1
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Hu P, Wang T, Yan H, Huang Y, Zhao Y, Gao Y. Crucial role of hsa-mir-503, hsa-mir-1247, and their validation in prostate cancer. Aging (Albany NY) 2023; 15:12966-12981. [PMID: 37980162 DOI: 10.18632/aging.205213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Prostate cancer (PC) is a common urinary system malignancy, and advanced PC patients had a poor prognosis due to recurrence or distant metastasis. Therefore, it's imperative to reveal more details in tumorigenesis and prognosis of PC patients. METHODS The miRNA and mRNA expression profile data of 485 PC patients were obtained from The Cancer Genome Atlas database. The univariate Cox regression was applied to screen miRNAs relating to prognosis of PC. Then miRTarBase was used to predict target mRNAs of miRNAs. The hsa-mir-503/hsa-mir-1247 knockdown in 22RV1 cells was established to evaluate the effect of these two miRNAs on tumor cell migration and invasion ability. Flow cytometry was used to detect the effect of hsa-mir-503/hsa-mir-1247 knockdown on 22RV1 apoptosis rate. RESULTS Univariate Cox regression analysis identified hsa-mir-503 as a poor and hsa-mir-1247 as a favorable prognostic marker. Totally 649 target mRNAs were screened, among which DUSP19, FGF2, and SLC2A5 had a negative correlation with hsa-mir-503, while FGF2 and VSTM4 had a positive correlation with hsa-mir-1247. In 22RV1 cells, hsa-mir-503 was up-regulated, and hsa-mir-1247 was down-regulated. hsa-mir-503 knockdown attenuated the migration and invasion of 22RV1 cells, while hsa-mir-1247 knockdown exhibited the opposite effect. In addition, hsa-mir-503 knockdown promoted 22RV1 cell apoptosis. hsa-mir-1247 overexpression significantly inhibited the tumor growth of PC in vivo. CONCLUSIONS Herein, we demonstrated that hsa-mir-503 and hsa-mir-1247 could serve as new prognostic markers of PC, and hsa-mir-1247 had great potential to inhibit PC progression by suppressing the migration and invasion ability in vitro and in vivo.
Collapse
Affiliation(s)
- Ping Hu
- The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| | - Tao Wang
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| | - Hui Yan
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| | - Ying Huang
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| | - Yanjiao Zhao
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| | - Yuanyuan Gao
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, P.R. China
| |
Collapse
|
4
|
Wang M, Gao M, Chen Y, Wu J, Wang X, Shu Y. PLCD3 promotes malignant cell behaviors in esophageal squamous cell carcinoma via the PI3K/AKT/P21 signaling. BMC Cancer 2023; 23:921. [PMID: 37773107 PMCID: PMC10542242 DOI: 10.1186/s12885-023-11409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Phospholipase C Delta 3 (PLCD3) is a member of phospholipase C(PLC) Protein and PLCD3 protein plays a prominent role in many cancers. However, little is known about the role of PLCD3 in esophageal squamous cell carcinoma (ESCC). MATERIAL AND METHODS We analyzed PLCD3 mRNA and protein expression in ESCC tissues and cell lines by immunohistochemistry, quantitative real-time PCR, and western blot. The correlation between PLCD3 expression and clinicopathological characteristics was also analyzed. CCK8, colony formation, wound-healing, and transwell assays were conducted to measure cell functional alternations. Flow cytometry was performed to assess the apoptosis rate and cell cycle caused by PLCD3 knockdown. Xenograft models in nude mice to clarify the role of PLCD3 in ESCC. Key proteins in the PI3K / AKT signaling pathway after treatment of ECA109 and KYSE150 cells with the AKT inhibitor MK2206 were analyzed by western blot. RESULTS PLCD3 was highly expressed in ESCC tissues and cell lines. PLCD3 expression levels correlated with pathologic stage and lymphatic metastasis. PLCD3 knockdown inhibited cell proliferation, migration, invasion, promoted apoptosis, and caused the cell cycle arrest in the G1 phase. PLCD3 overexpression promoted cell proliferation, migration, and invasion. In vivo experiments with xenografts demonstrated that PLCD3 promoted ESCC tumorigenesis. Finally, Overexpression of PLCD3 activated the PI3K / AKT / P21 signaling. CONCLUSION PLCD3 promotes malignant cell behaviors in esophageal squamous cell carcinoma via the PI3K/AKT/P21 signaling and could serve as a potential target for ESCC treatment.
