1
|
Ebaid MS, Chyb M, Furlan V, Ibrahim HAA, Bren U, Gatkowska J, Dziadek J, Eldehna WM, Sabt A. Identification of Coumarin-Chalcone and Coumarin-Pyrazoline Derivatives as Novel Anti- Toxoplasma gondii Agents. Drug Des Devel Ther 2024; 18:5599-5614. [PMID: 39650850 PMCID: PMC11625422 DOI: 10.2147/dddt.s495089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Toxoplasmosis, a zoonotic infection caused by the apicomplexan parasite Toxoplasma gondii, affects a significant portion of the global human population. This condition, particularly dangerous for pregnant women and immunocompromised individuals, currently lacks effective treatment options. Methods Eighteen coumarin-based derivatives were synthesized, comprising coumarin-chalcone hybrids (5a-i) and coumarin-pyrazoline hybrids (6a-i). Cytotoxicity was evaluated using L929 mouse fibroblasts and Hs27 human fibroblasts. Anti-T. gondii activity was assessed, and molecular docking studies were performed to predict binding modes with TgCDPK1. Results Pyrazoline hybrids (6a-i) showed lower toxicity than chalcone-bearing coumarins (5a-i), with CC30 values exceeding the highest tested concentration (500 µg/mL) for most compounds. The synthesized molecules demonstrated strong anti-T. gondii activity, with IC50 values ranging from 0.66 µg/mL to 9.05 µg/mL. Molecular docking studies provided insights into potential binding mechanisms. Conclusion This study highlights the potential of coumarin-based hybrids as anti-T. gondii agents. The findings should contribute to the growing arsenal of small molecules against T. gondii and underscore the value of molecular hybridization in drug design. Further studies to elucidate these compounds' mechanism of action and in vivo efficacy are warranted to fully realize their potential as anti-parasitic agents.
Collapse
Affiliation(s)
- Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, Egypt
| | - Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Łódź, Poland
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | | | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, Maribor, Slovenia
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Moghaddami R, Mahdipour M, Ahmadpour E. Inflammatory pathways of Toxoplasmagondii infection in pregnancy. Travel Med Infect Dis 2024; 62:102760. [PMID: 39293589 DOI: 10.1016/j.tmaid.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular parasite, is considered as an opportunistic infection and causes toxoplasmosis in humans and animals. Congenital toxoplasmosis can influence pregnancy and cause mild to severe consequences for the fetal and neonatal. During early T. gondii infection, neutrophils as the most abundant white blood cells provide a front line of defense mechanism against infection. The activated dendritic cells are then responsible for initiating an inflammatory response via T-helper 1 (Th1) cells. As part of its robust immune response, the infected host cells produce interferon (IFN-γ). IFN-γ inhibits T. gondii replication and promotes its transformation from an active form to tissue cysts. Although anti- T. gondii antibodies play an important role in infection control, T-helper 2 (Th2) immune response, can facilitate the growth and proliferation of T. gondii in the host cell. In pregnant women infected with T. gondii, the expression of cytokines may vary and in response diverse outcomes are expected. Cytokine profiles serve as valuable indicators for estimating the patho-immunological effects of T. gondii infection. This demonstrates the intricate relationship between pro-inflammatory and anti-inflammatory cytokines, as well as their influence on the various pregnancy outcomes in T. gondii infection.
Collapse
Affiliation(s)
- Reyhaneh Moghaddami
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Kent RS, Ward GE. Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615543. [PMID: 39386639 PMCID: PMC11463423 DOI: 10.1101/2024.09.28.615543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tachyzoite stage of the apicomplexan parasite Toxoplasma gondii utilizes motility for multiple purposes during its lytic cycle, including host cell invasion, egress from infected cells, and migration to new uninfected host cells to repeat the process. Bradyzoite stage parasites, which establish a new infection in a naïve host, must also use motility to escape from the cysts that are ingested by the new host and then migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying connective tissue. We know very little about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a 3D model extracellular matrix, and they showed increased invasion into and transmigration across certain cell types, consistent with their need to establish the infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite's actomyosin-based motor. In contrast, other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have less of an effect on bradyzoites, and rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that potential therapeutics targeting parasite motility will have on disease establishment and progression.
