1
|
Mehata AK, Bonlawar J, Tamang R, Malik AK, Setia A, Kumar S, Challa RR, Vallamkonda B, Koch B, Muthu MS. PLGA Nanoplatform for the Hypoxic Tumor Delivery: Folate Targeting, Therapy, and Ultrasound/Photoacoustic Imaging. ACS APPLIED BIO MATERIALS 2024; 7:5754-5770. [PMID: 39115968 DOI: 10.1021/acsabm.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Effective targeting of breast tumors is critical for improving therapeutic outcomes in breast cancer treatment. Additionally, hypoxic breast cancers are difficult to treat due to resistance toward chemotherapeutics, poor vascularity, and enhanced angiogenesis, which complicate effective drug delivery and therapeutic response. Addressing this formidable challenge requires designing a drug delivery system capable of targeted delivery of the anticancer agent, inhibition of efflux pump, and suppression of the tumor angiogenesis. Here, we have introduced Palbociclib (PCB)-loaded PLGA nanoparticles (NPs) consisting of chitosan-folate (CS-FOL) for folate receptor-targeted breast cancer therapy. The developed NPs were below 219 nm with a smooth, spherical surface shape. The entrapment efficiencies of NPs were achieved up to 85.78 ± 1.8%. Targeted NPs demonstrated faster drug release at pH 5.5, which potentiated the therapeutic efficacy of NPs due to the acidic microenvironment of breast cancer. In vitro cellular uptake study in MCF-7 cells confirmed the receptor-mediated endocytosis of targeted NPs. In vivo ultrasound and photoacoustic imaging studies on rats with hypoxic breast cancer showed that targeted NPs significantly reduced tumor growth and hypoxic tumor volume, and suppressed angiogenesis.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Shailendra Kumar
- SATHI, Central Discovery Centre, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi 522213, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi 522213, Andhra Pradesh, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
2
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
3
|
Ma L, Jiang X, Gao J. Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies. Drug Deliv Transl Res 2024:10.1007/s13346-024-01605-x. [PMID: 38758497 DOI: 10.1007/s13346-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease with severe implications for joint health. The issue of non-specific drug distribution potentially limits the therapeutic efficacy and increases the risk associated with RA treatment. Researchers employed cytomembrane-coated biomimetic nanoparticles (NPs) to enhance the targeting delivery efficacy to meet the demand for drug accumulation within the affected joints. Furthermore, distinct cytomembranes offer unique functionalities, such as immune cell activation and augmented NP biocompatibility. In this review, the current strategies of RA treatments were summarized in detail, and then an overview of RA's pathogenesis and the methodologies for producing cytomembrane-coated biomimetic NPs was provided. The application of cytomembrane biomimetic NPs derived from various cell sources in RA therapy is explored, highlighting the distinctive attributes of individual cytomembranes as well as hybrid membrane configurations. Through this comprehensive assessment of cytomembrane biomimetic NPs, we elucidate the prospective applications and challenges in the realm of RA therapy, and the strategy of combined therapy is proposed. In the future, cytomembrane biomimetic NPs have a broad therapeutic prospect for RA.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Chilechuan dairy economic development zone, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Nasr M, Hashem F, Teiama M, Tantawy N, Abdelmoniem R. Folic acid grafted mixed polymeric micelles as a targeted delivery strategy for tamoxifen citrate in treatment of breast cancer. Drug Deliv Transl Res 2024; 14:945-958. [PMID: 37906415 DOI: 10.1007/s13346-023-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/02/2023]
Abstract
The objective of this study was to develop folic acid (FA) grafted mixed polymeric micelles loaded with Tamoxifen citrate (TMXC) to enhance its antitumor activity in breast tissues. The conjugated folic acid Pluronic 123 (FA-P123) was prepared using carbonyl diimidazole cross-linker chemistry and confirmed using FTIR and 1HNMR. TMXC-loaded P123/P84 (unconjugated) and TMXC-loaded FA-P123/P84 (conjugated) micelles were examined for encapsulation efficiency, particle size, surface charge, in vitro drug release, cytotoxic effect, and cellular uptake by a breast cancer cell line. The conjugated TMXC-loaded micelle exhibited a nanoparticle size of 35.01 ± 1.20 nm, a surface charge of-20.50 ± 0.95 mV, entrapped 87.83 ± 5.10% and released 67.58 ± 2.47% of TMXC after 36 h. The conjugated micelles exhibited a significantly higher cellular uptake of TMXC by the MCF-7 cell line and improved in vitro cytotoxicity by 2.48 folds compared to the TMXC-loaded unconjugated micelles. The results of in vivo studies indicated that TMXC-loaded FA-P123/P84 has a potential antitumor activity, as revealed by a significant reduction of tumor volume in tumor-bearing mice compared to TMXC-loaded unconjugated micelles. In conclusion, the obtained results suggested that conjugated FA-P123/P84 micelles could be an encouraging carrier for the treatment of breast cancer with TMXC.