Collapse
Affiliation(s)
| | - Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
| | - Yong Chen
- Dalian Medical University, Dalian, 116000, China
| | - Jun Wu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225000, China.
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225000, China.
| |
Collapse
|
5
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
6
|
Zheng J, Chen X, Huang B, Li J. A novel immune-related radioresistant lncRNAs signature based model for risk stratification and prognosis prediction in esophageal squamous cell carcinoma. Front Genet 2022; 13:921902. [PMID: 36147506 PMCID: PMC9485730 DOI: 10.3389/fgene.2022.921902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background and purpose: Radioresistance remains a major reason of radiotherapeutic failure in esophageal squamous cell carcinoma (ESCC). Our study is to screen the immune-related long non-coding RNA (ir-lncRNAs) of radiation-resistant ESCC (rr-ESCC) via Gene Expression Omnibus (GEO) database and to construct a prognostic risk model. Methods: Microarray data (GSE45670) related to radioresistance of ESCC was downloaded from GEO. Based on pathologic responses after chemoradiotherapy, patients were divided into a non-responder (17 samples) and responder group (11 samples), and the difference in expression profiles of ir-lncRNAs were compared therein. Ir-lncRNA pairs were constructed for the differentially expressed lncRNAs as prognostic variables, and the microarray dataset (GSE53625) was downloaded from GEO to verify the effect of ir-lncRNA pairs on the long-term survival of ESCC. After modelling, patients are divided into high- and low-risk groups according to prognostic risk scores, and the outcomes were compared within groups based on the COX proportional hazards model. The different expression of ir-lncRNAs were validated using ECA 109 and ECA 109R cell lines via RT-qPCR. Results: 26 ir-lncRNA genes were screened in the GSE45670 dataset with differential expression, and 180 ir-lncRNA pairs were constructed. After matching with ir-lncRNA pairs constructed by GSE53625, six ir-lncRNA pairs had a significant impact on the prognosis of ESCC from univariate analysis model, of which three ir-lncRNA pairs were significantly associated with prognosis in multivariate COX analysis. These three lncRNA pairs were used as prognostic indicators to construct a prognostic risk model, and the predicted risk scores were calculated. With a median value of 2.371, the patients were divided into two groups. The overall survival (OS) in the high-risk group was significantly worse than that in the low-risk group (p < 0.001). The 1-, 2-, and 3-year prediction performance of this risk-model was 0.666, 0.702, and 0.686, respectively. In the validation setting, three ir-lncRNAs were significantly up-regulated, while two ir-lncRNAs were obviouly down-regulated in the responder group. Conclusion: Ir-lncRNAs may be involved in the biological regulation of radioresistance in patients with ESCC; and the prognostic risk-model, established by three ir-lncRNAs pairs has important clinical value in predicting the prognosis of patients with rr-ESCC.