Collapse
Affiliation(s)
- Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
- 1041 BMSB, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
| |
Collapse
|
4
|
Abbasali Z, Pirestani M, Dalimi A, Badri M, Fasihi-Ramandi M. Anti-parasitic activity of a chimeric peptide Cecropin A (2-8)-Melittin (6-9) (CM11) against tachyzoites of Toxoplasma gondii and the BALB/c mouse model of acute toxoplasmosis. Mol Biochem Parasitol 2023; 255:111578. [PMID: 37348706 DOI: 10.1016/j.molbiopara.2023.111578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Toxoplasmosis is a zoonotic disease that infects most animals, including humans. Pyrimethamine/sulfadiazine is the standard treatment for toxoplasmosis. Although this treatment has been successful, it is often associated with side effects that cannot be tolerated. Therefore, various compounds have been proposed as alternative treatments for toxoplasmosis. Antimicrobial peptides (AMPs) act on various pathogens, from viruses to protozoa. The purpose of the present study was to evaluate the effects of CM11 on in vitro and in vivo Toxoplasma gondii infection. For in vitro experiments, VERO cells were treated with different concentrations of CM11 (1-128 μg/ml) compared to sulfadiazine (SDZ) (0.78-100 μg/ml). MTT and lactate dehydrogenase (LDH) assays evaluated the cell viability and plasma membrane integrity. Then, the inhibitory concentration (IC50) values were determined for treating tachyzoites of T. gondii before or on cells previously infected. Annexin V-FITC/propidium iodide (PI) staining was used to distinguish viable and apoptotic cells. The effect of CM11, SDZ, and a combination of CM11 and SDZ was evaluated in the BALB/c mouse model of acute toxoplasmosis. CM11 was effective on tachyzoites of T. gondii and had a time and dose-dependent manner. The results of the MTT assay showed that the CC50 values of CM11 and SDZ were estimated at 17.4 µg/ml and 62.3 µg/ml after 24-h, respectively. The inhibitory concentration (IC50) of CM11 and SDZ on infected cells was estimated at 1.9 µg/ml and 1.4 µg/ml after 24-h, respectively. The highest rate of apoptosis (early and late) in high concentrations of SDZ and CM11 was determined for tachyzoites (2.13 % and 13.88 %), non-infected VERO cells (6.1 % and 19.76 %), and infected VERO cells (7.45 % and 29.9 %), respectively. Treating infected mice with CM11 and a combination of CM11 and SDZ had increased survival time. Based on the mentioned results, it can be concluded that CM11 has a beneficial effect on tachyzoites of T. gondii in vitro. The result of the mouse model suggests that CM11, either alone or in combination with other chemotherapeutic agents, could be a potential therapeutic for toxoplasmosis. Hence, antimicrobial peptides could be applied as promising anti-toxoplasma agents for treating toxoplasmosis.
Collapse
Affiliation(s)
- Zahra Abbasali
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu X, Zhang P, Liu Y, Li J, Yang D, Liu Z, Jiang L. Anti- Toxoplasma gondii Effects of Lipopeptide Derivatives of Lycosin-I. Toxins (Basel) 2023; 15:477. [PMID: 37624234 PMCID: PMC10467082 DOI: 10.3390/toxins15080477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasmosis, caused by Toxoplasma gondii (T. gondii), is a serious zoonotic parasitic disease. We previously found that Lycosin-I exhibited anti-T. gondii activity, but its serum stability was not good enough. In this study, we aimed to improve the stability and activity of Lycosin-I through fatty acid chain modification, so as to find a better anti-T. gondii drug candidate. The α/ε-amino residues of different lysine residues of Lycosin-I were covalently coupled with lauric acid to obtain eight lipopeptides, namely L-C12, L-C12-1, L-C12-2, L-C12-3, L-C12-4, L-C12-5, L-C12-6, and L-C12-7. Among these eight lipopeptides, L-C12 showed the best activity against T. gondii in vitro in a trypan blue assay. We then conjugated a shorter length fatty chain, aminocaproic acid, at the same modification site of L-C12, namely L-an. The anti-T. gondii effects of Lycosin-I, L-C12 and L-an were evaluated via an invasion assay, proliferation assay and plaque assay in vitro. A mouse model acutely infected with T. gondii tachyzoites was established to evaluate their efficacy in vivo. The serum stability of L-C12 and L-an was improved, and they showed comparable or even better activity than Lycosin-I did in inhibiting the invasion and proliferation of tachyzoites. L-an effectively prolonged the survival time of mice acutely infected with T. gondii. These results suggest that appropriate fatty acid chain modification can improve serum stability and enhance anti-T. gondii effect of Lycosin-I. The lipopeptide derivatives of Lycosin-I have potential as a novel anti-T. gondii drug candidate.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Yuan Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Jing Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Dongqian Yang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Sena F, Cancela S, Bollati-Fogolín M, Pagotto R, Francia ME. Exploring Toxoplasma gondii´s Biology within the Intestinal Epithelium: intestinal-derived models to unravel sexual differentiation. Front Cell Infect Microbiol 2023; 13:1134471. [PMID: 37313339 PMCID: PMC10258352 DOI: 10.3389/fcimb.2023.1134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
