (C.A.); (G.G.)
| | - Ines Said
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospitals Tubingen, 72076 Tübingen, Germany;
| | - Helmut Dittmann
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospitals Tubingen, 72076 Tübingen, Germany;
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, 72076 Tübingen, Germany; (M.K.); (C.A.); (G.G.)
| |
Collapse
|
28
|
Wan Q, Ren X, Tang J, Ma K, Deng YP. Cross talk between tumor stemness and microenvironment for prognosis and immunotherapy of uveal melanoma. J Cancer Res Clin Oncol 2023; 149:11951-11968. [PMID: 37420017 DOI: 10.1007/s00432-023-05061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE Tumor stem cells have emerged as a crucial focus of investigation and a therapeutic target in the context of cancer metastasis and drug resistance. They represent a promising novel approach to address the treatment of uveal melanoma (UVM). METHODS According to the one-class logistic regression (OCLR) approach, we first estimated two stemness indices (mDNAsi and mRNAsi) in a cohort of UVM (n = 80). The prognostic value of stemness indices among four subtypes of UVM (subtype A-D) was investigated. Moreover, univariate Cox regression and Lasso-penalized algorithms were conducted to identify a stemness-associated signature and verify in several independent cohorts. Besides, UVM patients classified into subgroups based on the stemness-associated signature. The differences in clinical outcomes, tumor microenvironment, and probability of immunotherapeutic response were investigated further. RESULTS We observed that mDNAsi was significantly linked with overall survival (OS) time of UVM, but no association was discovered between mRNAsi and OS. Stratification analysis indicated that the prognostic value of mDNAsi was only limited in subtype D of UVM. Besides, we established and verified a prognostic stemness-associated gene signature which can classify UVM patients into subgroups with distinct clinical outcomes, tumor mutation, immune microenvironment, and molecular pathways. The high risk of UVM is more sensitive to immunotherapy. Finally, a well-performed nomogram was constructed to predict the mortality of UVM patients. CONCLUSIONS This study offers a comprehensive examination of UVM stemness characteristics. We discovered mDNAsi-associated signatures improved the prediction capacity of individualized UVM prognosis and indicated prospective targets for stemness-regulated immunotherapy. Analysis of the interaction between stemness and tumor microenvironment may shed light on combinational treatment that targets both stem cell and the tumor microenvironment.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China.
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China.
| |
Collapse
|
29
|
van Not OJ, Blokx WAM, Wouters MWJM, Suijkerbuijk KPM. Response to letter Re: Response to checkpoint inhibition and targeted therapy in melanoma patients with concurrent haematological malignancies. Eur J Cancer 2023; 191:112983. [PMID: 37537090 DOI: 10.1016/j.ejca.2023.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Olivier J van Not
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands.
| | - Willeke A M Blokx
- Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| | - Michel W J M Wouters
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands; Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| |
Collapse
|
30
|
Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models. Photodiagnosis Photodyn Ther 2023; 43:103596. [PMID: 37148952 DOI: 10.1016/j.pdpdt.2023.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Melanoma is a highly metastatic skin cancer with limited response to current therapies in advanced patients. To overcome resistance, novel treatments based on photodynamic and photothermal therapies (PDT and PTT, respectively) have been developed to treat melanoma in preclinical murine models. Despite success inhibiting implanted tumors' growth, there has been limited evaluation of their long-term effectiveness in preventing metastasis, recurrence, or improving survival rates. METHODS Combined and multidrug therapies based on PDT and/or PTT to treat cutaneous malignant melanoma in the preclinical mouse model were reviewed from 2016 onwards. PubMed® was the database in which the search was performed using mesh search algorithms resulting in fifty-one studies that comply with strict inclusion rules of screening. RESULTS B16 melanoma-bearing C57BLACK6 mice model was the most used to evaluate immunotherapies, chemotherapies, and targeted therapies in combination with PDT and/or PTT. Combined therapies demonstrated a synergistic effect, resulting in intense antitumor activity. The most extensively studied protocol for developing metastatic models involved the intravenous administration of malignant cells, with some combined therapies being tested. Furthermore, the review presents the composition of the nanostructures utilized for delivering the drugs and light-responsive agents and the treatment plans for each combined approach. CONCLUSIONS The identified mechanisms to simulate metastatic melanoma models and the therapeutic combinations may aid in evaluating the systemic protection of combined PDT and PTT-based therapies, particularly in conducting short-term preclinical experiments. Such simulations could have relevance to clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico.