Collapse
Affiliation(s)
- Jianqing Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaohui Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Bifen Huang
- Department of Obstetrics and Gynecology, Quanzhou Medical College People’s Hospital Affiliated, Fuzhou, Fujian, China
| | - Jiancheng Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- *Correspondence: Jiancheng Li,
| |
Collapse
|
7
|
Luo J, Xia L, Zhang L, Zhao K, Li C. MiRNA-144-5p down-modulates CDCA3 to regulate proliferation and apoptosis of lung adenocarcinoma cells. Mutat Res 2022; 825:111798. [PMID: 36087462 DOI: 10.1016/j.mrfmmm.2022.111798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) belongs to non-small cell lung cancer. In addition to surgical resection, chemotherapy and radiotherapy cause great side effects and low 5-year survival rates. MiRNAs are closely related to cancer development. This study aimed to analyze the molecular mechanism of miRNA-144-5p targeting CDCA3 to inhibit LUAD proliferation. METHODS MiRNA and mRNA data were downloaded from TCGA-LUAD dataset for differential expression analysis. TargetScan and miRTarBase databases were adopted to predict the target genes of miRNA, and the signaling pathways involved were analyzed by gene set enrichment analysis. The functions of LUAD cells were analyzed by CCK-8, colony formation assay, stem cell spheroidization assay, and flow cytometry. The expression levels of CDCA3, p53, and cell cycle-associated proteins were evaluated by Western blot. RESULTS The expression of miRNA-144-5p was significantly down-regulated in LUAD, but overexpression of it repressed proliferation and spheroidization, and promoted apoptosis of LUAD cells. By bioinformatics prediction and dual-luciferase reporter assay, miRNA-144-5p was validated to target CDCA3, thereby regulating proliferation of LUAD cells. Besides, the results of cell experiments showed that miRNA-144-5p targeting CDCA3 affected cell proliferation and apoptosis in LUAD by regulating cell cycles, and miRNA-144-5p/CDCA3 mediated the p53 signaling pathway to affect the growth of LUAD cells. SIGNIFICANCE Through the study of the pathogenesis of miRNA-144-5p regulating LUAD, we can better understand the molecular mechanism underlying LUAD development.
Collapse
Affiliation(s)
- Jing Luo
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Lilong Xia
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Lei Zhang
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Kaixiang Zhao
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China
| | - Chuanchuan Li
- Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province 310000, China.
| |
Collapse
|
8
|
Liu C, Li L, Hou G, Lu Y, Gao M, Zhang L. HERC5/IFI16/p53 signaling mediates breast cancer cell proliferation and migration. Life Sci 2022; 303:120692. [PMID: 35671810 DOI: 10.1016/j.lfs.2022.120692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
AIMS This study aims to find differentially expressed ubiquitination-related gene(s) and elucidates their biological significance in breast cancer. MAIN METHODS Differentially expressed genes were profiled in MCF-7 and MDA-MB-231 cells by using PCR array method. Abnormal expression of HERC5 was studied in the cells and in breast cancer specimens via Quantitative Real-time PCR and western blot. Cell proliferation and cell migration abilities were evaluated by using cell counting kits, or through colony formation, wound healing and trans-well assays. HERC5 target proteins were investigated via proteomic, co-immunoprecipitation and western blot methods. Down-stream signaling pathways were investigated through gene expression/knockdown methods. KEY FINDINGS Huge increase of HERC5 expression was found in MCF-7 and MDA-MB-231 cells, knockdown of which repressed the cell proliferation and migration. HERC5 interacted with IFI16, mediated IFI16 ISGylation at K274 and facilitated IFI16 proteasomal degradation. IFI16 acted as a tumor suppressor and to some extent mediated the HERC5 function in the breast cancer (BC) cells. HERC5 was negatively correlated with IFI16 protein, while IFI16 was positively correlated to p53 expression at mRNA and protein levels, which indicates a novel signaling pathway - HERC5/IFI16/p53. HERC5 expression was increased in glucose-starved BC cells and in human breast cancer tissues, accompanied with the decrease of IFI16 and P53. SIGNIFICANCE Our work reveals the abnormal expression of HERC5 and its carcinogenic role in breast cancer cells, which is probably mediated by an HERC5/IFI16/p53 signaling pathway. This work also provides potential diagnostic/therapeutic biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Congcong Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Gang Hou