A variety of intestinal-derived culture systems have been developed to mimic in vivo cell behavior and organization, incorporating different tissue and microenvironmental elements. Great insight into the biology of the causative agent of toxoplasmosis, Toxoplasma gondii, has been attained by using diverse in vitro cellular models. Nonetheless, there are still processes key to its transmission and persistence which remain to be elucidated, such as the mechanisms underlying its systemic dissemination and sexual differentiation both of which occur at the intestinal level. Because this event occurs in a complex and specific cellular environment (the intestine upon ingestion of infective forms, and the feline intestine, respectively), traditional reductionist in vitro cellular models fail to recreate conditions resembling in vivo physiology. The development of new biomaterials and the advances in cell culture knowledge have opened the door to a next generation of more physiologically relevant cellular models. Among them, organoids have become a valuable tool for unmasking the underlying mechanism involved in T. gondii sexual differentiation. Murine-derived intestinal organoids mimicking the biochemistry of the feline intestine have allowed the generation of pre-sexual and sexual stages of T. gondii for the first time in vitro, opening a window of opportunity to tackling these stages by "felinizing" a wide variety of animal cell cultures. Here, we reviewed intestinal in vitro and ex vivo models and discussed their strengths and limitations in the context of a quest for faithful models to in vitro emulate the biology of the enteric stages of T. gondii.
Collapse
Affiliation(s)
- Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - Saira Cancela
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Faral-Tello P, Pagotto R, Bollati-Fogolín M, Francia ME. Modeling the human placental barrier to understand Toxoplasma gondii´s vertical transmission. Front Cell Infect Microbiol 2023; 13:1130901. [PMID: 36968102 PMCID: PMC10034043 DOI: 10.3389/fcimb.2023.1130901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite that can infect virtually any warm-blooded animal. Acquired infection during pregnancy and the placental breach, is at the core of the most devastating consequences of toxoplasmosis. T. gondii can severely impact the pregnancy’s outcome causing miscarriages, stillbirths, premature births, babies with hydrocephalus, microcephaly or intellectual disability, and other later onset neurological, ophthalmological or auditory diseases. To tackle T. gondii’s vertical transmission, it is important to understand the mechanisms underlying host-parasite interactions at the maternal-fetal interface. Nonetheless, the complexity of the human placenta and the ethical concerns associated with its study, have narrowed the modeling of parasite vertical transmission to animal models, encompassing several unavoidable experimental limitations. Some of these difficulties have been overcome by the development of different human cell lines and a variety of primary cultures obtained from human placentas. These cellular models, though extremely valuable, have limited ability to recreate what happens in vivo. During the last decades, the development of new biomaterials and the increase in stem cell knowledge have led to the generation of more physiologically relevant in vitro models. These cell cultures incorporate new dimensions and cellular diversity, emerging as promising tools for unraveling the poorly understood T. gondii´s infection mechanisms during pregnancy. Herein, we review the state of the art of 2D and 3D cultures to approach the biology of T. gondii pertaining to vertical transmission, highlighting the challenges and experimental opportunities of these up-and-coming experimental platforms.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Maria E. Francia,
| |
Collapse
|
8
|
Zhang Y, Zhang Q, Li H, Cong H, Qu Y. In vitro and in vivo anti−Toxoplasma activities of HDAC inhibitor Panobinostat on experimental acute ocular toxoplasmosis. Front Cell Infect Microbiol 2022; 12:1002817. [PMID: 36171756 PMCID: PMC9510647 DOI: 10.3389/fcimb.2022.1002817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Ocular toxoplasmosis (OT) is retinochoroiditis caused by Toxoplasma gondii infection, which poses a huge threat to vision. However, most traditional oral drugs for this disease have multiple side effects and have difficulty crossing the blood-retinal barrier, so the new alternative strategy is required to be developed urgently. Histone deacetylases (HDAC) inhibitors, initially applied to cancer, have attracted considerable attention as potential anti-Toxoplasma gondii drugs. Here, the efficacy of a novel HDAC inhibitor, Panobinostat (LBH589), against T. gondii has been investigated. In vitro, LBH589 inhibited the proliferation and activity of T. gondii in a dose-dependent manner with low toxicity to retinal pigment epithelial (RPE) cells. In vivo, optical coherence tomography (OCT) examination and histopathological studies showed that the inflammatory cell infiltration and the damage to retinal architecture were drastically reduced in C57BL/6 mice upon treatment with intravitreal injection of LBH589. Furthermore, we have found the mRNA expression levels of inflammatory cytokines were significantly decreased in LBH589–treated group. Collectively, our study demonstrates that LBH589 holds great promise as a preclinical candidate for control and cure of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qingqing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Hua Cong, ; Yi Qu,
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Hua Cong, ; Yi Qu,
| |
Collapse
|
9
|
The Antioxidant Effect of Natural Antimicrobials in Shrimp Primary Intestinal Cells Infected with Nematopsis messor. Antioxidants (Basel) 2022; 11:antiox11050974. [PMID: 35624838 PMCID: PMC9137680 DOI: 10.3390/antiox11050974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp’s intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.
Collapse
|
10
|
Humayun M, Ayuso JM, Park KY, Martorelli Di Genova B, Skala MC, Kerr SC, Knoll LJ, Beebe DJ. Innate immune cell response to host-parasite interaction in a human intestinal tissue microphysiological system. SCIENCE ADVANCES 2022; 8:eabm8012. [PMID: 35544643 PMCID: PMC9075809 DOI: 10.1126/sciadv.abm8012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 05/03/2023]
Abstract
Protozoan parasites that infect humans are widespread and lead to varied clinical manifestations, including life-threatening illnesses in immunocompromised individuals. Animal models have provided insight into innate immunity against parasitic infections; however, species-specific differences and complexity of innate immune responses make translation to humans challenging. Thus, there is a need for in vitro systems that can elucidate mechanisms of immune control and parasite dissemination. We have developed a human microphysiological system of intestinal tissue to evaluate parasite-immune-specific interactions during infection, which integrates primary intestinal epithelial cells and immune cells to investigate the role of innate immune cells during epithelial infection by the protozoan parasite, Toxoplasma gondii, which affects billions of people worldwide. Our data indicate that epithelial infection by parasites stimulates a broad range of effector functions in neutrophils and natural killer cell-mediated cytokine production that play immunomodulatory roles, demonstrating the potential of our system for advancing the study of human-parasite interactions.
Collapse
Affiliation(s)
- Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose M. Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Keon Young Park
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheena C. Kerr
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Tylvalosin demonstrates anti-parasitic activity and protects mice from acute toxoplasmosis. Life Sci 2022; 294:120373. [DOI: 10.1016/j.lfs.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
12
|
Carvallo FR, Stevenson VB. Interstitial pneumonia and diffuse alveolar damage in domestic animals. Vet Pathol 2022; 59:586-601. [DOI: 10.1177/03009858221082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classification of pneumonia in animals has been controversial, and the most problematic pattern is interstitial pneumonia. This is true from the gross and histologic perspectives, and also from a mechanistic point of view. Multiple infectious and noninfectious diseases are associated with interstitial pneumonia, all of them converging in the release of inflammatory mediators that generate local damage and attract inflammatory cells that inevitably trigger a second wave of damage. Diffuse alveolar damage is one of the more frequently identified histologic types of interstitial pneumonia and involves injury to alveolar epithelial and/or endothelial cells, with 3 distinct stages. The first is the “exudative” stage, with alveolar edema and hyaline membranes. The second is the “proliferative” stage, with hyperplasia and reactive atypia of type II pneumocytes, infiltration of lymphocytes, plasma cells, and macrophages in the interstitium and early proliferation of fibroblasts. These stages are reversible and often nonfatal. If damage persists, there is a third “fibrosing” stage, characterized by fibrosis of the interstitium due to proliferation of fibroblasts/myofibroblasts, persistence of type II pneumocytes, segments of squamous metaplasia of alveolar epithelium, plus inflammation. Understanding the lesion patterns associated with interstitial pneumonias, their causes, and the underlying mechanisms aid in accurate diagnosis that involves an interdisciplinary collaborative approach involving pathologists, clinicians, and radiologists.
