1
|
Tripathi G, Dutta S, Mishra A, Basu S, Gupta V, Kamaraj C. Nanomaterials impact in phytohormone signaling networks of plants-A critical review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024:112373. [PMID: 39725164 DOI: 10.1016/j.plantsci.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery. Nanoparticle-induced reactive oxygen species (ROS) generation plays a central role in altering secondary metabolite biosynthesis, highlighting their function as potent elicitors and stimulants in plant systems. The review underscores the significant contribution of nanoparticles in enhancing stress resilience through the modulation of phytohormonal signaling pathways, offering novel insights into their potential for improving crop health and productivity under environmental stressors.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu - 632014, India; Department of Biomedical Engineering, School of Bioscience and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Shrestha Dutta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand - 826004, India
| | - Anamika Mishra
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu - 632014, India
| | - Soumyadeep Basu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom, G12 8QQ
| | - Vishesh Gupta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand - 826004, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Xu W, Shu M, Yuan C, Dumat C, Zhang J, Zhang H, Xiong T. Lettuce (Lactuca sativa L.) alters its metabolite accumulation to cope with CuO nanoparticles by promoting antioxidant production and carbon metabolism. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:371. [PMID: 39167279 DOI: 10.1007/s10653-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Copper-based nanoparticles (NPs) are gradually being introduced as sustainable agricultural nanopesticides. However, the effects of NPs on plants requires carefully evaluation to ensure their safe utilization. In this study, leaves of 2-week-old lettuce (Lactuca sativa L.) were exposed to copper oxide nanoparticles (CuO-NPs, 0 [CK], 100 [T1], and 1000 [T2] mg/L) for 15 days. A significant Cu accumulation (up to 1966 mg/kg) was detected in lettuce leaves. The metabolomics revealed a total of 474 metabolites in lettuce leaves, and clear differences were observed in the metabolite profiles of control and CuO-NPs treated leaves. Generally, phenolic acids and alkaloids, which are important antioxidants, were significantly increased (1.26-4.53 folds) under foliar exposure to NPs; meanwhile, all the significantly affected flavonoids were down-regulated after CuO-NP exposure, indicating these flavonoids were consumed under oxidative stress. Succinic and citric acids, which are key components of the tricarboxylic acid cycle, were especially increased under T2, suggesting the energy and carbohydrate metabolisms were enhanced under high-concentration CuO-NP treatment. There was also both up- and down-regulation of fatty acids, suggesting cell membrane fluidity and function responded to CuO-NPs. Galactinol, which is related to galactose metabolism, and xanthosine, which is crucial in purine and caffeine metabolism, were down-regulated under T2, indicating decreased stress resistance and disturbed nucleotide metabolism under the high CuO-NP dose. Moreover, the differentially accumulated metabolites were significantly associated with plant growth and its antioxidant ability. Future work should focus on controlling the overuse or excessive release of NPs into agricultural ecosystems to limit their adverse effects.
Collapse
Affiliation(s)
- Wenjing Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université Toulouse-Jean Jaurès, 5 allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Jingying Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Hanbo Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
El-Naggar HM, Osman AR. Enhancing growth and bioactive metabolites characteristics in Mentha pulegium L. via silicon nanoparticles during in vitro drought stress. BMC PLANT BIOLOGY 2024; 24:657. [PMID: 38987699 PMCID: PMC11234791 DOI: 10.1186/s12870-024-05313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