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Fahima Hashem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| | - Mohammed Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Attaka, 43713, Suez, Egypt
| | - Norhan Tantawy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| | - Raghda Abdelmoniem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| |
Collapse
|
5
|
Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioengineering (Basel) 2024; 11:311. [PMID: 38671732 PMCID: PMC11047666 DOI: 10.3390/bioengineering11040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Yun Zeng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yang Zhao
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Xuqi Peng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - En Ren
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- Key Laboratory of Advanced Drug Delivery Systems, Zhejiang Province College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Sepahi S, Kiaei L, Kiaei M, Ghorani-Azam A. A systematic review of emerging technologies to enhance the treatment of ovarian cancer. Pharm Dev Technol 2023; 28:660-677. [PMID: 37417773 DOI: 10.1080/10837450.2023.2233588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The efficacy and safety of chemotherapy are two major challenges when it comes to treating ovarian cancer. The associated undesirable side effects of chemotherapy agents jeopardize the clinical intent and the efficiency of the therapy. Multiple studies have been published describing new developments and novel strategies utilizing the latest therapeutic and drug delivery technologies to address the efficacy and safety of chemotherapeutics in ovarian cancers. We have identified five novel technologies that are available and, if used, have the potential to mitigate the above-mentioned challenges. Nanocarriers in different forms (Nano-gel, Aptamer, peptide medicated formulations, Antibody-drug conjugation, surface charge, and nanovesicle technologies) are developed and available to be employed to target the cancerous tissue. These strategies are promising to improve clinical efficacy and reduce side effects. We have systematically searched and analyzed published data, as well as the authors intent for the described technology on each publication. We narrowed to 81 key articles and extracted their data to be discussed in this review. In summary, the selected articles investigated the pharmacokinetic properties of drugs combined with nanocarriers and found significant improvement in efficacy and safety by reducing the IC50 values and drug doses. These key papers described promising novel technologies in anti-cancer therapeutic approaches to enable sustained drug release and achieve prolonged drug performance near the tumor site or target tissue.
Collapse
Affiliation(s)
- Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Gandidzanwa S, Beukes N, Joseph SV, Janse Van Vuuren A, Mashazi P, Britton J, Kilian G, Roux S, Nyokong T, Lee ME, Frost CL, Tshentu ZR. The development of folate-functionalised palladium nanoparticles for folate receptor targeting in breast cancer cells. NANOTECHNOLOGY 2023; 34:465705. [PMID: 37527629 DOI: 10.1088/1361-6528/acec52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Folate receptor-targeted therapy has excellent prospects for the treatment of breast cancer. A non-toxic concentration of folate-conjugated palladium-based nanoparticles was used to target the overexpressed folate receptor on breast cancer cells. The folate-conjugated nanoparticles were tailored to accumulate selectively in cancer cells relative to normal cells via the folate receptor. The MDA-MB-231, MDA-MB-468, MCF-7 breast cancer cell lines, and MCF-10A normal cell lines were used in the study. Qualitative and quantitative analysis of nanoparticle cellular uptake and accumulation was conducted using transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The findings proved that folate-conjugated palladium nanoparticles successfully and preferentially accumulated in breast cancer cells. We conclude that folate-conjugated palladium nanoparticles can be potentially used to target breast cancer cells for radiopharmaceutical applications.