| |
Collapse
|
31
|
Marcon IG, Valsecchi D, Durso L, Premoli E, Sangiorgi D, Perrone V, Catena L, Degli Esposti L. Real-World Evaluation of the Management, Treatment Pathways and Outcome of Melanoma Patients with Target Therapies in Italy. Adv Ther 2023; 40:3875-3895. [PMID: 37368101 PMCID: PMC10427535 DOI: 10.1007/s12325-023-02578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION In recent years, an increasing trend in the incidence of melanoma has been observed in Europe. Although early diagnosis and prompt intervention with local resection often results in positive outcomes, conversely, metastatic disease is still clinically challenging with a poor prognosis and a 5-year survival of around 30%. The growing awareness of melanoma biology and of antitumor immune responses has allowed the development of novel therapies targeted at specific molecular alterations occurring at advanced stages. This real-world analysis examined patients with melanoma in Italy, focusing on treatment patterns, outcome, time to discontinuation (TTD), and resource consumption. METHODS Two retrospective observational analyses were conducted for BRAF+ patients with metastatic melanoma and those with a positive sentinel lymph node biopsy in an adjuvant setting, retrieving data from the administrative databases covering 13.3 million residents. The cohort melanoma BRAF+ in metastatic setting comprised 729 patients with targeted therapy (TT) (n = 671 with TT as first line and 79 as second line). RESULTS Median TTD was 10.6 months in first line and 8.1 months in second line. Median overall survival from the start of first TT line was 27 months and was 11.8 months for patients with brain metastasis. In the dabrafenib plus trametinib patients, main healthcare resource consumption tended to increase in the presence of brain metastasis. The cohort with a positive sentinel lymph node biopsy under adjuvant therapy (n = 289) included 8% patients treated with dabrafenib plus trametinib or tested BRAF+, 5% BRAF wild-type, and 10% under immunotherapy. CONCLUSION Our findings provided an overview on TT utilization on metastatic melanoma patients in real clinical practice and highlighted an increased burden in brain metastatic patients.
Collapse
Affiliation(s)
| | | | | | | | - Diego Sangiorgi
- CliCon S.r.l. Società Benefit, Health, Economics and Outcomes Research, Via Murri, 9, 40137, Bologna, Italy
| | - Valentina Perrone
- CliCon S.r.l. Società Benefit, Health, Economics and Outcomes Research, Via Murri, 9, 40137, Bologna, Italy
| | | | - Luca Degli Esposti
- CliCon S.r.l. Società Benefit, Health, Economics and Outcomes Research, Via Murri, 9, 40137, Bologna, Italy.
| |
Collapse
|
32
|
Niu C, Tan S. LncRNA FENDRR Suppresses Melanoma Growth via Influencing c-Myc mRNA Level. Clin Cosmet Investig Dermatol 2023; 16:2119-2128. [PMID: 37581008 PMCID: PMC10423570 DOI: 10.2147/ccid.s409622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/30/2023] [Indexed: 08/16/2023]
Abstract
Background Long non-coding RNAs (lncRNAs) play an important role in the occurrence of melanoma. However, the specific molecular mechanisms that regulate its biological function are still poorly understood. Therefore, the main purpose of this study is to elucidate the internal mechanism of lncRNA-FENDRR as a biological marker for the occurrence of SKCM and its influence on its proliferation. Results FENDRR is low expressed in skin cutaneous melanoma (SKCM) tissues and appears to be at an even lower level as the tumor progresses. However, the high expression of FENDRR can affect the proliferation of SKCM cell line A375. The results of flow cytometry showed that after overexpression of FENDRR, the cell cycle was arrested in the G1/G0 phase. Bioinformatics analysis and RIP results showed that FENDRR could be combined with YTHDF1. Together, these complexes regulate c-Myc mRNA level and determine cell proliferation. Conclusion We found that overexpression of FENDRR can effectively inhibit SKCM, which provides a new theoretical basis for new therapeutic approaches and targeted RNA drugs.
