1
|
Li N, Li S, Yu Y, Zhang X, Wu H, Li X, Jia G, Yu S. Hexavalent chromium exposure induces lung injury via activation of NLRP3 and AIM2 inflammasomes in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117181. [PMID: 39413648 DOI: 10.1016/j.ecoenv.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Hexavalent chromium (Cr(VI)) has been identified as a Class I human carcinogen, but its carcinogenic mechanism is currently unclear. There is still a lack of understanding of its associations with early pulmonary inflammatory damages. Inflammation is an important stage before the occurrence of tumors, and under the long-term stimulation of inflammation, it can promote the development of tumors. In this study, the aim is to explore the effect of Cr(VI) exposure on pulmonary inflammation and its relationship with the mechanism of inflammation cancer transformation. We established a Cr(VI) exposure model in SD rats using tracheal instillation of potassium dichromate solution, and collected samples at the time of cessation of exposure and 14 days after cessation of exposure. Analyzing the experimental results, it was found that the lung index increased after exposure to Cr(VI), promoting the occurrence of apoptosis in lung tissue cells and exacerbating lung tissue damage. The damage situation improved after exposure termination; Inductively coupled plasma mass (ICPRQ) spectrometer detection found that the exposed group had significantly increased levels of blood chromium, blood manganese, blood copper, blood arsenic, urine chromium, urine copper, and urine lead; After two weeks of repair, blood chromium and blood manganese levels were significantly lower than those in the same dose group of the exposure group, while blood copper levels were significantly higher than those in the same dose group of the exposure group. There was no significant difference in blood arsenic levels between the exposure group and the exposure group. Urine chromium and urine lead levels were significantly lower than those in the same dose group of the exposure group, while urine copper levels only increased. At the same time, it was found that Cr(VI) exposure caused disruption of oxidative stress levels in rat lung tissues. After 14-day exposure, Cr(VI) significantly decreased and oxidative stress levels significantly decreased. Further investigation revealed that Cr(VI) induces activation of inflammasomes NLRP3, AIM2, and their signaling pathways in lung inflammatory injuries, but this condition persists even after cessation of exposure. The study suggested that in hexavalent chromium induced lung tissue injuries in rats, NLRP3 and AIM2 inflammasomes and their signaling pathways activation. Furthermore, the characteristic of sustained activation after cessation of exposure was also indicated. These results provide new ideas and references for further elucidating the mechanisms of Cr(VI), lung inflammation and inflammation cancer transformation.
Collapse
Affiliation(s)
- Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou City, Henan Province 451191, China
| | - Saifei Li
- Research Foreign Affairs Office, Henan Medical College, Zhengzhou City, Henan Province 451191, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou City, Henan Province 451191, China
| | - Hui Wu
- The Third People's Hospital of Henan Province, Zhengzhou City, Henan Province 450052, China
| | - Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou City, Henan Province 451191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Shanfa Yu
- Department of Scientific Research, Henan Medical College, Zhengzhou City, Henan Province 451191, China.
| |
Collapse
|
2
|
Mikolka P, Kosutova P, Kolomaznik M, Nemcova N, Hanusrichterova J, Curstedt T, Johansson J, Calkovska A. The Synthetic Surfactant CHF5633 Restores Lung Function and Lung Architecture in Severe Acute Respiratory Distress Syndrome in Adult Rabbits. Lung 2024; 202:299-315. [PMID: 38684519 PMCID: PMC11143048 DOI: 10.1007/s00408-024-00689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse. Lung function in ARDS could potentially be restored with surfactant replacement therapy, and synthetic surfactants with modified peptide analogues may better withstand inactivation in ARDS alveoli than natural surfactants. METHODS This study aimed to investigate the activity in vitro and the bolus effect (200 mg phospholipids/kg) of synthetic surfactant CHF5633 with analogues of SP-B and SP-C, or natural surfactant Poractant alfa (Curosurf®, both preparations Chiesi Farmaceutici S.p.A.) in a severe ARDS model (the ratio of partial pressure arterial oxygen and fraction of inspired oxygen, P/F ratio ≤ 13.3 kPa) induced by hydrochloric acid instillation followed by injurious ventilation in adult New Zealand rabbits. The animals were ventilated for 4 h after surfactant treatment and the respiratory parameters, histological appearance of lung parenchyma and levels of inflammation, oxidative stress, surfactant dysfunction, and endothelial damage were evaluated. RESULTS Both surfactant preparations yielded comparable improvements in lung function parameters, reductions in lung injury score, pro-inflammatory cytokines levels, and lung edema formation compared to untreated controls. CONCLUSIONS This study indicates that surfactant replacement therapy with CHF5633 improves lung function and lung architecture, and attenuates inflammation in severe ARDS in adult rabbits similarly to Poractant alfa. Clinical trials have so far not yielded conclusive results, but exogenous surfactant may be a valid supportive treatment for patients with ARDS given its anti-inflammatory and lung-protective effects.