Collapse
Affiliation(s)
| | - Natasha Beukes
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Sinelizwi V Joseph
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Arno Janse Van Vuuren
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Gareth Kilian
- Department of Pharmacy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Saartjie Roux
- Department of Human Physiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Michael E Lee
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
8
|
Vasil’kov A, Voronova A, Batsalova T, Moten D, Naumkin A, Shtykova E, Volkov V, Teneva I, Dzhambazov B. Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3238. [PMID: 37110074 PMCID: PMC10146258 DOI: 10.3390/ma16083238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state-from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20-50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| |
Collapse
|
9
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
10
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
Lee M, Shelke A, Singh S, Fan J, Zaleski P, Afkhami S. Numerical simulation of superparamagnetic nanoparticle motion in blood vessels for magnetic drug delivery. Phys Rev E 2022; 106:015104. [PMID: 35974570 DOI: 10.1103/physreve.106.015104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
A numerical model is developed for the motion of superparamagnetic nanoparticles in a non-Newtonian blood flow under the influence of a magnetic field. The rheological properties of blood are modeled by the Carreau flow and viscosity, and the stochastic effects of Brownian motion and red blood cell collisions are considered. The model is validated with existing data and good agreement with experimental results is shown. The effectiveness of magnetic drug delivery in various blood vessels is assessed and found to be most successful in arterioles and capillaries. A range of magnetic field strengths are modeled using equations for both a bar magnet and a point dipole: it is shown that the bar magnet is effective at capturing nanoparticles in limited cases, while the point dipole is highly effective across a range of conditions. A parameter study is conducted to show the effects of changing the dipole moment, the distance from the magnet to the blood vessel, and the initial release point of the nanoparticles. The distance from the magnet to the blood vessel is shown to play a significant role in determining nanoparticle capture rate. The optimal initial release position is found to be located within the tumor radius in capillaries and arterioles to prevent rapid diffusion to the edges of the blood vessel prior to arriving at the tumor and near the edge of the magnet when a bar magnet is used.
Collapse
Affiliation(s)
- Matthew Lee
- East Brunswick High School, East Brunswick, New Jersey 08816, USA
| | - Aditya Shelke
- Middlesex County Academy for SMET, Edison, New Jersey 08837, USA
| | - Saloni Singh
- High Tech High School, Secaucus, New Jersey 07094, USA
| | - Jenny Fan
- Princeton Day School, Princeton, New Jersey 08540, USA
| | - Philip Zaleski
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Shahriar Afkhami
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
12
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
13
|
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022; 10:844050. [PMID: 35295856 PMCID: PMC8918578 DOI: 10.3389/fcell.2022.844050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a rapid development of biomimetic platforms using cell membranes as nanocarriers to camouflage nanoparticles for enhancing bio-interfacial capabilities. Various sources of cell membranes have been explored for natural functions such as circulation and targeting effect. Biomedical applications of cell membranes-based delivery systems are expanding from cancer to multiple diseases. However, the natural properties of cell membranes are still far from achieving desired functions and effects as a nanocarrier platform for various diseases. To obtain multi-functionality and multitasking in complex biological systems, various functionalized modifications of cell membranes are being developed based on physical, chemical, and biological methods. Notably, many research opportunities have been initiated at the interface of multi-technologies and cell membranes, opening a promising frontier in therapeutic applications. Herein, the current exploration of natural cell membrane functionality, the design principles for engineered cell membrane-based delivery systems, and the disease applications are reviewed, with a special focus on the emerging strategies in engineering approaches.