Collapse
Affiliation(s)
- Changying Niu
- Dermatological Department, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Shenxing Tan
- Plastic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
33
|
Villani A, Scalvenzi M, Micali G, Lacarrubba F, Fornaro L, Martora F, Potestio L. Management of Advanced Invasive Melanoma: New Strategies. Adv Ther 2023; 40:3381-3394. [PMID: 37306810 PMCID: PMC10329960 DOI: 10.1007/s12325-023-02555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
The incidence of cutaneous melanoma (CM) is increasing. CM is defined as melanoma in situ when limited within the epidermis and invasive when atypical melanocytes progressively invade the dermis. Treatment of CM is challenging. On one hand, melanoma in situ does not require further treatment except for a limited secondary excision with reduced margins to minimize the risk of local recurrences; on the other, invasive melanoma requires a personalized approach based on tumor staging. Consequently, an association of surgical and medical treatments is often necessary for invasive forms of the disease. In this scenario, new knowledge on melanoma pathogenesis has led to the development of safe and effective treatments, and several drugs are currently under investigation. However, extensive knowledge is required to offer patients a tailored-tail approach. The aim of our article was to review current literature to provide an overview of treatment options for invasive melanoma, highlighting strategical approaches that can be used in patients with these forms of disease.
Collapse
Affiliation(s)
- Alessia Villani
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| | - Massimiliano Scalvenzi
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Luigi Fornaro
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Fabrizio Martora
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Luca Potestio
- Dermatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
34
|
Liu X, Yue H, Jiang S, Kong L, Xu Y, Chen Y, Wang C, Wang Y, Zhu X, Kong Y, Zhang X, Qian J, Luo Z. Clinical features and prognosis of patients with metastatic ocular and orbital melanoma: A bi-institutional study. Cancer Med 2023; 12:16163-16172. [PMID: 37409486 PMCID: PMC10469730 DOI: 10.1002/cam4.6273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE Metastatic ocular and orbital melanomas are extremely rare. The clinical characteristics and standard treatments for these patients are not fully established. MATERIALS AND METHODS We retrospectively analyzed patients with metastatic ocular and orbital melanoma from Fudan University Shanghai Cancer Center and Eye & ENT Hospital of Fudan University between January 2012 and May 2022. RESULTS Overall, 51 patients with metastatic ocular and orbital melanoma were included. The most common primary sites were uvea (73%), followed by conjunctiva (22%), lacrimal sac (4%), and orbit (2%). Patients with uveal melanoma (UM) had a significantly younger age (48 vs. 68 years, p < 0.001), higher incidence of liver metastases (89% vs. 9%, p<0.001), a lower incidence of lymph nodes metastases (16% vs. 46%, p = 0.043) and a lower incidence of BRAF mutation (0% vs. 55%, p<0.001) compared with patients with conjunctival melanoma (CM). The overall response rate of the first-line treatment was 18%. Three of the four patients with BRAF-mutated CM responded to dabrafenib and trametinib treatment. The median progression-free survival (PFS) and overall survival (OS) of first-line treatment were 5.1 and 11.9 months, respectively. Among patients with liver metastases, liver-directed treatment was correlated with better patient PFS (p < 0.001) and OS (p < 0.001) after adjusting for number of metastatic sites and primary sites. CONCLUSION CM and UM have different characteristics. Patient with CM had a high incidence of BRAF mutation, and the treatment of BRAF and MEK inhibitors conferred clinical benefit. Liver directed therapies had a potential benefit in disease control in patients with liver metastases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Head & Neck tumors and Neuroendocrine tumorsFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Han Yue
- Department of OphthalmologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Shiyu Jiang
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of LymphomaFudan University Shanghai Cancer CenterShanghaiChina
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Yu Xu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yong Chen
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Chunmeng Wang
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yan Wang
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaoli Zhu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yunyi Kong
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaowei Zhang
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of gastrointestinal medical oncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Jiang Qian
- Department of OphthalmologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Zhiguo Luo
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of gastrointestinal medical oncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|
35
|
Alhumaid M, Dinakaran D, Smylie M, Walker J, Joseph K. Can radiation restore immunotherapy response in metastatic melanoma refractory to checkpoint inhibitors: An institutional experience in salvaging immunotherapy resistant disease. Radiother Oncol 2023; 185:109712. [PMID: 37178931 DOI: 10.1016/j.radonc.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Melanoma is an immunogenically active tumor with abundantly expressed lymphoid infiltration. Immunotherapy(IO) has proven as a promising treatment option for melanoma but treatment resistance remains as an issue in the majority of patients.There is emerging evidence that radiotherapy (RT) could modulate the tumor microenvironment, increase antigen presentation, and augment adaptive antitumor immunity. Our objective is to evaluate overall treatment response and safety in patients with metastatic melanoma who progressed while on IO, and were treated with RT concurrently with IO for progressive sites.