Collapse
Affiliation(s)
- Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Nikolett Nemcova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Kang N, Ji Z, Li Y, Gao J, Wu X, Zhang X, Duan Q, Zhu C, Xu Y, Wen L, Shi X, Liu W. Metabolite-derived damage-associated molecular patterns in immunological diseases. FEBS J 2024; 291:2051-2067. [PMID: 37432883 DOI: 10.1111/febs.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are typically derived from the endogenous elements of necrosis cells and can trigger inflammatory responses by activating DAMPs-sensing receptors on immune cells. Failure to clear DAMPs may lead to persistent inflammation, thereby contributing to the pathogenesis of immunological diseases. This review focuses on a newly recognized class of DAMPs derived from lipid, glucose, nucleotide, and amino acid metabolic pathways, which are then termed as metabolite-derived DAMPs. This review summarizes the reported molecular mechanisms of these metabolite-derived DAMPs in exacerbating inflammation responses, which may attribute to the pathology of certain types of immunological diseases. Additionally, this review also highlights both direct and indirect clinical interventions that have been explored to mitigate the pathological effects of these DAMPs. By summarizing our current understanding of metabolite-derived DAMPs, this review aims to inspire future thoughts and endeavors on targeted medicinal interventions and the development of therapies for immunological diseases.
Collapse
Affiliation(s)
- Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Ji Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yue Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Luyao Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
4
|
Peng Y, Yang Y, Li Y, Shi T, Xu N, Liu R, Luan Y, Yao Y, Yin C. Mitochondrial (mt)DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling promotes pyroptosis of macrophages via interferon regulatory factor (IRF)7/IRF3 activation to aggravate lung injury during severe acute pancreatitis. Cell Mol Biol Lett 2024; 29:61. [PMID: 38671352 PMCID: PMC11055249 DOI: 10.1186/s11658-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Macrophage proinflammatory activation contributes to the pathology of severe acute pancreatitis (SAP) and, simultaneously, macrophage functional changes, and increased pyroptosis/necrosis can further exacerbate the cellular immune suppression during the process of SAP, where cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role. However, the function and mechanism of cGAS-STING in SAP-induced lung injury (LI) remains unknown. METHODS Lipopolysaccharide (LPS) was combined with caerulein-induced SAP in wild type, cGAS -/- and sting -/- mice. Primary macrophages were extracted via bronchoalveolar lavage and peritoneal lavage. Ana-1 cells were pretreated with LPS and stimulated with nigericin sodium salt to induce pyroptosis in vitro. RESULTS SAP triggered NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis of alveolar and peritoneal macrophages in mouse model. Knockout of cGAS/STING could ameliorate NLRP3 activation and macrophage pyroptosis. In addition, mitochondrial (mt)DNA released from damaged mitochondria further induced macrophage STING activation in a cGAS- and dose-dependent manner. Upregulated STING signal can promote NLRP3 inflammasome-mediated macrophage pyroptosis and increase serum interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α levels and, thus, exacerbate SAP-associated LI (SAP-ALI). Downstream molecules of STING, IRF7, and IRF3 connect the mtDNA-cGAS-STING axis and the NLRP3-pyroptosis axis. CONCLUSIONS Negative regulation of any molecule in the mtDNA-cGAS-STING-IRF7/IRF3 pathway can affect the activation of NLRP3 inflammasomes, thereby reducing macrophage pyroptosis and improving SAP-ALI in mouse model.