- Department of Pathology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an 271000, China
| | - Ying Lu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Meng Gao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Cui Y, Zhang S, Hu X, Gao F. Tumor-associated fibroblasts derived exosomes induce the proliferation and cisplatin resistance in esophageal squamous cell carcinoma cells through RIG-I/IFN-β signaling. Bioengineered 2022; 13:12462-12474. [PMID: 35587143 PMCID: PMC9275880 DOI: 10.1080/21655979.2022.2076008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of malignant cancer. There is growing evidence suggesting that exosomes may participate in the cellular communication of tumor-associated fibroblasts (TAFs). However, the cisplatin resistance of TAF-derived exosomes to ESCC cells remains to be further studied. Exosomes were isolated from TAFs and characterized with Western blot and TEM assays. ESCC cell lines (TE-1 and KYSE-150) were incubated with TAFs-derived exosomes. To explore the biological function of TAF-derived exosomes in ESCC cell proliferation, apoptosis, and chemosensitivity, we conducted MTT assays and Flow Cytometry. The effects in vivo were also verified via Xenograft mice models. We found that TAFs-derived exosomes led to enhanced cell proliferation and reduced apoptosis of cells, accompanied by increased expression of RIG-I/IFN-β, and TAFs derived exosomes may affect the chemosensitivity to cisplatin via RIG-I/IFN-β signaling in ESCC. Taken together, ESCC cells could communicate with TAFs cells via TAFs-derived exosomes. Our findings might represent a novel mechanism involved in ESCC and may provide a potential biomarker for ESCC.
Collapse
Affiliation(s)
- Yayun Cui
- Department of Cancer Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, Anhui, China
| | - Shu Zhang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaohan Hu
- Laboratory of Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Fei Gao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, Anhui, China
| |
Collapse
|
10
|
Qiao G, Zhang W, Dong K. Regulation of ferroptosis by noncoding RNAs: a novel promise treatment in esophageal squamous cell carcinoma. Mol Cell Biochem 2022; 477:2193-2202. [PMID: 35449482 DOI: 10.1007/s11010-022-04441-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor that requires extensive research. Ferroptosis is a unique cell death modality driven by iron-dependent phospholipid peroxidation manifested as an accumulation of lipid-reactive oxygen species. With further understanding of noncoding RNAs (ncRNAs), numerous studies have demonstrated an important regulatory role of ncRNAs in ESCC through ferroptosis, including microRNAs, long ncRNAs, and circular RNAs. These ncRNAs influence the expression of the target gene to regulate ESCC progression by involving the ferroptosis signaling pathway. However, the specific regulatory mechanism of ncRNAs on ferroptosis in ESCC remains largely unknown. This review summarized the current knowledge on the relation between ferroptosis regulators, such as glutathione synthesis/metabolism, Keap1/Nfr2, and p53, by ncRNAs and ESCC. This review also proposed the possible therapeutic approaches for ncRNAs targeting ferroptosis in ESCC. This is the latest and most effective summary of recent research achievements of ncRNAs on ferroptosis in ESCC. These ncRNAs based on ferroptosis merit further investigation in preclinical research of ESCC.
Collapse
Affiliation(s)
- Guanen Qiao
- Department of Gastroenterology, The First Hospital of Handan City, 25 Congtai Road, Handan, 056002, Hebei, China.