Collapse
Affiliation(s)
- Mohannad Alhumaid
- Division of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Deepak Dinakaran
- Division of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Smylie
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kurian Joseph
- Division of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Zhao Y, Zhang X, Wang J, Li Y, Wu Y, Liu J. Long Non-Coding RNA ZSCAN16-AS1 Promotes the Malignant Progression of Melanoma Through Regulating the miR-503-5p/ARL2 Axis. Clin Cosmet Investig Dermatol 2023; 16:1821-1831. [PMID: 37483470 PMCID: PMC10361287 DOI: 10.2147/ccid.s407323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
Background LncRNA zinc finger and SCAN domain containing 16 antisense RNA 1 (ZSCAN16-AS1), a newly identified lncRNA, has been proven to accelerate hepatocellular carcinoma progression. However, the function and molecular mechanism of ZSCAN16-AS1 in melanoma are still unknown. Methods The level of ZSCAN16-AS1 in melanoma tissues was detected and reported in The Cancer Genome Atlas (TCGA) and GEO#GSE15605. CCK-8, Transwell and flow cytometry assays were used to explore the role of ZSCAN16-AS1 in melanoma cells. Luciferase reporter assays and RNA pull-down assays were used to verify the molecular mechanism of ZSCAN16-AS1. Results Here, we found that ZSCAN16-AS1 expression was increased in melanoma. We confirmed that ZSCAN16-AS1 promotes the growth and metastasis of melanoma. ZSCAN16-AS1 exerts its pro-tumour role through sponging of miR-503-5p to liberate ADP-ribosylation factor-like protein 2 (ARL2) mRNA transcripts. Conclusion These results demonstrated the role and molecular mechanism of ZSCAN16-AS1 in the occurrence and development of melanoma. Therefore, ZSCAN16-AS1 may be used as a specific biomarker in the diagnosis and treatment of melanoma patients.
Collapse
Affiliation(s)
- Yuting Zhao
- Department of Plastic Surgery, the Third the People’s Hospital of Bengbu, Bengbu, Anhui, People’s Republic of China
| | - Xiangzhou Zhang
- Department of Plastic Surgery, the Third the People’s Hospital of Bengbu, Bengbu, Anhui, People’s Republic of China
| | - Jie Wang
- Department of Plastic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yong Li
- Department of Plastic Surgery, the Third the People’s Hospital of Bengbu, Bengbu, Anhui, People’s Republic of China
| | - Yitong Wu
- Department of Plastic Surgery, the Third the People’s Hospital of Bengbu, Bengbu, Anhui, People’s Republic of China
| | - Jisong Liu
- Department of Plastic Surgery, the Third the People’s Hospital of Bengbu, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
37
|
Zheng Y, Liu X, Li N, Zhao A, Sun Z, Wang M, Luo J. Radiotherapy combined with immunotherapy could improve the immune infiltration of melanoma in mice and enhance the abscopal effect. Radiat Oncol J 2023; 41:129-139. [PMID: 37403355 DOI: 10.3857/roj.2023.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To analyze the gene mutation, immune infiltration and tumor growth of primary tumor and distant tumor under different treatment modes. MATERIALS AND METHODS Twenty B16 murine melanoma cells were injected subcutaneously into the of both sides of the thigh, simulating a primary tumor and a secondary tumor impacted by the abscopal effect, respectively. They were divided into blank control group, immunotherapy group, radiotherapy group, and radiotherapy combined immunotherapy group. During this period, tumor volume was measured, and RNA sequencing was performed on tumor samples after the test. R software was used to analyze differentially expressed genes, functional enrichment, and immune infiltration. RESULTS We found that any treatment mode could cause changes in differentially expressed genes, especially the combination treatment. The different therapeutic effects might be caused by gene expression. In addition, the proportions of infiltrating immune cells in the irradiated and abscopal tumors were different. In the combination treatment group, T-cell infiltration in the irradiated site was the most obvious. In the immunotherapy group, CD8+ T-cell infiltration in the abscopal tumor site was obvious, but immunotherapy alone might have a poor prognosis. Whether the irradiated or abscopal tumor was evaluated, radiotherapy combined with anti-programmed cell death protein 1 (anti-PD-1) therapy produced the most obvious tumor control and might have a positive impact on prognosis. CONCLUSION Combination therapy not only improves the immune microenvironment but may also have a positive impact on prognosis.