Collapse
Affiliation(s)
- Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Ning Xu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| |
Collapse
|
5
|
Wang X, Kong W, Yang R, Yang C. 4-octyl itaconate ameliorates ventilator-induced lung injury. Arch Biochem Biophys 2024; 752:109853. [PMID: 38086523 DOI: 10.1016/j.abb.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Ventilator-induced lung injury (VILI) disturbs the disordered immune system and causes persistent inflammatory damage. 4-octyl itaconate (OI) is a synthetic cell-permeable itaconate derivative with antioxidant and anti-inflammatory effects. In this study, we assessed whether OI protects against VILI. OI was intraperitoneally injected for three days before mechanical ventilation (MV; 20 ml/kg at 70 breaths/min) for 2 h. Mouse lung vascular endothelial cells (MLVECs) were pretreated with OI (62.5, 125, and 250 μM) prior to cyclic stretch for 4 h. We found that OI attenuated VILI and inflammatory response. OI also increased superoxide dismutase, nuclear factor E2-related factor 2, and heme oxygenase-1 levels, and decreased reactive oxygen species and malondialdehyde levels. Furthermore, OI inhibited the expression of NLR family pyrin domain-containing 3 (NLRP3), caspase-1 p20, apoptosis-associated speck-like protein containing a CARD, and N-terminal fragment of gasdermin D. Therefore, OI attenuates VILI, potentially by suppressing oxidative stress and NLRP3 activation.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Respiratory Medicine, The Third People's Hospital of Jinan, Jinan, Shandong, 250000, PR China
| | - Weijing Kong
- Department of Cardiology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266100, PR China
| | - Rui Yang
- Department of Cardiology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266100, PR China
| | - Chunyan Yang
- Department of Pharmacy, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, PR China.
| |
Collapse
|
6
|
Mathis BJ, Kato H, Matsuishi Y, Hiramatsu Y. Endogenous and exogenous protection from surgically induced reactive oxygen and nitrogen species. Surg Today 2024; 54:1-13. [PMID: 36348164 DOI: 10.1007/s00595-022-02612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Surgical intervention creates reactive oxygen species through diverse molecular mechanisms, including direct stimulation of immune-mediated inflammation necessary for wound healing. However, dysregulation of redox homeostasis in surgical patients overwhelms the endogenous defense system, slowing the healing process and damaging organs. We broadly surveyed reactive oxygen species that result from surgical interventions and the endogenous and/or exogenous antioxidants that control them. This study assimilates current reports on surgical sources of reactive oxygen and nitrogen species along with literature reports on the effects of endogenous and exogenous antioxidants in human, animal, and clinical settings. Although exogenous antioxidants are generally beneficial, endogenous antioxidant systems account for over 80% of total activity, varying based on patient age, sex, and health or co-morbidity status, especially in smokers, the diabetic, and the obese. Supplementation of exogenous compounds for support in surgical patients is thus theoretically beneficial, but a lack of persuasive clinical evidence has left this potential patient support strategy without clear guidelines. A more thorough understanding of the mechanisms of exogenous antioxidants in patients with compromised health statuses and pharmacokinetic profiling may increase the utility of such support in both the operating and recovery rooms.
Collapse
Affiliation(s)
- Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, 2-1-1 Amakubo, Tsukuba, 305-8576, Ibaraki, Japan.
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yujiro Matsuishi
- Department of Neuroscience Nursing, St. Luke's International University, Tokyo, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Chen S, Bai Y, Xia J, Zhang Y, Zhan Q. Rutin alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. iScience 2023; 26:107866. [PMID: 37817937 PMCID: PMC10561045 DOI: 10.1016/j.isci.2023.107866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Whether rutin relieves ventilator-induced lung injury (VILI) remains unclear. Here, we used network pharmacology, bioinformatics, and molecular docking to predict the therapeutic targets and potential mechanisms of rutin in the treatment of VILI. Subsequently, a mouse model of VILI was established to confirm the effects of rutin on VILI. HE staining showed that rutin alleviated VILI. TUNEL staining showed that rutin reduced apoptosis in the lung tissue of mice with VILI, and the same change was observed in the ratio of Bax/Bcl2. Furthermore, rutin reduced the expression of NLRP3, ASC, Caspase1, IL1β, and IL18 in the lung tissues of mice with VILI. Mechanistically, rutin suppressed the TLR4/NF-κB-P65 pathway, which promoted the M1 to M2 macrophage transition and alleviated inflammation in mice with VILI. Rutin relieved NLRP3 inflammasome activation by regulating M1/M2 macrophage polarization and inhibiting the activation of the TLR4/NF-κB-P65 pathway, resulting in the amelioration of VILI in mice.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| |