The development and production of secondary metabolites from priceless medicinal plants are restricted by drought stress. Mentha pulegium L. belongs to the Lamiaceae family and is a significant plant grown in the Mediterranean region for its medicinal and aesthetic properties. This study investigated the effects of three polyethylene glycol (PEG) (0, 5, and 10%) as a drought stress inducer and four silicon nanoparticle (SiNP) (0, 25, 50, and 100 ppm) concentrations as an elicitor to overcome the adverse effect of drought stress, on the growth parameters and bioactive chemical composition of M. pulegium L. plants grown in vitro. The experiment was performed as a factorial experiment using a completely randomized design (CRD) consisting of 12 treatments with two factors (3 PEG × 4 SiNPs concentrations), 6 replicates were used for each treatment for a total of 72 experimental units.The percentage of shoot formation was inversely proportional to the PEG concentration; for the highest PEG concentration, the lowest percentage of shoot formation (70.26%) was achieved at 10% PEG. SiNPs at 50 ppm enhanced shoot formation, the number of shoots, shoot height, fresh and dry weight, rosmarinic acid, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. The methanol extract from M. pulegium revealed the presence of significant secondary metabolites using gas chromatography‒mass spectrometry (GC-MS). The principal constituents of the extract were limonene (2.51, 2.99%), linalool (3.84, 4.64%), geraniol (6.49, 8.77%), menthol (59.73, 65.43%), pulegone (3.76, 2.76%) and hexadecanoic acid methyl ester or methyl palmitate (3.2, 4.71%) for the 0 ppm SiNPs, PEG 0% and 50 ppm SiNPs, and PEG 10%, respectively. Most of the chemical components identified by GC‒MS in the methanol extract were greater in the 50 ppm SiNP and 10% PEG treatment groups than in the control group. SiNP improves drought tolerance by regulating biosynthesis and accumulating some osmolytes and lessens the negative effects of polyethylene glycol-induced drought stress.Based on the results, the best treatment for most of the parameters was 50 ppm SiNPs combined with 10% PEG, the morphological and chemical characteristics were inversely proportional to the PEG concentration, as the highest PEG concentration (10%) had the lowest results. Most parameters decreased at the highest SiNP concentration (100 ppm), except for the DPPH scavenging percentage, as there was no significant difference between the 50 and 100 ppm SiNPs.
Collapse
Affiliation(s)
- Hany M El-Naggar
- Department of Floriculture, Faculty of Agriculture, Alexandria University (El-Shatby), Alexandria, 21545, Egypt.
| | - Amira R Osman
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Beheira, Egypt.
| |
Collapse
|
4
|
Kashyap K, Parihar S, Shekhawat GS. In vitro establishment of cell suspension culture of Ceropegia bulbosa for improved production of cerpegin content through elicitation of engineered carbon and ZnO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118263-118279. [PMID: 37702862 DOI: 10.1007/s11356-023-29533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
The present investigations aimed to conserve C. bulbosa a threatened plant species and for production of cerpegin through cell culture technology using ENP elicitation. Leaf explants were aseptically cultured with normal MS medium-supplemented PGRs BA and NAA various concentrations, and the best callus induction response was recorded on 4.5 + 4.5 μM. The prospective special effects of the ENPs on plant cell cultures are the key part of our study and used to evaluate leaf callus culture proliferation with the reduction of browning, establishment, biomass, and metabolite formation. The CNP concentrations (0, 2, 4, 8, 12 mg/l) are used for the callus proliferation and browning reduction. The cell suspension cultures are also established, and they were elicited with EZnONPs (0, 25, 50, 100, 150 mg/l) for evaluation of biomass, antioxidant, non-antioxidant enzyme activation, toxicity, ROS defense activation, and metabolite development in cell cultures. The metabolite extraction, UV, and NMR characterization confirm that the toxic and nontoxic effect of ENPs on leaf cell cultures varies with high to low concentration.
Collapse
Affiliation(s)
- Komal Kashyap
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India.