Collapse
Affiliation(s)
- Francisco R. Carvallo
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Department of Agriculture and Consumer Services, Harrisonburg, VA
| | | |
Collapse
|
13
|
Transcriptional signatures of clonally derived Toxoplasma tachyzoites reveal novel insights into the expression of a family of surface proteins. PLoS One 2022; 17:e0262374. [PMID: 35213559 PMCID: PMC8880437 DOI: 10.1371/journal.pone.0262374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii has numerous, large, paralogous gene families that are likely critical for supporting its unparalleled host range: nearly any nucleated cell in almost any warm-blooded animal. The SRS (SAG1-related sequence) gene family encodes over 100 proteins, the most abundant of which are thought to be involved in parasite attachment and, based on their stage-specific expression, evading the host immune response. For most SRS proteins, however, little is understood about their function and expression profile. Single-parasite RNA-sequencing previously demonstrated that across an entire population of lab-grown tachyzoites, transcripts for over 70 SRS genes were detected in at least one parasite. In any one parasite, however, transcripts for an average of only 7 SRS genes were detected, two of which, SAG1 and SAG2A, were extremely abundant and detected in virtually all. These data do not address whether this pattern of sporadic SRS gene expression is consistently inherited among the progeny of a given parasite or arises independently of lineage. We hypothesized that if SRS expression signatures are stably inherited by progeny, subclones isolated from a cloned parent would be more alike in their expression signatures than they are to the offspring of another clone. In this report, we compare transcriptomes of clonally derived parasites to determine the degree to which expression of the SRS family is stably inherited in individual parasites. Our data indicate that in RH tachyzoites, SRS genes are variably expressed even between parasite samples subcloned from the same parent within approximately 10 parasite divisions (72 hours). This suggests that the pattern of sporadically expressed SRS genes is highly variable and not driven by inheritance mechanisms, at least under our conditions.
Collapse
|
14
|
Pereira-Suárez AL, Galván-Ramírez MDLL, Rodríguez-Pérez LR, López-Pulido EI, Hernández-Silva CD, Ramírez-López IG, Morales Amaya GV, Lopez Cabrera LD, Muñoz-Valle JF, Ramírez-de-Arellano A. 17β-estradiol modulates the expression of hormonal receptors on THP-1 T. gondii-infected macrophages and monocytes in an AKT and ERK-dependent manner. Mol Biochem Parasitol 2021; 247:111433. [PMID: 34822916 DOI: 10.1016/j.molbiopara.2021.111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii (T. gondii) is a parasite common in pregnancy. Monocytes and macrophages are a significant immunologic barrier against T. gondii by boosting up inflammation. This outcome is highly regulated by signaling pathways such as MAPK (ERK1/2) and PI3K (AKT), necessary in cell growth and proliferation. It may be associated with the hormonal receptors' modulation by T. gondii (Estrogen Receptor (ER)-α, ERβ, G Protein-coupled ER (GPER), and Prolactin Receptor (PRLR)), as previously reported by our research group. 17β-estradiol also activates MAPK and PI3K; however, its combined effect in THP-1 monocytes and macrophages, infected with T. gondii, has not yet been evaluated. This study aimed to evaluate the combined effect of 17β-estradiol in the activation of signaling pathways using a model of THP-1 monocytes and macrophages infected with T. gondii. THP-1 monocytes were cultured and differentiated into macrophages. Inhibition of AKT and ERK1/2 was performed with specific inhibitors. Stimuli were performed with 17β-estradiol (10 nM), T. gondii (20,000 tachyzoites), and both conditions for 48 h. Proteins were extracted and quantified, and Western Blot assays were performed. 17β-estradiol performed activation of ERK1/2 and AKT in T. gondii-infected macrophages. 17β-estradiol modulated the expression of hormonal receptors in infected cells: increases the PRLR and PrgR in T. gondii-infected macrophages and decreases the PRLR and ERα in T. gondii-infected monocytes. As for GPER, its expression is abolished by T. gondii, and 17β-estradiol cannot restore it. Finally, the blockage of ERK and AKT pathways modified the expression of hormonal receptors. In conclusion, 17β-estradiol modifies the receptors of T. gondii-infected THP1 macrophages and monocytes in an ERK/AKT dependent manner.