Collapse
|
8
|
Luo Y, Liu J, Hong Y, Peng S, Meng S. Sevoflurane-induced hypotension causes cognitive dysfunction and hippocampal inflammation in mice. Behav Brain Res 2023; 455:114672. [PMID: 37716552 DOI: 10.1016/j.bbr.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Sevoflurane commonly adopted for anesthetic in clinical practice, however, its influences on cerebral blood flow and cognitive function remain controversial. Herein, the sevoflurane-induced hypotension on arterial blood pressure, cerebral blood flow, cognitive function, and hippocampal inflammation was investigated in mice. A significant decrease in arterial blood pressure and cerebral blood flow was indicated by the sevoflurane anesthesia treatment. Moreover, sevoflurane-induced hypotension was associated with the impaired cognitive function and the increased levels of NLRP3 inflammasome activation and oxidative stress in hippocampus. These findings suggest that sevoflurane-induced hypotension may lead to the cognitive dysfunction and hippocampal inflammation.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiayi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Li Q, Wang H, Liu L, Weng Y, Xu S, Li L, Wang Z. Suppression of the NLRP3 Inflammasome through Activation of the Transient Receptor Potential Channel Melastatin 2 Promotes Osteogenesis in Tooth Extraction Sockets of Periodontitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:213-232. [PMID: 36410421 DOI: 10.1016/j.ajpath.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
Abstract
This study explored the role of transient receptor potential channel melastatin 2 (TRPM2)-mediated activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in osteogenesis during healing of tooth extraction sockets. Tooth extraction socket tissue samples were collected from patients with or without periodontitis. In a TRPM2 knockout mouse model of socket healing, mice with or without periodontitis and their wild-type littermates were used for comparing the socket healing phenotypes. Micro-computed tomography imaging, three-dimensional reconstruction of the sockets, and hematoxylin and eosin staining for histopathologic analysis were performed. Immunofluorescence, immunohistochemistry, and Western blot analysis were used for evaluation of protein expression; the mRNA levels were evaluated by quantitative RT-PCR. Osteogenic, chondrogenic, and adipogenic differentiation potential of human bone marrow mesenchymal stem cells (BMMSCs) was evaluated. Calcium deposition was evaluated using Alizarin Red S staining. NLRP3 and CASP1 were up-regulated in tooth sockets of periodontitis patients. NLRP3 knockdown promoted the osteogenic differentiation of maxillary BMMSCs under inflammatory conditions. TRPM2 was up-regulated in the tooth extraction socket tissue of periodontitis. Inhibiting TRPM2 expression mitigated the NLRP3 inflammasome and its deleterious effect on osteogenesis. Activation of the TRPM2 ion channel regulated osteogenesis of BMMSCs under inflammatory conditions via Ca2+ influx, the mitochondrial dynamics, and pyroptosis. Targeting the TRPM2/Ca2+/NLRP3 axis could be beneficial in the healing process of the tooth extraction sockets of patients with periodontitis.
Collapse
Affiliation(s)
- Qin Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liwei Liu
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuteng Weng
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuyu Xu
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lin Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Oral and Maxillofacial Surgery and Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
10
|
Wu H, Dai R, Wang M, Chen C. Uric acid promotes myocardial infarction injury via activating pyrin domain-containing 3 inflammasome and reactive oxygen species/transient receptor potential melastatin 2/Ca 2+pathway. BMC Cardiovasc Disord 2023; 23:10. [PMID: 36627567 PMCID: PMC9830724 DOI: 10.1186/s12872-023-03040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.