Collapse
Affiliation(s)
- Biao Yu
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Shanghai, China
- Department of Orthopedics, Luodian Hospital, Shanghai University, Shanghai, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jianping Huang
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
14
|
Ak G, Ünal A, Karakayalı T, Özel B, Selvi Günel N, Hamarat Şanlıer Ş. Brain-targeted, drug-loaded solid lipid nanoparticles against glioblastoma cells in culture. Colloids Surf B Biointerfaces 2021; 206:111946. [PMID: 34216850 DOI: 10.1016/j.colsurfb.2021.111946] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
The aim of this study was the preparation of solid lipid nanoparticles (SLN) formed from cetyl palmitate with having targeting molecules for monocarboxylate transporter-1 (MCT-1): β-hydroxybutyric acid and anticancer agents: carmustine (BCNU) and temozolomide (TMZ) for enhanced anti-proliferation against glioblastoma multiforme (GBM). Properties including size, morphology, chemical structure, zeta potential, drug encapsulation efficacy, drug release, biocompatibility, stability were determined, and in vitro studies were done. BCNU and TMZ loaded SLNs had a hydrodynamic size of 227 nm ± 46 a zeta potential of -25 mV ± 4 with biocompatible features. The data showed rapid drug release at first and then continuous release. Nanoparticles could be stored for nine months. BCNU and TMZ loaded SLNs exhibited a remarkable increment in the antitumor activity compared to the free-drugs and induced apoptosis on U87MG cells. In addition, targeted nanoparticles were more uptaken by MCT-1 expressing brain cells. This study indicated that BCNU and TMZ loaded SLNs could act as a useful anticancer system for targeted GBM therapy.
Collapse
Affiliation(s)
- Güliz Ak
- Biochemistry Department, Faculty of Science, Ege University, 35040, Izmir, Turkey; Center for Drug Research, Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey.
| | - Ayşe Ünal
- Biochemistry Department, Faculty of Science, Ege University, 35040, Izmir, Turkey
| | - Tuğba Karakayalı
- Biochemistry Department, Faculty of Science, Ege University, 35040, Izmir, Turkey
| | - Buket Özel
- Center for Drug Research, Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Nur Selvi Günel
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Şenay Hamarat Şanlıer
- Biochemistry Department, Faculty of Science, Ege University, 35040, Izmir, Turkey; Center for Drug Research, Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey
| |
Collapse
|
15
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Ai X, Wang S, Duan Y, Zhang Q, Chen M, Gao W, Zhang L. Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry 2021; 60:941-955. [PMID: 32452667 PMCID: PMC8507422 DOI: 10.1021/acs.biochem.0c00343] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There has been significant interest in developing cell membrane-coated nanoparticles due to their unique abilities of biomimicry and biointerfacing. As the technology progresses, it becomes clear that the application of these nanoparticles can be drastically broadened if additional functions beyond those derived from the natural cell membranes can be integrated. Herein, we summarize the most recent advances in the functionalization of cell membrane-coated nanoparticles. In particular, we focus on emerging methods, including (1) lipid insertion, (2) membrane hybridization, (3) metabolic engineering, and (4) genetic modification. These approaches contribute diverse functions in a nondisruptive fashion while preserving the natural function of the cell membranes. They also improve on the multifunctional and multitasking ability of cell membrane-coated nanoparticles, making them more adaptive to the complexity of biological systems. We hope that these approaches will serve as inspiration for more strategies and innovations to advance cell membrane coating technology.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Shuyan Wang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Yaou Duan
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Qiangzhe Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Maggie Chen
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Weiwei Gao
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Liangfang Zhang
- Departments of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Cé R, Lavayen V, Couto GK, De Marchi JGB, Pacheco BZ, Natividade LA, Fracari TO, Ciocheta TM, de Cristo Soares Alves A, Jornada DS, Guterres SS, Seixas F, Collares T, Pohlmann AR. Folic Acid-Doxorubicin-Double-Functionalized-Lipid-Core Nanocapsules: Synthesis, Chemical Structure Elucidation, and Cytotoxicity Evaluation on Ovarian (OVCAR-3) and Bladder (T24) Cancer Cell Lines. Pharm Res 2021; 38:301-317. [PMID: 33608808 DOI: 10.1007/s11095-021-02989-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Folic acid-doxorubicin-double-functionalized-lipid-core nanocapsules (LNC-CS-L-Zn+2-DOX-FA) were prepared, characterized, and evaluated in vitro against ovarian and bladder cancer cell lines (OVCAR-3 and T24). METHODS LNC-CS-L-Zn+2-DOX-FA was prepared by self-assembly and interfacial reactions, and characterized using liquid chromatography, particle sizing, transmission electron microscopy, and infrared spectroscopy. Cell viability and cellular uptake were studied using MTT assay and confocal microscopy. RESULTS The presence of lecithin allows the formation of nanocapsules with a lower tendency of agglomeration, narrower size distributions, and smaller diameters due to an increase in hydrogen bonds at the surface. LNC-L-CS-Zn+2-DOX-FA, containing 98.00 ± 2.34 μg mL-1 of DOX and 105.00 ± 2.05 μg mL-1 of FA, had a mean diameter of 123 ± 4 nm and zeta potential of +12.0 ± 1.3 mV. After treatment with LNC-L-CS-Zn+2-DOX-FA (15 μmol L-1 of DOX), T24 cells had inhibition rates above 80% (24 h) and 90% (48 h), whereas OVCAR-3 cells showed inhibition rates of 68% (24 h) and 93% (48 h), showing higher cytotoxicity than DOX.HCl. The fluorescent-labeled formulation showed a higher capacity of internalization in OVCAR-3 compared to T24 cancer cells. CONCLUSION Lecithin favored the increase of hydrogen bonds at the surface, leading to a lower tendency of agglomeration for nanocapsules. LNC-CS-L-Zn+2-DOX-FA is a promising therapeutic agent against tumor-overexpressing folate receptors.