| | - Suman Parihar
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Gyan Singh Shekhawat
- Department of Botany (UGC-CAS), New Campus, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Tarroum M, Alfarraj NS, Al-Qurainy F, Al-Hashimi A, Khan S, Nadeem M, Salih AM, Shaikhaldein HO. Improving the Production of Secondary Metabolites via the Application of Biogenic Zinc Oxide Nanoparticles in the Calli of Delonix elata: A Potential Medicinal Plant. Metabolites 2023; 13:905. [PMID: 37623850 PMCID: PMC10456625 DOI: 10.3390/metabo13080905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ajmal M, Ullah R, Muhammad Z, Khan MN, Kakar HA, Kaplan A, Okla MK, Saleh IA, Kamal A, Abdullah A, Abdul Razak S. Kinetin Capped Zinc Oxide Nanoparticles Improve Plant Growth and Ameliorate Resistivity to Polyethylene Glycol (PEG)-Induced Drought Stress in Vigna radiata (L.) R. Wilczek (Mung Bean). Molecules 2023; 28:5059. [PMID: 37446722 DOI: 10.3390/molecules28135059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Plants are sessile and mostly exposed to various environmental stresses which hamper plant growth, development, and significantly decline its production. Drought stress is considered to be one of the most significant limiting factors for crop plants, notably in arid and semi-arid parts the world. Therefore, the present study aimed to evaluate the potential impact of different concentrations (10, 100, and 200 µg/mL) of kinetin capped zinc oxide nanoparticles (Kn-ZnONPs) on Vigna radiata (L.) R. Wilczek under varying levels (5%, 10%, 15%) of PEG-induced drought stress. ZnONPs were synthesized by a co-precipitation method using Zinc acetate as a precursor at pH-12, incinerated to 500 °C, and kinetin was used as a surface functionalizing agent. The resulting Kn-ZnONPs were characterized by various contemporary analytical techniques, including SEM, SEM-EDS, XRD, DLS, and Zeta potential and IR spectroscopy. Crystalline Kn-ZnONPs, with a zeta potential of 27.8 mV and a size of 67.78 nm, of hexagonal wurtzite structure and vibrational stretches associated with N-H, C-O, C-N, etc., were confirmed. PEG-induced drought stress significantly reduced the growth of V. radiata by declining the chlorophyll and carotenoid contents. Moreover, a significant decrease in the levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar contents, proline, protein contents, phenol, and tannin were observed compared to the control. However, the exogenous application of Kn-ZnONPs ameliorated all photosynthetic parameters by up-regulating the antioxidant defense system through the promotion of SOD, POD, CAT, and lipid peroxidation levels. The biochemical parameters, such as proteins, soluble sugars, and proline, were observed to be maximum in plants treated with 200 µg/mL Kn-ZnONPs under 5% drought stress. The application of Kn-ZnONPs also enhanced the total phenol contents, flavonoid, and tannin contents. In conclusion, the findings of this study demonstrate that the exogenous application of Kn-ZnONPs provides beneficial effects to V. radiata by attenuating the damaging effects of drought stress through the up-regulation of the antioxidant defense system and osmolytes. These results suggest that Kn-ZnONPs have potential as a novel approach to improve crop productivity under drought stress conditions.
Collapse
Affiliation(s)
- Maham Ajmal
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Zahir Muhammad
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University Public School, University of Peshawar, Peshawar 25120, Pakistan
| | | | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman 72060, Turkey
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdullah Abdullah
- Faculty of Biology, University of Munich (LMU), 82152 Munich, Germany
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Khan S, Al-Qurainy F, Al-hashimi A, Nadeem M, Tarroum M, Shaikhaldein HO, Salih AM. Effect of Green Synthesized ZnO-NPs on Growth, Antioxidant System Response and Bioactive Compound Accumulation in Echinops macrochaetus, a Potential Medicinal Plant, and Assessment of Genome Size (2C DNA Content). PLANTS (BASEL, SWITZERLAND) 2023; 12:1669. [PMID: 37111892 PMCID: PMC10141689 DOI: 10.3390/plants12081669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected from the wild and identified using the internal transcribed spacer sequence of nrDNA (ITS-nrDNA), which showed the closeness to its related genus in a phylogenetic tree. The effect of synthesized biogenic ZnO-NPs was studied on E. macrochaetus in a growth chamber for growth, bioactive compound enhancement and antioxidant system response. The irrigation of plants at a low concentration of ZnO-NPs (T1 = 10 mg/L) induced more growth in terms of biomass, chlorophyll content (273.11 µg/g FW) and carotenoid content (135.61 µg/g FW) than the control and other treatments (T2-20 mg/L and T3-40 mg/L). However, the application of a high concentration of ZnO-NPs (20 and 40 mg/L) increased the level of antioxidant enzymes (SOD, APX and GR), total crude and soluble protein, proline and TBARS contents. The accumulations of the compounds quercetin-3-β-D-glucoside, luteolin 7-rutinoside and p-coumaric acid were greater in the leaf compared to the shoot and root. A minor variation was observed in genome size in treated plants as compared to the control group. Overall, this study revealed the stimulatory effect of phytomediated ZnO-NPs, which act as bio-stimulants/nano-fertilizers as revealed by more biomass and the higher production of phytochemical compounds in different parts of the E. macrochaetus.