Collapse
Affiliation(s)
- Haiyun Wu
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Ruozhu Dai
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Min Wang
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Chengbo Chen
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| |
Collapse
|
11
|
Liu M, Zhang Y, Yan J, Wang Y. Aerobic exercise alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. BMC Anesthesiol 2022; 22:369. [PMID: 36456896 PMCID: PMC9714243 DOI: 10.1186/s12871-022-01874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is caused by stretch stimulation and other factors related to mechanical ventilation (MV). NOD-like receptor protein 3 (NLRP3), an important innate immune component, is strongly associated with VILI. This study aimed to investigate the effect and mechanisms of aerobic exercise (EX) on VILI. METHODS To test the effects of the PKC inhibitor bisindolylmaleimide I on PKC and NLRP3, male C57BL/6 mice (7 weeks old, 19 ~ 23 g) were randomly divided into four groups: control group(C), bisindolylmaleimide I-pretreated group(B), MV group, and bisindolylmaleimide I-pretreated + MV (B + MV) group. The mice were pretreated with bisindolylmaleimide I through intraperitoneal injection (0.02 mg/kg) 1 h before MV. MV was performed at a high tidal volume (30 ml/kg). To explore the ameliorative effect of EX on VILI, the mice were randomly divided into C group, MV group, EX group and EX + MV group and subjected to either MV or 5 weeks of EX training. After ventilation, haematoxylin-eosin (HE) staining and wet/dry weight ratio was used to assess lung pathophysiological changes. PKCɑ, P-PKCɑ, ASC, procaspase-1, caspase-1, pro-IL-1β, IL-1β, NLRP3 and occludin (tight junction protein) expression in lung tissues was determined by Western blotting. The level of IL-6 in alveolar lavage fluid was determined by ELISA. RESULTS NLRP3, P-PKCɑ, and PKCɑ levels were inceased in MV group, but bisindolylmaleimide I treatment reversed these changes. Inhibition of PKC production prevented NLRP3 activation. Moreover, MV increased ASC, procaspase-1, caspase-1, pro-IL-1β, and IL1β levels and decreased occludin levels, but EX alleviated these changes. HE staining and lung injury scoring confirmed an absence of obvious lung injury in C group and EX group. Lung injury was most severe in MV group but was improved in EX + MV group. Overall, these findings suggest that MV activates the NLRP3 inflammasome by activating PKCɑ and inducing occludin degradation, while Exercise attenuates NLRP3 inflammasome and PKCɑ activation. Besides, exercise improves cyclic stretch-induced degradation of occludin. CONCLUSION PKC activation can increase the level of NLRP3, which can lead to lung injury. Exercise can reduce lung injury by inhibiting PKCɑ and NLRP3 activation. Exercise maybe a potential measure for clinical prevention of VILI.
Collapse
Affiliation(s)
- Mengjie Liu
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yaqiang Zhang
- grid.411614.70000 0001 2223 5394Beijing Sport University, Xinxi Road, Haidian District, 100084 Beijing, China
| | - Jie Yan
- grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yuelan Wang
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, 250014 Jinan, China
| |
Collapse
|
12
|
Wang L, Li J, Zhu Y, Zha B. Low tidal volume ventilation alleviates ventilator-induced lung injury by regulating the NLRP3 inflammasome. Exp Lung Res 2022; 48:168-177. [PMID: 35916505 DOI: 10.1080/01902148.2022.2104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Low tidal volume ventilation (LTVV) is a well-known ventilation mode which can improve ventilator-induced lung injury (VILI). However, the mechanism of LTVV ameliorating VILI has not yet been elucidated. In this study, we aimed to reveal LTVV protected against VILI by inhibiting the activation of the NLRP3 inflammasome in bronchoalveolar lavage fluid (BALF) from humans and lungs from mice. MATERIALS AND METHODS Twenty-eight patients scheduled for video-assisted thoracoscopic esophagectomy were randomized to receive high-tidal-volume ventilation [Vt = 10 mL/kg without positive end-expiratory pressure (PEEP)] or LTVV (Vt = 5 mL/kg along with 5 cm of H2O PEEP) during one-lung ventilation. BALF was collected before and at the end of surgery. Male C57BL/6 mice received high-tidal-volume ventilation, LTVV or MCC950 (an inhibitor of NLRP3). The activation of the formation of NLRP3 inflammasome in BALF from patients and in lungs from mice were analyzed. RESULTS LTTV decreased the peak airway pressure (Ppeak), plateau airway pressure (Pplat) and driving pressure (ΔP) during one-lung ventilation. Additionally, LTVV not only inhibited pulmonary infiltration and inflammation caused by mechanical ventilation, but also suppressed the NLRP3 inflammasome activation in BALF from humans. In mice, ventilator-induced inflammatory response and pulmonary edema were suppressed by LTVV with an efficacy comparable to that of MCC950 treatment. Furthermore, LTVV, similar to MCC950, clearly decreased ventilator-induced NLRP3 inflammasome activation. CONCLUSION Our study showed that LTVV played a protective role in ventilator-induced lung injury by suppressing the activation of the NLRP3 inflammasome. TRIAL REGISTRATION This study was registered in The Chinese Clinical Trial Registry, ChiCTR1900026190 on 25 September 2019.