Collapse
Affiliation(s)
- Rodrigo Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil.
| | - Vladimir Lavayen
- Departamento de Química Inorgânica and Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Gabriela Klein Couto
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - João Guilherme Barreto De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Barbara Zoche Pacheco
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Letícia Antunes Natividade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Tiago Ost Fracari
- Departamento de Química Inorgânica and Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Taiane Medeiro Ciocheta
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Denise Soledade Jornada
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil
| | - Fabiana Seixas
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Cancer Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brazil. .,Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
18
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
19
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4066-4088. [PMID: 31625408 DOI: 10.1080/21691401.2019.1677680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the second most common gynaecological malignancy. It usually occurs in women older than 50 years, and because 75% of cases are diagnosed at stage III or IV it is associated with poor diagnosis. Despite the chemosensitivity of intraperitoneal chemotherapy, the majority of patients is relapsed and eventually dies. In addition to the challenge of early detection, its treatment presents several challenges like the route of administration, resistance to therapy with recurrence and specific targeting of cancer to reduce cytotoxicity and side effects. In ovarian cancer therapy, nanocarriers help overcome problems of poor aqueous solubility of chemotherapeutic drugs and enhance their delivery to the tumour sites either by passive or active targeting, and thus reducing adverse side effects to the healthy tissues. Moreover, the bioavailability to the tumour site is increased by the enhanced permeability and retention (EPR) mechanism. The present review aims to describe the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors designed against ovarian cancer to overcome the drawbacks of conventional delivery. Conclusively, targeted nanocarriers would optimise the intra-tumour distribution, followed by drug delivery into the intracellular compartment. These features may contribute to greater therapeutic effect.
Collapse
Affiliation(s)
- Swati Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh , Noida , India
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida Health , Tampa , FL , USA.,Faculty of Pharmacy, University of Airlangga , Surabaya , Indonesia
| | - Manish K Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), Gual Pahari, TERI Gram , Gurugram , India
| | - Suresh P Vyas
- Department of Pharmaceutical Sciences, Dr H.S. Gour University , Sagar , India
| |
Collapse
|
21
|
Ak G, Aksu D, Çapkın E, Sarı Ö, Kımız Geboloğlu I, Şanlıer ŞH. Delivery of pemetrexed by magnetic nanoparticles: design, characterization, in vitro and in vivo assessment. Prep Biochem Biotechnol 2019; 50:215-225. [PMID: 31750758 DOI: 10.1080/10826068.2019.1692220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug-loaded magnetic nanoparticles have been developed because of the advantages of specific drug targeting in cancer treatment. Pemetrexed (PEM) is a multi-targeting antifolate agent that is effective for the treatment of many cancers, for example, non-small cell lung cancer. Here, PEM loaded magnetic O-carboxymethyl chitosan (O-CMC) nanoparticles were prepared to deliver PEM on tumor tissue with an external magnetic field. The modification of chitosan to O-CMC was confirmed by FTIR analysis. Nanoparticle synthesis was performed via ionic gelation method. The diameter of magnetic O-CMC nanoparticles (MCMC) was found to be 130.1 ± 22.96 nm. After PEM loading, diameter was found to be 123.9 ± 11.42 nm. The drug release of PEM loaded MCMC (PMCMC) was slower in physiological medium than in acidic medium. A549-luc-C8 and CRL5807 cell lines were used for MTT test which showed that IC50 values of nanoparticles were lower than PEM. The antitumor efficiency of PMCMC in xenograft tumor model was examined with in vivo imaging system (IVIS) and caliper and with hematological analyses. In vivo studies revealed that PMCMC had targeted antitumor activity in A549-luc-C8-tumor-bearing mice compared to PEM. As a result, it was suggested that PMCMC have great potential for the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Güliz Ak