Collapse
Affiliation(s)
- Yufeng Zheng
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xue Liu
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Dalian Medical University, Dalian, China
| | - Na Li
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Aimei Zhao
- Department of Obstetrics and Gynecology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Fourth People's Hospital, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
38
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
39
|
Fortes BH, Tailor PD, Dalvin LA. More than meets the eye: the ocular toxicities accessory to anticancer therapies. Future Oncol 2023; 19:189-191. [PMID: 36891943 DOI: 10.2217/fon-2022-0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Affiliation(s)
- Blake H Fortes
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Prashant D Tailor
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Allard-Coutu A, Dobson V, Schmitz E, Shah H, Nessim C. The Evolution of the Sentinel Node Biopsy in Melanoma. Life (Basel) 2023; 13:life13020489. [PMID: 36836846 PMCID: PMC9966203 DOI: 10.3390/life13020489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
The growing repertoire of approved immune-checkpoint inhibitors and targeted therapy has revolutionized the adjuvant treatment of melanoma. While the treatment of primary cutaneous melanoma remains wide local excision (WLE), the management of regional lymph nodes continues to evolve in light of practice-changing clinical trials and dramatically improved adjuvant therapy. With large multicenter studies reporting no benefit in overall survival for completion lymph node dissection (CLND) after a positive sentinel node biopsy (SLNB), controversy remains regarding patient selection and clinical decision-making. This review explores the evolution of the SLNB in cutaneous melanoma in the context of a rapidly changing adjuvant treatment landscape, summarizing the key clinical trials which shaped current practice guidelines.
Collapse
Affiliation(s)
- Alexandra Allard-Coutu
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| | | | - Erika Schmitz
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Hely Shah
- Department of Medical Oncology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Carolyn Nessim
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
41
|
Fionda B, Pagliara MM, Chyrek AJ, Guix B, O'Day RFJ, Fog LS, Martínez-Monge R, Tagliaferri L. Ocular Brachytherapy (Interventional Radiotherapy): Preserving the Vision. Clin Oncol (R Coll Radiol) 2023:S0936-6555(23)00043-2. [PMID: 36792447 DOI: 10.1016/j.clon.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Uveal melanoma represents the most common intraocular neoplasia among adults. Brachytherapy (interventional radiotherapy; IRT) has a great advantage, when compared with enucleation, both in terms of organ and function sparing. The Collaborative Ocular Melanoma Study introduced into clinical practice a standardised procedure that allowed the equivalence of IRT with enucleation in terms of overall survival to be demonstrated. IRT is carried out by placing a plaque in direct contact with the sclera under the uveal melanoma. Several radioactive sources may be used, including 106-ruthenium, 125-iodine, 103-palladium and 90-strontium. It is a multidisciplinary procedure requiring the collaboration of interventional radiation oncologists and ophthalmologists in the operating theatre and medical physicists for an accurate treatment time calculation. It also relies on ultrasound imaging to identify the lesion and verifiy the correct plaque placement. An emerging tool of paramount importance could be the use of artificial intelligence and predictive models to identify those patients at higher risk of developing late side-effects and therefore who may deserve preventive and supportive therapies.
Collapse
Affiliation(s)
- B Fionda
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - M M Pagliara
- U.O.C. Oncologia Oculare, Dipartimento di Scienze dell'Invecchiamento, Neurologiche Ortopediche e Della Testa Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A J Chyrek
- Brachytherapy Department, Greater Poland Cancer Centre, Poznań, Poland
| | - B Guix
- Department of Radiation Oncology, Foundation IMOR, Barcelona, Spain
| | - R F J O'Day
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - L S Fog
- The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - R Martínez-Monge
- Department of Oncology, Clínica Universitaria de Navarra, CCUN, Pamplona, Spain
| | - L Tagliaferri
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
42
|