| | - Wenjuan Zhang
- Department of Gastroenterology, The First Hospital of Handan City, 25 Congtai Road, Handan, 056002, Hebei, China
| | - Kui Dong
- Department of Gastroenterology, The First Hospital of Handan City, 25 Congtai Road, Handan, 056002, Hebei, China
| |
Collapse
|
11
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
12
|
Ke H, Wu S, Zhang Y, Zhang G. miR-139-3p/Kinesin family member 18B axis suppresses malignant progression of gastric cancer. Bioengineered 2022; 13:4528-4536. [PMID: 35137670 PMCID: PMC8974075 DOI: 10.1080/21655979.2022.2033466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miR-139-3p exerts tumor-suppressing functions in various cancers. We analyzed and identified that miR-139-3p expression was notably low in gastric cancer (GC) via edgeR differential analysis based on The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction (qRT-PCR) assay. The binding relationship between Kinesin Family Member 18B (KIF18B) and miR-139-3p was predicted by bioinformatics databases, and verified through dual-luciferase assay. Western blot and qRT-PCR results also indicated that miR-139-3p restrained KIF18 expression at mRNA and protein levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell, flow cytometry assays were introduced to evaluate cell proliferation, migration, invasion, and cell cycle, respectively, where the results indicated that upregulating miR-139-3p inhibited proliferative, migratory, and invasive abilities of GC cells, while caused cell-cycle arrest. Moreover, the results of rescue experiments illustrated that miR-139-3p hampered the progression of GC cells by targeting and suppressing KIF18B. To sum up, we concluded that miR-139-3p suppressed GC progression by targeting KIF18B.
Collapse
Affiliation(s)
- Hailin Ke
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Songling Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yueyi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
13
|
Li M, Li J, Zhang C, Hou S, Weng B. MIR210HG is aberrantly expressed in the seminal plasma of varicocele patients and associated with varicocele-related dyszoospermia. Andrologia 2022; 54:e14277. [PMID: 35146790 DOI: 10.1111/and.14277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to confirm the expression of the seminal plasma long noncoding RNAs (lncRNAs) microRNA210 host gene (MIR210HG) in varicocele (VC) patients, to further explore the association between MIR210HG and VC severity and to evaluate whether MIR210HG can predict VC-related dyszoospermia. Semen samples from 188 VC patients and 92 healthy men were collected. Quantitative reverse transcriptase PCR detected seminal plasma MIR210HG levels. Receiver operating characteristic analysis assessed the ability of MIR210HG to screen patients with VC, or to screen VC patients with abnormal semen quality. Logistic analysis assessed the value of MIR210HG in predicting dyszoospermia in VC patients. The levels of MIR210HG in seminal plasma of VC patients were upregulated, which could screen VC patients. In addition, the levels of seminal plasma MIR210HG were upregulated with VC severity and were downregulated at 6 months after surgery in VC patients. Moreover, elevated MIR210HG levels in VC patients with abnormal semen quality could screen patients with abnormal semen quality and could independently predict the occurrence of dyszoospermia in VC patients. Seminal plasma MIR210HG expression is upregulated in VC patients, is associated with the severity of VC and may function as an independent predictor of VC-related dyszoospermia.
Collapse
Affiliation(s)
- Monong Li
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Jinli Li
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Changcun Zhang
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Sichuan Hou
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Bowen Weng
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
14
|
Tang Y, Cai J, Lv B. LncRNA ubiquitin-binding protein domain protein 10 antisense RNA 1 inhibits colon adenocarcinoma progression via the miR-515-5p/slit guidance ligand 3 axis. Bioengineered 2022; 13:2308-2320. [PMID: 35034539 PMCID: PMC8974015 DOI: 10.1080/21655979.2021.2024396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) play an important role in cancer progression. However, there have been limited reports to date of the involvement of ubiquitin-binding protein domain protein 10 antisense RNA 1 (UBXN10-AS1) in cancer. Our aim was to explore the role and underlying mechanism of UBXN10-AS1 in the occurrence of colon adenocarcinoma (COAD). Real-time quantitative PCR and Western blotting were performed to determine the expression of UBXN10-AS1, miR-515-5p, and Slit guidance ligand 3 (SLIT3). Cell Counting Kit-8 and wound healing scratch assays were performed to measure COAD cell proliferation and migration. A xenograft assay was performed to examine tumor growth in vivo. Luciferase reporter and RNA immunoprecipitation (RIP) assays were used to determine the binding interaction among miR-515-5p, UBXN10-AS1, and SLIT3. The results showed that UBXN10-AS1 and SLIT3 were expressed at low levels in COAD tissues, while miR-515-5p was expressed at high levels. UBXN10-AS1 overexpression suppressed tumor growth in vitro and in vivo. The luciferase reporter and RNA RIP assays demonstrated that UBXN10-AS1 targeted miR-515-5p, which in turn targeted SLIT3. Functionally, miR-515-5p overexpression reversed the inhibition of COAD cell proliferation and migration by UBXN10-AS1 overexpression, and SLIT3 overexpression counteracted the oncogenicity of miR-515-5p. Our study shows that UBXN10-AS1 modulates the miR-515-5p/SLIT3 axis, thereby resulting in the inhibition of COAD cell proliferation and migration.