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey.,Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Didem Aksu
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Eda Çapkın
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Özge Sarı
- Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Ilgın Kımız Geboloğlu
- Bioengineering Graduate Programme, Institute of Natural & Applied Sciences, Ege University, Izmir, Turkey
| | - Şenay Hamarat Şanlıer
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey.,Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| |
Collapse
|
22
|
Enhancement of Binding Affinity of Folate to Its Receptor by Peptide Conjugation. Int J Mol Sci 2019; 20:ijms20092152. [PMID: 31052315 PMCID: PMC6539678 DOI: 10.3390/ijms20092152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: The folate receptor (FR) is a target for cancer treatment and detection. Expression of the FR is restricted in normal cells but overexpressed in many types of tumors. Folate was conjugated with peptides for enhancing binding affinity to the FR. (2) Materials and Methods: For conjugation, folate was coupled with propargyl or dibenzocyclooctyne, and 4-azidophenylalanine was introduced in peptides for “click” reactions. We measured binding kinetics including the rate constants of association (ka) and dissociation (kd) of folate-peptide conjugates with purified FR by biolayer interferometry. After optimization of the conditions for the click reaction, we successfully conjugated folate with designed peptides. (3) Results: The binding affinity, indicated by the equilibrium dissociation constant (KD), of folate toward the FR was enhanced by peptide conjugation. The enhanced FR binding affinity by peptide conjugation is a result of an increase in the number of interaction sites. (4) Conclusion: Such peptide-ligand conjugates will be important in the design of ligands with higher affinity. These high affinity ligands can be useful for targeted drug delivery system.
Collapse
|
23
|
Yang T, Du G, Cui Y, Yu R, Hua C, Tian W, Zhang Y. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int J Nanomedicine 2019; 14:1997-2010. [PMID: 30962684 PMCID: PMC6433111 DOI: 10.2147/ijn.s193170] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is one of the most effective treatments for hepatocellular carcinoma (HCC), but is restricted by its poor pharmacokinetics. Herein, we exploited efficient targeted drug delivery systems and they have been found to be a worthy strategy for liver cancer therapy. MATERIALS AND METHODS We investigated polymeric nanoparticles which were synthesized based on host-guest interaction between β-cyclodextrin and benzimidazole. The properties of nanoparticles with regard to size/shape, encapsulation efficiency, and drug release were investigated using conventional experiments. Cell proliferation assay in vitro, cell uptake assay, and cell apoptosis analysis were used to investigate cytotoxicity, uptake, and mechanism of targeted supramolecular prodrug complexes (TSPCs)-based self-assemblies and supramolecular prodrug complexes (SPCs)-based self-assemblies. RESULTS The pH-sensitive lactobionic acid (LA)-modified pH-sensitive self-assemblies were synthesized successfully. The results of in vitro released assay showed that the accelerated released of DOX from TSPCs-based self-assemblies with the decrease of pH value. When TSPCs-based self-assemblies were taken up by HepG2 cells, they demonstrated a faster release rate under acidic conditions and proved to have higher cytotoxicity than in the presence of LA. A mechanistic study revealed that TSPCs-based self-assemblies inhibited liver cell proliferation by inducing cell apoptosis. CONCLUSION The pH-sensitive nanocomplex, as liver-targeted nanoparticles, facilitated the efficacy of DOX in HepG2 cells, offering an appealing strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Guowen Du
- The Key Laboratory of Space Applied Physics and Chemistry Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China,
| | - Yuxin Cui
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Runze Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| | - Chen Hua
- The Key Laboratory of Space Applied Physics and Chemistry Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China,
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China,
- Xi'an Institute for Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China,
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China,
| |
Collapse
|
24
|
Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS. Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Yan M, Yang X, Shen R, Wu C, Wang H, Ye Q, Yang P, Zhang L, Chen M, Wan B, Zhang Q, Xia S, Lu X, Shao G, Zhou X, Yu J, Shao Q. miR-146b promotes cell proliferation and increases chemosensitivity, but attenuates cell migration and invasion via FBXL10 in ovarian cancer. Cell Death Dis 2018; 9:1123. [PMID: 30409964 PMCID: PMC6224598 DOI: 10.1038/s41419-018-1093-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian carcinoma (EOC) is the most lethal gynecologic malignancy. However, the molecular mechanisms remain unclear. In this study, we found that miR-146b was downregulated in EOC and its expression level was negatively correlated with the pathological staging. Follow-up functional experiments illustrated that overexpression of miR-146b significantly inhibited cell migration and invasion, and increased cell proliferation, but it also improved the response to chemotherapeutic agents. Mechanistically, we demonstrated that miR-146b exerted its function mainly through inhibiting F-box and leucine-rich repeat protein 10 (FBXL10), and upregulated the Cyclin D1, vimentin (VIM), and zona-occludens-1 (ZO-1) expression in EOC. These findings indicate that miR-146b–FBXL10 axis is an important epigenetic regulation pathway in EOC. Low miR-146b may contribute to cancer progression from primary stage to advanced stage, and may be the promising therapeutic target of EOC.
Collapse
Affiliation(s)
- Meina Yan
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinxin Yang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rong Shen
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chengjiang Wu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qing Ye
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Peifang Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Lubin Zhang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miao Chen
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Department of Pathology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Bing Wan
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Qinqin Zhang
- Department of Wuxi Maternal and Child Health Care Hospital, Wuxi, 214000, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaodong Lu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Genbao Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoming Zhou
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Yu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
26
|
Ramasamy S, Sam David RJR, Enoch IVMV. Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:675-682. [PMID: 29726296 DOI: 10.1080/21691401.2018.1468340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Magnetic ferrite nanoparticles (MNPs) coated with biocompatible polymers capable of drug loading and release are fascinating nanostructures for delivering anti-cancer drugs. Herein, we report the synthesis and characterization of a novel β-cyclodextrin-folate-tethered dextran polymer. Nickel-zinc ferrite nanoparticles are prepared and coated with the polymer to form a biocompatible hybrid magnetic nanocarrier. To establish the significance of folate unit of the polymer in anticancer activity, a similar derivatized polymer, i.e. β-cyclodextrin-dextran conjugate without folate tether is used for comparison. The size of the hybrid MNPs is ∼20 nm, which is a size suitable for cancer drug targeting. The polymer-coated magnetic nanocarriers are soft ferromagnets as suggested by their narrow magnetic hysteresis loops. The anticancer drug camptothecin (CPT) is loaded on the magnetic nanocarriers. The drug loading efficiency is observed to be above 92%. The nanocarriers show sustained in vitro drug release for above 45 h. The in vitro cytotoxicity studies reveal that the loaded CPT retains its potency in the nanocarrier and the folate-tethered nanocarrier shows better anticancer activity than the one which does not carry a folate unit. The magnetic nanocarrier is suitable for magnetic field-guided drug transport, enhanced drug loading and release and folate receptor-mediated endocytotic uptake of drugs by cancer cells.
Collapse
Affiliation(s)
- Sivaraj Ramasamy
- a Chemistry Research Lab, School of Engineering & Technology , Karunya Institute of Technology & Sciences , Coimbatore , India
| | | | - Israel V M V Enoch
- a Chemistry Research Lab, School of Engineering & Technology , Karunya Institute of Technology & Sciences , Coimbatore , India.,c Nanotoxicology Research Lab, School of Engineering & Technology , Karunya Institute of Technology & Sciences , Coimbatore , India
| |
Collapse
|