Sha Y, Mao AQ, Liu YJ, Li JP, Gong YT, Xiao D, Huang J, Gao YW, Wu MY, Shen H. Nidogen-2 (NID2) is a Key Factor in Collagen Causing Poor Response to Immunotherapy in Melanoma. Pharmgenomics Pers Med 2023; 16:153-172. [PMID: 36908806 PMCID: PMC9994630 DOI: 10.2147/pgpm.s399886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Background The incidence of cutaneous melanoma continues to rise rapidly and has an extremely poor prognosis. Immunotherapy strategies are the most effective approach for patients who have developed metastases, but not all cases have been successful due to the complex and variable mechanisms of melanoma response to immune checkpoint inhibition. Methods We synthesized collagen-coding gene expression data (second-generation and single-cell sequencing) from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as Metascape database, Gene Set Cancer Analysis (GSCA) database, and Cytoscape software, etc., to investigate the biological mechanisms that may be related with collagens. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of Nidogen-2 (NID2). Results Melanoma patients can be divided into two collagen clusters. Patients with high collagen levels (C1) had a shorter survival than those with low collagen levels (C2) and were less likely to benefit from immunotherapy. We demonstrated that NID2 is a potential key factor in the collagen phenotype, is involved in fibroblast activation in melanoma, and forms a barrier to limit the proximity of CD8+ T cells to tumor cells. Conclusion We clarified the adverse effects of collagen on melanoma patients and identified NID2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yan Sha
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - An-Qi Mao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Jie-Pin Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Ya-Ting Gong
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Dong Xiao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Jun Huang
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Yan-Wei Gao
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Mu-Yao Wu
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| | - Hui Shen
- Departments of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People's Republic of China
| |
Collapse
|
43
|
Functional Gene Expression Signatures from On-Treatment Tumor Specimens Predict Anti-PD1 Blockade Response in Metastatic Melanoma. Biomolecules 2022; 13:biom13010058. [PMID: 36671443 PMCID: PMC9855743 DOI: 10.3390/biom13010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Functional gene expression signatures (FGES) from pretreatment biopsy samples have been used to predict the responses of metastatic melanoma to immune checkpoint blockade (ICB) therapies. However, there are no predictive FGE signatures from patients receiving treatment. Here, using the Elastic Net Regression (ENLR) algorithm, we analyzed transcriptomic and matching clinical data from a dataset of patients with metastatic melanoma treated with ICB therapies and produced an FGE signature for pretreatment (FGES-PRE) and on-treatment (FGES-ON). Both the FGES-PRE and FGES-ON signatures are validated in three independent datasets of metastatic melanoma as the validation set, achieving area under the curve (AUC) values of 0.44-0.81 and 0.82-0.83, respectively. Then, we combined all test samples and obtained AUCs of 0.71 and 0.82 for the FGES-PRE and FGES-ON signatures, respectively. The FGES-ON signatures had a higher predictive value for prognosis than the FGES-PRE signatures. The FGES-PRE and FGES-ON signatures were divided into high- and low-risk scores using the signature score mean value. Patients with a high FGE signature score had better survival outcomes than those with low scores. Overall, we determined that the FGES-ON signature is an effective biomarker for metastatic melanoma patients receiving ICB therapy. This work would provide an important theoretical basis for applying FGE signatures derived from on-treatment tumor samples to predict patients' therapeutic response to ICB therapies.
Collapse
|
44
|
Scampa M, Mégevand V, Viscardi JA, Giordano S, Kalbermatten DF, Oranges CM. Melanoma of the Scalp and Neck: A Population-Based Analysis of Survival and Treatment Patterns. Cancers (Basel) 2022; 14:cancers14246052. [PMID: 36551538 PMCID: PMC9776047 DOI: 10.3390/cancers14246052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Melanoma is an aggressive skin cancer. Large demographic and clinic-pathologic studies are required to identify variations of tumour behavior. The aim of our study was to offer updated epidemiologic data on the scalp and neck melanoma with an overall survival analysis. Method: The SEER database was searched for all scalp and neck melanoma in adult patients between 2000 and 2019. Demographic and clinic-pathologic variables were described. Their impact on overall survival was assessed with the log-rank test after Kaplan−Meier model. A multivariable cox-regression was conducted to identify predictors of decreased survival. A p-value of <0.005 was considered statistically significant. Results: 20,728 Melanomas of the scalp and neck were identified. Mean age was 62.5 years. Gender ratio was 76.3% males. 79% of the tumours were localized at diagnosis. Increasing age, male gender, tumour ulceration, high mitotic rate or nodular subtype were independent prognostic factors of decreased overall survival. Surgery with less than 1 cm margin is associated with the best overall survival in this cohort. No significant difference in OS was seen between less than 1 cm and 1 to 2 cm margins. Conclusion: Knowledge of negative prognostic factors might help identify subgroups at risk and adapt their oncologic treatment.