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yan Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Zhou L, Xue C, Chen Z, Jiang W, He S, Zhang X. c-Fos is a mechanosensor that regulates inflammatory responses and lung barrier dysfunction during ventilator-induced acute lung injury. BMC Pulm Med 2022; 22:9. [PMID: 34986829 PMCID: PMC8734268 DOI: 10.1186/s12890-021-01801-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/13/2021] [Indexed: 12/05/2022] Open
Abstract
Background As one of the basic treatments performed in the intensive care unit, mechanical ventilation can cause ventilator-induced acute lung injury (VILI). The typical features of VILI are an uncontrolled inflammatory response and impaired lung barrier function; however, its pathogenesis is not fully understood, and c-Fos protein is activated under mechanical stress. c-Fos/activating protein-1 (AP-1) plays a role by binding to AP-1 within the promoter region, which promotes inflammation and apoptosis. T-5224 is a specific inhibitor of c-Fos/AP-1, that controls the gene expression of many proinflammatory cytokines. This study investigated whether T-5224 attenuates VILI in rats by inhibiting inflammation and apoptosis. Methods The SD rats were divided into six groups: a control group, low tidal volume group, high tidal volume group, DMSO group, T-5224 group (low concentration), and T-5224 group (high concentration). After 3 h, the pathological damage, c-Fos protein expression, inflammatory reaction and apoptosis degree of lung tissue in each group were detected. Results c-Fos protein expression was increased within the lung tissue of VILI rats, and the pathological damage degree, inflammatory reaction and apoptosis in the lung tissue of VILI rats were significantly increased; T-5224 inhibited c-Fos protein expression in lung tissues, and T-5224 inhibit the inflammatory reaction and apoptosis of lung tissue by regulating the Fas/Fasl pathway. Conclusions c-Fos is a regulatory factor during ventilator-induced acute lung injury, and the inhibition of its expression has a protective effect. Which is associated with the antiinflammatory and antiapoptotic effects of T-5224.
Collapse
Affiliation(s)
- Leilei Zhou
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China
| | - Chunju Xue
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China
| | - Zongyu Chen
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China
| | - Wenqing Jiang
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China
| | - Shuang He
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China
| | - Xianming Zhang
- School of Clinical Medicine, Guizhou Medical University, 550004, Guiyang, China. .,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
| |
Collapse
|
14
|
Sherif IO, Al-Shaalan NH. OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:417-425. [PMID: 35782645 PMCID: PMC9244212 DOI: 10.1093/toxres/tfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
Acute lung injury has been reported following various chemotherapeutic agents administration. Several pathways for lung injury have been speculated however, the exact mechanism of the lung injury induced by methotrexate (MTX) is yet to be defined. The potential protective effect of Ginkgo biloba extract (GB), a Chinese herbal medicine, against MTX-induced lung injury is still not reported. Therefore, this study was performed to examine the possible implication of NLRP3 inflammasome and miRNA-21 in the pathogenesis of the MTX-induced lung injury as well as the protective role of GB in ameliorating the induced lung injury. Rats received GB (100 mg/kg/day, orally) for 10 days and MTX (20 mg/kg single dose, intraperitoneally) on the fifth day. MTX-induced lung injury was manifested by lung histopathology. MTX exhibited a marked increase in lung malondialdehyde beside a notable decrease in lung reduced glutathione. Moreover, MTX injection activated the lung NLRP3 inflammasome by significant upregulation of the NLRP3, ASC, caspase-1 lung mRNA expressions and protein levels in addition to lung NF-kBp65 protein expression, and miRNA-21 expression when compared with the normal control group. However, GB administration mitigated lung injury and inhibited the NLRP3 activation. This study is the first report to reveal the involvement of NLRP3 inflammasome in the pathogenesis of MTX-induced lung injury and also to show that the administration of GB alleviates the lung injury induced by MTX via suppressing the oxidative stress, restoring the antioxidant activity, blocking the NLRP3/ASC/Caspase-1 signaling and downregulating the NF-kBp65 protein expression ae well as miRNA-21 expression in lung tissue.