Collapse
Affiliation(s)
- Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México; Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - María de la Luz Galván-Ramírez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Laura Rocío Rodríguez-Pérez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Edgar I López-Pulido
- Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Christian David Hernández-Silva
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Inocencia Guadalupe Ramírez-López
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Grecia Viridiana Morales Amaya
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Luis David Lopez Cabrera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México.
| |
Collapse
|
15
|
Staurengo-Ferrari L, Sanfelice RADS, de Souza JB, Assolini JP, Dos Santos DP, Cataneo AHD, Bordignon J, Conchon-Costa I, da Costa IN, Fernandes GSA. Impact of Toxoplasma gondii infection on TM3 Leydig cells: Alterations in testosterone and cytokines levels. Acta Trop 2021; 220:105938. [PMID: 33932363 DOI: 10.1016/j.actatropica.2021.105938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Leydig cells play pivotal roles in eliciting male characteristics by producing testosterone and any damage to these cells can compromise male fertility Toxoplasma gondii (T. gondii) is an intracellular parasite capable to invade any nucleated cell, including cells from male reproductive system. Herein, we evaluated the capacity of RH strain of T. gondii to infect TM3 Leydig cells and the impact of this infection on testosterone and inflammatory mediators production. We first, by performing adherence, infection, and intracellular proliferation assays, we found a significant increase in the number of infected Leydig cells, peaking 48 h after the infection with T. gondii. Supernatants of TM3 infected cells exhibited, in a time-dependent manner, increased levels of testosterone as well as monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), which is correlated with the robust T. gondii infection. In conclusion, our study provides new insights regarding the harmful effects of T. gondii infection on male reproductive system.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Department of Pathological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Julia Bagatim de Souza
- Department of General Biology, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | - Joao Paulo Assolini
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Dayane Priscila Dos Santos
- Department of Pathological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil; Department of General Biology, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | | | - Juliano Bordignon
- Laboratory of Molecular Virology, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Idessania Nazareth da Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
16
|
Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, Mondragón-Castelán M, Mondragon-Gonzalez R, González-Pozos S, Mondragón-Flores R. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration. Cell Microbiol 2020; 23:e13283. [PMID: 33108050 DOI: 10.1111/cmi.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.
Collapse
Affiliation(s)
- Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Ricardo Mondragon-Gonzalez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | | | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| |
Collapse
|
17
|
Hares MF, Tiffney EA, Johnston LJ, Luu L, Stewart CJ, Flynn RJ, Coombes JL. Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium. Parasite Immunol 2020; 43:e12765. [PMID: 32564379 DOI: 10.1111/pim.12765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review, we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments.
Collapse
Affiliation(s)
- Miriam F Hares
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ellen-Alana Tiffney
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Luke J Johnston
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lisa Luu
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Janine L Coombes
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Rahman M, Devriendt B, Jennes M, Gisbert Algaba I, Dorny P, Dierick K, De Craeye S, Cox E. Early Kinetics of Intestinal Infection and Immune Responses to Two Toxoplasma gondii Strains in Pigs. Front Cell Infect Microbiol 2020; 10:161. [PMID: 32373554 PMCID: PMC7176905 DOI: 10.3389/fcimb.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite, able to infect all homeothermic animals mostly through ingestion of (oo)cysts contaminated food or water. Recently, we observed a T. gondii strain-specific clearance from tissues upon infection in pigs: while the swine-adapted LR strain persisted in porcine tissues, a subsequent infection with the human-isolated Gangji strain cleared parasites from several tissues. We hypothesized that intestinal immune responses shortly after infection might play a role in this strain-specific clearance. To assess this possibility, the parasite load in small intestinal lymph node cells and blood immune cells as well as the IFNγ secretion by these cells were evaluated at 2, 4, 8, 14, and 28 days post oral inoculation of pigs with tissue cysts of both strains. Interestingly, at day 4 post inoculation with the LR strain the parasite was detected by qPCR only in the duodenal lymph node cells, while in the jejunal and ileal lymph node cells and PBMCs the parasite was detected from day 8 post inoculation onwards. Although we observed a similar profile upon inoculation with the Gangji strain, the parasite load in the examined cells was much lower. This was reflected in a significantly higher T. gondii-specific serum IgG response in LR compared to Gangji infected pigs at day 28 post inoculation. Unexpectedly, this was not reflected in the IFNγ secretion upon re-stimulation of the cells where almost equal IFNγ secretion was observed in both groups. In conclusion, our results show that T. gondii first enters the host at the duodenum and then probably disseminates from this site to the other tissues. How the early immune response influences the clearance of parasite from tissues needs further study.