Collapse
|
8
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
9
|
Synthesis of a Lignin/Zinc Oxide Hybrid Nanoparticles System and Its Application by Nano-Priming in Maize. NANOMATERIALS 2022; 12:nano12030568. [PMID: 35159913 PMCID: PMC8839687 DOI: 10.3390/nano12030568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Nanotechnologies are attracting attention in various scientific fields for their technological and application potential, including their use as bio-activators and nanocarriers in agriculture. This work aimed to synthesize a hybrid material (ZnO@LNP) consisting of lignin nanoparticles containing zinc oxide (4 wt %). The synthesized ZnO hybrid material showed catalytic effect toward thermal degradation, as evidenced by the TGA investigation, while both spectroscopic and contact angle measurements confirmed a modification of surface hydrophilicity for the lignin nanoparticles due to the presence of hydrophobic zinc oxide. In addition, the antioxidant activity of the ZnO@LNP and the zinc release of this material were evaluated. At the application level, this study proposes for the first time the use of such a hybrid system to prime maize seeds by exploiting the release characteristics of this material. Concerning the dosage applied, ZnO@LNP promoted inductive effects on the early stages of seed development and plant growth and biomass development of young seedlings. In particular, the ZnO@LNP stimulated, in the primed seeds, a higher content of chlorophyll, carotenoids, anthocyanins, total phenols, and a better antioxidant activity, as supported by the lower levels of lipid peroxidation found when compared to the control samples.
Collapse
|
10
|
Asgari-Targhi G, Iranbakhsh A, Oraghi Ardebili Z, Hatami Tooski A. Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. Int J Biol Macromol 2021; 189:170-182. [PMID: 34425117 DOI: 10.1016/j.ijbiomac.2021.08.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Nanotechnology paves the way for introducing nanoscale fertilizers, pesticides, and elicitors. This study intends to address the synthesis of chitosan/zinc oxide nanocomposite (CS-ZnONP) and its biological assessment in in-vitro conditions. The zinc oxide nanoparticles (ZnONPs) were successfully coated with the chitosan (CS) polymer through a cost-effective approach. Transmission electron microscopy and Fourier transform infrared spectroscopy assessments proved the surface capping of chitosan polymer on ZnONP. The nanocomposite was more capable of improving growth and biomass than the bare ZnONPs. The application of the nanocomposite increased the concentration of chlorophylls (51%), carotenoids (70%), proline (2-fold), and proteins (about 2-fold). The supplementation of culture medium with the nanomaterials upregulated enzymatic antioxidant biomarkers (catalase and peroxidase). The activity of the phenylalanine ammonia-lyase enzyme also displayed a similar significant upward trend in response to the nano-supplements. The CS-ZnONP treatment considerably enhanced the accumulation of alkaloids (60.5%) and soluble phenols (40%), implying stimulation in secondary metabolism. The micropropagation test revealed that the CS-ZnONP treatment improved the organogenesis performance. Overall, the nanocomposite can be considered a highly potent biocompatible elicitor.
Collapse
Affiliation(s)
- Ghasem Asgari-Targhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Adel Hatami Tooski
- Department of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Lala S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol 2021; 15:28-57. [PMID: 34694730 PMCID: PMC8675826 DOI: 10.1049/nbt2.12005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Nanoparticles possess some unique properties which improve their biochemical reactivity. Plants, due to their stationary nature, are constantly exposed to nanoparticles present in the environment, which act as abiotic stress agents at sub-toxic concentrations and phytotoxic agents at higher concentrations. In general, nanoparticles exert their toxicological effect by the generation of reactive oxygen species to which plants respond by activating both enzymatic and non-enzymatic anti-oxidant defence mechanisms. One important manifestation of the defence response is the increased or de novo biosynthesis of secondary metabolites, many of which have commercial application. The present review extensively summarizes current knowledge about the application of different metallic, non-metallic and carbon-based nanoparticles as elicitors of economically important secondary metabolites in different plants, both in vivo and in vitro. Elicitation of secondary metabolites with nanoparticles in plant cultures, including hairy root cultures, is discussed. Another emergent technology is the ligand-harvesting of secondary metabolites using surface-functionalized nanoparticles, which is also mentioned. A brief explanation of the mechanism of action of nanoparticles on plant secondary metabolism is included. Optimum conditions and parameters to be evaluated and standardized for the successful commercial exploitation of this technology are also mentioned.