Collapse
Affiliation(s)
- Matteo Scampa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205 Geneva, Switzerland
| | - Vladimir Mégevand
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205 Geneva, Switzerland
- Department of Plastic Surgery, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London SE1 7EH, UK
| | - Juan A. Viscardi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205 Geneva, Switzerland
| | - Salvatore Giordano
- Department of Plastic Surgery, Turku University Hospital, University of Turku, 20500 Turku, Finland
| | - Daniel F. Kalbermatten
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205 Geneva, Switzerland
| | - Carlo M. Oranges
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(0)-22-372-79-97
| |
Collapse
|
45
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States.,Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
46
|
KDELR3 Is a Prognostic Biomarker Related to the Immune Infiltration and Chemoresistance of Anticancer Drugs in Uveal Melanoma. DISEASE MARKERS 2022; 2022:1930185. [PMID: 36046379 PMCID: PMC9420630 DOI: 10.1155/2022/1930185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Uveal melanoma (UM) is an intraocular malignancy in adults in which approximately 50% of patients develop metastatic diseases and have a poor clinical outcome. Immunotherapies are quickly becoming a need, and recent research has produced some amazing achievements in this area. In the current investigation, an attempt was made to evaluate the prognostic usefulness of KDELR3 in UM, particularly its connection with tumor-infiltrating lymphocytes (TILs). The expression patterns of mRNAs and related clinical data of 80 UM patients were obtained from The Cancer Genome Atlas (TCGA). By using RT-PCR, we were able to investigate whether or not UM cells and D78 cells expressed KDELR3. The Kaplan-Meier approach, as well as univariate and multivariate tests, was utilized in order to investigate the potential predictive significance of KDELR3 expression. The associations between KDELR3 and TILs and immunological checkpoints were analyzed in order to evaluate the effect that KDELR3 may have on UM immunotherapy. On the basis of the differential expression of KDELR3, a distribution of the half-maximal inhibitory concentration (IC50) of various targeted medicines was observed. In this study, we found that the expression of KDELR3 was distinctly increased in most types of tumors. In addition, KDELR3 was highly expressed in UM cells. Moreover, patients with high KDELR3 expression exhibited a shorter overall survival and disease-free survival than those with low KDELR3 expression. Multivariate analyses confirmed that KDELR3 expression was an independent prognostic factor for overall survival and disease-free survival in patients with UM. Furthermore, KDELR3 expression was demonstrated to be positively correlated with macrophage M1, T cell CD8, T cell follicular helper, dendritic cell resting, and T cell CD4 memory activated. Meanwhile, the expression of KDELR3 was related to several immune checkpoints. The IC50 of AP-24534, BHG712, bleomycin, camptothecin, cisplatin, cytarabine, GSK1070916, and tipifarnib was higher in the KDELR3 high-expression group. In conclusion, KDELR3 may be applied as a potential diagnostic and prognostic biomarker for UM patients.
Collapse
|
47
|
Radiotherapy and Immunotherapy, Combined Treatment for Unresectable Mucosal Melanoma with Vaginal Origin. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gynecologic melanomas are uncommon and malignant mucosal melanomas with vaginal origin are extremely rare, treatment strategies are limited and extrapolated from those of cutaneous melanoma. A better understanding of the vulvovaginal melanoma’s biology and its risk factors is needed. Therapeutic strategies include surgery, systemic therapy and radiotherapy. For vulvovaginal melanoma, surgery is selected as the primary treatment. Immunotherapy and target treatment have recently enhanced the systemic therapy for cutaneous melanoma (CM). Immunotherapy and new target agents demonstrated a better survival of melanoma and might be considered as treatment of vulvovaginal melanoma. Radiotherapy is included in the therapeutic arsenal for mucosal melanoma and may be performed on selected patients who may receive concurrent checkpoints and inhibition neoadjuvant radiotherapy with the purpose of reducing morbidity and mortality.
Collapse
|
48
|
Combined Therapy with Dacarbazine and Hyperthermia Induces Cytotoxicity in A375 and MNT-1 Melanoma Cells. Int J Mol Sci 2022; 23:ijms23073586. [PMID: 35408947 PMCID: PMC8998307 DOI: 10.3390/ijms23073586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/16/2023] Open
Abstract
Melanoma is a drug-resistant cancer, representing a serious challenge in cancer treatment. Dacarbazine (DTIC) is the standard drug in metastatic melanoma treatment, despite the poor results. Hyperthermia has been proven to potentiate chemotherapy. Hence, this work analyzed the combined action of hyperthermia and DTIC on A375 and MNT-1 cell lines. First, temperatures between 40 °C and 45 °C were tested. The effect of DTIC on cell viability was also investigated after exposures of 24, 48, and 72 h. Then, cells were exposed to 43 °C and to the respective DTIC IC10 or IC20 of each time exposure. Overall, hyperthermia reduced cell viability, however, 45 °C caused an excessive cell death (>90%). Combinational treatment revealed that hyperthermia potentiates DTIC’s effect, but it is dependent on the concentration and temperature used. Also, it has different mechanisms from the treatments alone, delaying A375 cells at the G2/M phase and MNT-1 cells at the S and G2/M phases. Intracellular reactive oxygen species (ROS) levels increased after treatment with hyperthermia, but the combined treatment showed no additional differences. Also, hyperthermia highly increased the number of A375 early apoptotic cells. These results suggest that combining hyperthermia and DTIC should be more explored to improve melanoma treatment.