Collapse
Affiliation(s)
- Mizanur Rahman
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Malgorzata Jennes
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ignacio Gisbert Algaba
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium.,Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katelijne Dierick
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Stéphane De Craeye
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Decker Franco C, Wieser SN, Soria M, de Alba P, Florin-Christensen M, Schnittger L. In silico identification of immunotherapeutic and diagnostic targets in the glycosylphosphatidylinositol metabolism of the coccidian Sarcocystis aucheniae. Transbound Emerg Dis 2019; 67 Suppl 2:165-174. [PMID: 31880101 DOI: 10.1111/tbed.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meat of the South American camelids (SACs) llama and alpaca is an important source of animal protein and income for rural families in the Andes, and a product with significant growth potential for local and international markets. However, infestation with macroscopic cysts of the coccidian protozoon Sarcocystis aucheniae, a parasitosis known as SAC sarcocystosis, significantly hampers its commercialization. There are no validated methods to diagnose the presence of S. aucheniae cysts other than carcass examination. Moreover, there are no available drugs or vaccines to cure or prevent SAC sarcocystosis. Identification of relevant molecules that act at the host-pathogen interface can significantly contribute to the control of this disease. It has been shown for other pathogenic protozoa that glycosylphosphatidylinositol (GPI) is a critical molecule implicated in parasite survival and pathogenicity. This study focused on the identification of the enzymes that participate in the S. aucheniae GPI biosynthetic pathway and the repertoire of the parasite GPI-anchored proteins (GPI-APs). To this aim, RNA was extracted from parasite cysts and the transcriptome was sequenced and translated into amino acid sequences. The generated database was mined using sequences of well-characterized GPI biosynthetic enzymes of Saccharomyces cerevisiae and Toxoplasma gondii. Eleven enzymes predicted to participate in the S. aucheniae GPI biosynthetic pathway were identified. On the other hand, the database was searched for proteins carrying an N-terminal signal peptide and a single C-terminal transmembrane region containing a GPI anchor signal. Twenty-four GPI-anchored peptides were identified, of which nine are likely S. aucheniae-specific, and 15 are homologous to membrane proteins of other coccidians. Among the latter, 13 belong to the SRS domain superfamily, an extensive group of coccidian GPI-anchored proteins that mediate parasite interaction with their host. Phylogenetic analysis showed a great degree of intra- and inter-specific divergence among SRS family proteins. In vitro and in vivo experiments are needed to validate S. aucheniae GPI biosynthetic enzymes and GPI-APs as drug targets and/or as vaccine or diagnostic antigens.
Collapse
Affiliation(s)
- Cecilia Decker Franco
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sarah N Wieser
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina
| | - Marcelo Soria
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paloma de Alba
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Urbano JCDC, Leite RBDCH, Castro RLP, Silva CMVD, Andrade JMDA, Oliveira CBSD, Barbosa VSDA, Andrade-Neto VFD, Holanda CMDCX. Effect of toxoplasmic infection on the biodistribution of a brain radiopharmaceutical. Int J Radiat Biol 2019; 95:1547-1551. [DOI: 10.1080/09553002.2019.1642533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiol Res 2019; 227:126293. [DOI: 10.1016/j.micres.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
|
22
|
Luu L, Johnston LJ, Derricott H, Armstrong SD, Randle N, Hartley CS, Duckworth CA, Campbell BJ, Wastling JM, Coombes JL. An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium. Front Cell Infect Microbiol 2019; 9:300. [PMID: 31555604 PMCID: PMC6723115 DOI: 10.3389/fcimb.2019.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.