Collapse
Affiliation(s)
- Yu Tang
- Department of General Surgery, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jingxuan Cai
- Department of General Surgery, Chengdu Western Hospital, Chengdu, Sichuan, China
| | - Bo Lv
- Department of General Surgery, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
16
|
Chang J, Zhang Y, Ye X, Guo H, Lu K, Liu Q, Guo Y. Long non-coding RNA (LncRNA) CASC9/microRNA(miR)-590-3p/sine oculis homeobox 1 (SIX1)/NF-κB axis promotes proliferation and migration in breast cancer. Bioengineered 2021; 12:8709-8723. [PMID: 34711117 PMCID: PMC8806761 DOI: 10.1080/21655979.2021.1977555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Long non-coding RNA (lncRNA)–microRNA–mRNA signaling axes have recently been shown to have a key role in the development of breast cancer (BC). In this study, we investigated how the cancer susceptibility candidate 9 (CASC9) gene affects the cell growth, invasion, migration, and apoptosis of BC cells. The levels of microRNA-590-3p (miR-590-3p), CASC9, and the sine oculis homeobox 1 (SIX1) gene were determined through qRT-PCR. We conducted cell counting kit-8 (CCK-8) assays to assess cell proliferation, transwell assays to detect cell migration/invasion, and flow cytometry to evaluate cell apoptosis. StarBase v2.0 was used to predict interactions between miR-590-3p and SIX1 or CASC9, and dual-luciferase reporter assays were used to verify these predictions. CASC9 protein was overexpressed in BC cells and tissues, while CASC9 knockdown inhibited BC cell growth, invasion, and migration and promoted apoptosis. Additionally, we verified that CASC9 competes for binding with miR-590-3p. Moreover, SIX1 was determined to be a target of miR-590–3p, and SIX1 expression was inhibited by miR-590-3p overexpression. CASC9 enhanced BC development by downregulating miR-590-3p and upregulating SIX1 during the activation of the NF-κB pathway. These data suggest that the CASC9/miR-590-3p/SIX1/NF-κB axis is involved in breast cancer progression, providing insight into the function of CASC9 in breast cancer development.
Collapse
Affiliation(s)
- Jingzhi Chang
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Yuxia Zhang
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Xin Ye
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Hui Guo
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Kun Lu
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Qing Liu
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| | - Yli Guo
- Department of Biochemistry and Molecular Biology, Shangqiu Medical College, Shangqiu, China
| |
Collapse
|
17
|
Xu J, Liu X, Liu X, Zhi Y. Long noncoding RNA KCNMB2-AS1 promotes the development of esophageal cancer by modulating the miR-3194-3p/PYGL axis. Bioengineered 2021; 12:6687-6702. [PMID: 34516362 PMCID: PMC8806829 DOI: 10.1080/21655979.2021.1973775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (ESCA), as a common cancer worldwide, is a main cause of cancer-related mortality. Comprehensive studies on molecular mechanism of ESCA have been carried out. Though numerous long noncoding RNAs (lncRNAs) was reported to participate in the occurrence and development of ESCA, the potential role of lncRNA potassium calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2) antisense RNA 1 (KCNMB2-AS1) in ESCA remains to be discovered. This study intends to investigate the detailed function and molecular mechanism of KCNMB2-AS1 in ESCA. Gene expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Cell invasion and migration were measured by wound healing assay and Transwell assay. Luciferase reporter assay was adopted to validate the interaction between KCNMB2-AS1 and miR-3194-3p. Western blotting was performed to assess protein levels. We discovered that KCNMB2-AS1 was significantly upregulated in ESCA. KCNMB2-AS1 downregulation suppressed the growth, invasion, migration and stemness of ESCA cells. KCNMB2-AS1 bound with miR-3194-3p, and glycogen phosphorylase L (PYGL) was a direct target of miR-3194-3p. KCNMB2-AS1 upregulated PYGL expression by directly binding with miR-3194-3p. Additionally, PYGL overexpression abolished the inhibitory influence of KCNMB2-AS1 depletion on ESCA cell behaviors. Collectively, lncRNA KCNMB2-AS1 promotes ESCA development through targeting the miR-3194-3p/ PYGL axis, which might provide theoretical basis to explore novel biomarkers for ESCA treatment.