Collapse
Affiliation(s)
- Sanchaita Lala
- Department of Botany, Sarsuna College, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Arya SS, Lenka SK, Cahill DM, Rookes JE. Designer nanoparticles for plant cell culture systems: Mechanisms of elicitation and harnessing of specialized metabolites. Bioessays 2021; 43:e2100081. [PMID: 34608646 DOI: 10.1002/bies.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Plant cell culture systems have become an attractive and sustainable approach to produce high-value and commercially significant metabolites under controlled conditions. Strategies involving elicitor supplementation into plant cell culture media are employed to mimic natural conditions for increasing the metabolite yield. Studies on nanoparticles (NPs) that have investigated elicitation of specialized metabolism have shown the potential of NPs to be a substitute for biotic elicitors such as phytohormones and microbial extracts. Customizable physicochemical characteristics allow the design of monodispersed-, stimulus-responsive-, and hormone-carrying-NPs of precise geometries to enhance their elicitation capabilities based on target metabolite/plant cell culture type. We contextualize advances in NP-mediated elicitation, especially stimulation of specialized metabolic pathways, the underlying mechanisms, impacts on gene regulation, and NP-associated cytotoxicity. The novelty of the concept lies in unleashing the potential of designer NPs to enhance yield, harness metabolites, and transform nanoelicitation from exploratory investigations to a commercially viable strategy.
Collapse
Affiliation(s)
- Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|
13
|
Jan H, Usman H, Shah M, Zaman G, Mushtaq S, Drouet S, Hano C, Abbasi BH. Phytochemical analysis and versatile in vitro evaluation of antimicrobial, cytotoxic and enzyme inhibition potential of different extracts of traditionally used Aquilegia pubiflora Wall. Ex Royle. BMC Complement Med Ther 2021; 21:165. [PMID: 34098912 PMCID: PMC8186222 DOI: 10.1186/s12906-021-03333-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. METHODS Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. RESULTS HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 μgAAE/mg, 89.2 ± 2.4 μgAAE/mg, 277.5 ± 2.9 μM, 289.9 ± 1.74 μM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. CONCLUSIONS Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
14
|
Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.
Collapse
|
15
|
Selvakesavan RK, Franklin G. Nanoparticles Affect the Expression Stability of Housekeeping Genes in Plant Cells. Nanotechnol Sci Appl 2020; 13:77-88. [PMID: 32884247 PMCID: PMC7431599 DOI: 10.2147/nsa.s265641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose We report on the expression stability of several housekeeping/reference genes that can be used in the normalization of target gene expression in quantitative real-time PCR (qRT-PCR) analysis of plant cells challenged with metal nanoparticles (NPs). Materials and Methods Uniform cell suspension cultures of Hypericum perforatum were treated with 25 mg/l silver and gold NPs (14-15 nm in diameter). Cells were collected after 0.5, 4.0, and 12 h. The total RNA isolated from the cells was analyzed for the stability of ACT2, ACT3, ACT7, EF1-α, GAPDH, H2A, TUB-α, TUB-β, and 18S rRNA genes using qRT-PCR. The cycle threshold (Ct) values of the genes were analyzed using the geNorm, NormFinder, BestKeeper, and RefFinder statistical algorithms to rank gene stability. The stability of the top-ranked genes was validated by normalizing the expression of HYP1. Results The expression of the tested housekeeping genes varied with treatment duration and NP types. EF1-α in gold NP treatment and TUB-α and EF1-α in silver NP treatment ranked among the top three positions. However, none of the genes retained their top ranking with time and across NP types. Conclusion EF1-α can be used as a reference for treatment involving both silver and gold NPs in H. perforatum cells. TUB-α can be used only for silver NP-treated cells. The expression instability of most of the housekeeping genes highlights the importance of systematic standardization of reference genes for NP treatment conditions to draw proper conclusions on the target gene expression.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60-479, Poland
| |
Collapse
|
16
|
Chhillar H, Chopra P, Ashfaq MA. Lignans from linseed ( Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit Rev Food Sci Nutr 2020; 61:2719-2741. [PMID: 32619358 DOI: 10.1080/10408398.2020.1784840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lignans are complex diphenolic compounds representing phytoestrogens and occur widely across the plant kingdom. Formed by the coupling of two coniferyl alcohol residues, lignans constitute major plant "specialized metabolites" with exceptional biological attributes that aid in plant defence and provide health benefits in humans by reducing the risk of ailments such as cancer, diabetes etc. Linseed (Linum usitatissimum L.) is one of the richest sources of lignans followed by cereals and legumes. Among the various types of lignans, secoisolariciresinol diglucoside (SDG) is considered as the essential and nutrient rich lignan in linseed. Lignans exhibit established antimitotic, antiviral and anti-tumor properties that contribute to their medicinal value. The present review seeks to provide a holistic view of research in the past and present times revolving around lignans from linseed and its allied species. This review attempts to elucidate sources, structures and functional properties of lignans, along with detailed biosynthetic mechanisms operating in plants. It summarizes various methods for the determination of lignan content in plants. Biotechnological interventions (in planta and in vitro) aimed at enriching lignan content and adoption of integrative approaches that might further enhance lignan content and medicinal and nutraceutical value of Linum spp. have also been discussed.