Collapse
Affiliation(s)
- Lisa Luu
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Luke J. Johnston
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hayley Derricott
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Stuart D. Armstrong
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nadine Randle
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Catherine S. Hartley
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Wastling
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Janine L. Coombes
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
24
|
Alvarado-Esquivel C, Rico-Almochantaf YDR, Hernández-Tinoco J, Quiñones-Canales G, Sánchez-Anguiano LF, Torres-González J, Ramírez-Valles EG, Minjarez-Veloz A. Toxoplasma gondii exposure and epilepsy: A matched case-control study in a public hospital in northern Mexico. SAGE Open Med 2018; 6:2050312118767767. [PMID: 29662676 PMCID: PMC5898655 DOI: 10.1177/2050312118767767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022] Open
Abstract
Objectives This study aimed to determine the association between infection with Toxoplasma gondii and epilepsy in patients attended to in a public hospital in the northern Mexican city of Durango. Methods We performed an age- and gender-matched case-control study of 99 patients suffering from epilepsy and 99 without epilepsy. Sera of participants were analyzed for anti-T. gondii IgG and IgM antibodies using commercially available enzyme-linked immunoassays. Seropositive samples to T. gondii were further analyzed for detection of T. gondii DNA by polymerase chain reaction. Results Anti-T. gondii IgG antibodies were found in 10 (10.1%) of the 99 cases and in 6 (6.1%) of the 99 controls (odds ratio = 1.74; 95% confidence interval: 0.60-4.99; p = 0.43). High (> 150 IU/mL) levels of anti-T. gondii IgG antibodies were found in 6 of the 99 cases and in 4 of the 99 controls (odds ratio = 1.53; 95% confidence interval: 0.41-5.60; p = 0.74). Anti-T. gondii IgM antibodies were found in 2 of the 10 IgG seropositive cases, and in 2 of the 6 IgG seropositive controls (odds ratio = 0.50; 95% confidence interval: 0.05-4.97; p = 0.60). T. gondii DNA was not found in any of the 10 anti-T. gondii IgG positive patients. Bivariate analysis of IgG seropositivity to T. gondii and International Statistical Classification of Diseases and related Health Problems, 10th Edition codes of epilepsy showed an association between seropositivity and G40.1 code (odds ratio = 22.0; 95% confidence interval: 2.59-186.5; p = 0.008). Logistic regression analysis showed an association between T. gondii infection and consumption of goat meat (odds ratio = 6.5; 95% confidence interval: 1.22-34.64; p = 0.02), unwashed raw vegetables (odds ratio = 26.3; 95% confidence interval: 2.61-265.23; p = 0.006), and tobacco use (odds ratio = 6.2; 95% confidence interval: 1.06-36.66; p = 0.04). Conclusions Results suggest that T. gondii infection does not increase the risk of epilepsy in our setting; however, infection might be linked to specific types of epilepsy. Factors associated with T. gondii infection found in this study may aid in the design of preventive measures against toxoplasmosis.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | | | - Jesús Hernández-Tinoco
- Institute for Scientific Research "Dr. Roberto Rivera Damm," Juárez University of Durango State, Durango, Mexico
| | | | | | - Jorge Torres-González
- Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Durango, Mexico
| | | | | |
Collapse
|
25
|
Ashour DS, Saad AE, Dawood LM, Zamzam Y. Immunological interaction between Giardia cyst extract and experimental toxoplasmosis. Parasite Immunol 2017; 40. [PMID: 29130475 DOI: 10.1111/pim.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is mostly associated with other intestinal parasitic infections especially Giardia due to shared mode of peroral infection. Toxoplasma and Giardia induce a strong T-helper 1- immune response. Our aim was to induce a protective immune response that results in significant impact on intestinal and extra-intestinal phases of Toxoplasma infection. This study was conducted in experimental animals and assessment of Giardia cyst extract effect on Toxoplasma infection was investigated by histopathological examination of small intestine and brain, Toxoplasma cyst count and iNOS staining of the brain, measurement of IFN-γ and TGF-β in intestinal tissues. Results showed that the brain Toxoplasma cyst number was decreased in mice infected with Toxoplasma then received Giardia cyst extract as compared to mice infected with Toxoplasma only. This effect was produced because Giardia cyst extract augmented the immune response to Toxoplasma infection as evidenced by severe inflammatory reaction in the intestinal and brain tissues, increased levels of IFN-γ and TGF-β in intestinal tissues and strong iNOS staining of the brain. In conclusion, Giardia cyst extract generated a protective response against T. gondii infection. Therefore, Giardia antigen will be a suitable candidate for further researches as an immunomodulatory agent against Toxoplasma infection.
Collapse
Affiliation(s)
- D S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - L M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Y Zamzam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|