Collapse
Affiliation(s)
- Jiwen Xu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Xiaoyan Liu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Xueting Liu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Yunlai Zhi
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
18
|
Xie Z, Liu S, Chu S, Liu Y, Huang B, Zhang Q. lncRNA RMRP predicts poor prognosis and mediates tumor progression of esophageal squamous cell carcinoma by regulating miR-613/ neuropilin 2 (NRP2) axis. Bioengineered 2021; 12:6913-6922. [PMID: 34516335 PMCID: PMC8806636 DOI: 10.1080/21655979.2021.1974656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The RNA component of mitochondrial RNA processing endoribonuclease (RMRP) has been reported to play a role in the development of various human diseases. The clinical significance and biological function of RMRP in the progression of esophageal squamous cell carcinoma (ESCC) and the potential mechanism were investigated in this study.A total of 118 ESCC patients were included in this study. The expression of RMRP in ESCC was analyzed with the help of the polymerase chain reaction. The cell counting kit 8 assay was employed to evaluate the role of RMRP in cell proliferation, and its functions in cell migration and invasion were assessed by the Transwell assays. Meanwhile, the clinical significance of RMRP in ESCC was estimated with Kaplan-Meier and Cox regression analysis.RMRP was significantly upregulated in ESCC, which was associated with the lymph node metastasis status, the TNM stage of patients, and a poor outcome of ESCC patients. Moreover, RMRP promoted the proliferation, migration, and invasion of ESCC cells via regulating miR-613/NRP2.RMRP was involved in the progression of ESCC through regulating the miR-613/NRP2 axis, which provides a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Zhen Xie
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Shicheng Chu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yiqun Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Bingtao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
19
|
Sun X, Luo Z, Gong L, Tan X, Chen J, Liang X, Cai M. Identification of significant genes and therapeutic agents for breast cancer by integrated genomics. Bioengineered 2021; 12:2140-2154. [PMID: 34151730 PMCID: PMC8806825 DOI: 10.1080/21655979.2021.1931642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women; thus, more cancer prevention research is urgently needed. The aim of this study was to predict potential therapeutic agents for breast cancer and determine their molecular mechanisms using integrated bioinformatics. Summary data from a large genome-wide association study of breast cancer was derived from the UK Biobank. The gene expression profile of breast cancer was from the Oncomine database. We performed a network-wide association study and gene set enrichment analysis to identify the significant genes in breast cancer. Then, we performed Gene Ontology analysis using the STRING database and conducted Kyoto Encyclopedia of Genes and Genomes pathway analysis using Cytoscape software. We verified our results using the Gene Expression Profile Interactive Analysis, PROgeneV2, and Human Protein Atlas databases. Connectivity map analysis was used to identify small-molecule compounds that are potential therapeutic agents for breast cancer. We identified 10 significant genes in breast cancer based on the gene expression profile and genome-wide association study. A total of 65 small-molecule compounds were found to be potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Jie Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Xin Liang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| |
Collapse
|