Collapse
Affiliation(s)
- Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashraf Ashfaq
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Zaeem A, Drouet S, Anjum S, Khurshid R, Younas M, Blondeau JP, Tungmunnithum D, Giglioli-Guivarc’h N, Hano C, Abbasi BH. Effects of Biogenic Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response in Flax Seedlings vs. In Vitro Cultures: A Comparative Analysis. Biomolecules 2020; 10:E918. [PMID: 32560534 PMCID: PMC7355665 DOI: 10.3390/biom10060918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
Linum usitatissimum biosynthesizes lignans and neolignans that are diet and medicinally valuable metabolites. In recent years, zinc oxide nanoparticles (ZnONPs) have emerged as potential elicitors for the enhanced biosynthesis of commercial secondary metabolites. Herein, we investigated the influence of biogenic ZnONPs on both seedlings and stem-derived callus of L. usitatissimum. Seedlings of L. usitatissimum grown on Murashige and Skoog (MS) medium supplemented with ZnONPs (1-1000 mg/L) presented the highest antioxidant activity, total phenolic content, total flavonoid content, peroxidase and superoxide dismutase activities at 500 mg/L, while the maximum plantlet length was achieved with 10 mg/L. Likewise, the high-performance liquid chromatography (HPLC) analysis revealed the enhanced production of secoisolariciresinol diglucoside, lariciresinol diglucoside, dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-β-coniferyl alcohol ether glucoside in the plantlets grown on the 500 mg/L ZnONPs. On the other hand, the stem explants were cultured on MS media comprising 1-naphthaleneacetic acid (1 mg/L) and ZnONPs (1-50 mg/L). The highest antioxidant and other activities with an enhanced rooting effect were noted in 25 mg/L ZnONP-treated callus. Similarly, the maximum metabolites were also accumulated in 25 mg/L ZnONP-treated callus. In both systems, the dose-dependent production of reactive oxygen species (ROS) was recorded, resulting in oxidative damage with a more pronounced toxic effect on in vitro cultures. Altogether, the results from this study constitute a first comprehensive view of the impact of ZnONPs on the oxidative stress and antioxidant responses in seedlings vs. in vitro cultures.
Collapse
Affiliation(s)
- Afifa Zaeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (R.K.); (M.Y.)
- Department of Biotechnology, Virtual University of Pakistan, Rawalpindi Campus 46300, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, F28000 Chartres, France; (S.D.); (D.T.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan;
| | - Razia Khurshid
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (R.K.); (M.Y.)
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (R.K.); (M.Y.)
| | - Jean Philippe Blondeau
- Conditions Extrêmes et Matériaux, Haute Température et Irradiation (CEMHTI) CNRS UPR3079, 1D Avenue de la Recherche Scientifique, 45071 Orléans, France;
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, F28000 Chartres, France; (S.D.); (D.T.)
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Mahidol University, Bangkok 10400, Thailand
| | - Nathalie Giglioli-Guivarc’h
- Biomolecules et Biotechnologies Vegetales, EA2106, Universite Francois-Rabelais de Tours, 37000 Tours, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, F28000 Chartres, France; (S.D.); (D.T.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (R.K.); (M.Y.)
| |
Collapse
|