Collapse
|
49
|
Rossi E, Zizzari IG, Di Filippo A, Acampora A, Pagliara MM, Sammarco MG, Simmaco M, Lionetto L, Botticelli A, Bria E, Marchetti P, Blasi MA, Tortora G, Schinzari G, Nuti M. Circulating immune profile can predict survival of metastatic uveal melanoma patients: results of an exploratory study. Hum Vaccin Immunother 2022; 18:2034377. [PMID: 35258435 PMCID: PMC9302506 DOI: 10.1080/21645515.2022.2034377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastatic uveal melanoma (UM) is a poor prognosis malignancy. Immunotherapy is commonly employed, despite the low activity, considering the lack of other effective systemic treatments. In this study, the prognostic and predictive role of soluble immune checkpoints and inflammatory cytokines/chemokines in 22 metastatic UM patients was evaluated. Baseline levels of these molecules were assessed, as well as their changes during anti-PD-1 therapy. The correlation between soluble immune checkpoints/cytokines/chemokines and survival was analyzed. A comparison between circulating immune profile of metastatic cutaneous melanoma (CM), for which immunotherapy is a mainstay of treatment, and UM during anti-PD-1 therapy was also performed. Three immune molecules resulted significantly higher in metastatic UM patients with survival <6 months versus patients with survival ≥6 months: IL-8, HVEM and IDO activity. Considering these three molecules, we obtained a baseline score able to predict patients’ survival. The same three molecules, together with soluble(s) CD137, sGITR and sCD27, resulted significantly lower in patients with survival >30 months. We also observed an increase of sCD137, sCD28, sPD-1, sPD-L2 sLAG3, sCD80 and sTim3 during anti-PD-1 treatment, as well as IDO activity, IP-10 and CCL2. Several of these molecules were significantly higher in UM compared to CM patients during anti-PD-1 therapy. The analysis of circulating immune molecules allows to identify patients with poor prognosis despite immunotherapy and patients with long survival treated with an anti-PD-1 agent. The different serum concentration of these molecules during anti-PD-1 therapy between UM and CM reflects the different efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Anna Acampora
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Maurizio Simmaco
- Spectrometry-Clinical Biochemistry Laboratory, Sant'Andrea University Hospital, Rome, Italy
| | - Luana Lionetto
- Spectrometry-Clinical Biochemistry Laboratory, Sant'Andrea University Hospital, Rome, Italy
| | - Andrea Botticelli
- Medical Oncology, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Emilio Bria
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Marchetti
- Medical Oncology, Policlinico Umberto I, Sapienza University, Rome, Italy
| | | | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| |
Collapse
|
50
|
DNA Repair Genes Are Associated with Subtype Classification, Prognosis, and Immune Infiltration in Uveal Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:1965451. [PMID: 35096056 PMCID: PMC8791741 DOI: 10.1155/2022/1965451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. DNA repair genes play a vital role in cancer development. However, there has been very little research about DNA repair genes in UM. This study aimed to evaluate the importance of DNA repair genes and established a signature for predicting prognosis and immune features of UM. In this study, we mined TCGA database through bioinformatics analysis, and the intersect was taken between DNA repair genes and prognosis related genes and yielded 52 genes. We divided 80 UM patients into C1 and C2 subtypes. GSEA results indicated that abundant cancer-promoting functions and signaling pathways were activated in C2 subtype and the proportion of SNVs was higher in C2 than in C1 which suggested a worse prognosis. We built a six DNA repair genes model including ITPA, CETN2, CCNO, POLR2J, POLD1, and POLA1 by LASSO regression to predict prognosis of UM patients and utilized the median value of risk scores as the cutoff point to differentiate high risk and low risk group. The survival analyses and the receiver operating characteristic (ROC) curves in the validation group and entire data set confirmed the accuracy of this model. We also constructed a nomogram based on age and risk scores to evaluate the relationship between risk scores and clinical outcome. The calibration curve of the overall survival (OS) indicated that the performance of this model is steady and robust. Finally, the enrichment analysis showed that there were complex regulatory mechanisms in UM patients. The immune infiltration analysis indicated that the immune infiltration in C2 in the high risk group was different from that in the low risk group. Our findings indicated that the DNA repair genes may be related to UM prognosis and provide new insight into the underlying mechanisms.
Collapse
|