Collapse
Affiliation(s)
- Iman O Sherif
- Corresponding Author: Dr. Iman O. Sherif, PhD, Consultant of Biochemistry, Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt, ;
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
15
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
16
|
Song N, Li X, Cui Y, Zhang T, Xu S, Li S. Hydrogen sulfide exposure induces pyroptosis in the trachea of broilers via the regulatory effect of circRNA-17828/miR-6631-5p/DUSP6 crosstalk on ROS production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126172. [PMID: 34098264 DOI: 10.1016/j.jhazmat.2021.126172] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant to cause tracheal injury. Pyroptosis is responsible for tissue injury through reactive oxygen species (ROS) production. Competitive endogenous RNAs (ceRNAs) chelate microRNAs and reduce their inhibitory effect on other transcripts, thus affecting ROS levels and pyroptosis. However, it is not clear how H2S regulates pyroptosis via the ceRNA axis. Therefore, we established a broilers model of H2S exposure for 42 days to assess pyroptosis and obtain a ceRNA network by immunohistochemistry and RNA sequencing. We detected pyroptosis induced by H2S and verified circRNA-IGLL1-17828/miR-6631-5p/DUSP6 axis by a double luciferase reporter assay. We also measured ROS levels and the expression of pyroptotic indicators such as (Caspase1) Casp-1, Interleukin 1β (IL-1β) and Interleukin 1β (IL-18). miR-6631-5p knockdown decreased pyroptotic indicators induced by H2S. Overexpression of miR-6631-5p or DUSP6 knockdown stimulated ROS generation and upregulated pyroptotic indicators. N-acetyl-L-cysteine (NAC) decreased pyroptotic indicators and ROS levels both induced by miR-6631-5p. Moreover, circRNA-IGLL1-17828, participated in intermolecular competition as a ceRNA of DUSP6. In conclusion, circRNA-IGLL1-17828/miR-6631-5p/DUSP6 crosstalk regulated H2S-induced pyroptosis in broilers trachea via ROS generation. This is the first study to reveal regulation mechanism of circRNA-related CeRNAs on pyroptosis induced by H2S, providing important reference for environmental toxicology.
Collapse
Affiliation(s)
- Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Liu B, He R, Zhang L, Hao B, Jiang W, Wang W, Geng Q. Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Front Pharmacol 2021; 12:631256. [PMID: 33613295 PMCID: PMC7892432 DOI: 10.3389/fphar.2021.631256] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI), a critical respiratory disorder that causes diffuse alveolar injury leads to high mortality rates with no effective treatment. ALI is characterized by varying degrees of ventilation/perfusion mismatch, severe hypoxemia, and poor pulmonary compliance. The diffuse injury to cells is one of most important pathological characteristics of ALI. Pyroptosis is a form of programmed cell death distinguished from apoptosis induced by inflammatory caspases, which can release inflammatory cytokines to clear cells infected by pathogens and promote monocytes to reassemble at the site of injury. And pyroptosis not only promotes inflammation in certain cell types, but also regulates many downstream pathways to perform different functions. There is increasing evidence that pyroptosis and its related inflammatory caspases play an important role in the development of acute lung injury. The main modes of activation of pyroptosis is not consistent among different types of cells in lung tissue. Meanwhile, inhibition of inflammasome, the key to initiating pyroptosis is currently the main way to treat acute lung injury. The review summarizes the relationship among inflammatory caspases, pyroptosis and acute lung injury and provides general directions and strategies to conduct further research.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Cai L, Chen Q, Yao Z, Sun Q, Wu L, Ni Y. Glucocorticoid receptors involved in melatonin inhibiting cell apoptosis and NLRP3 inflammasome activation caused by bacterial toxin pyocyanin in colon. Free Radic Biol Med 2021; 162:478-489. [PMID: 33189867 DOI: 10.1016/j.freeradbiomed.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1β, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.
Collapse
Affiliation(s)
- Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
19
|
Huang H, Li X, Wang Z, Lin X, Tian Y, Zhao Q, Zheng P. Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenology 2020; 155:139-149. [PMID: 32673849 DOI: 10.1016/j.theriogenology.2020.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Lead (Pb) is a deleterious environmental pollutant that is toxic to testes. Selenium (Se) possesses antioxidant and anti-inflammatory properties. Nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome is involved in inflammatory response. However, the function of NLRP3 inflammasome in antagonistic effect of Se on inflammation caused by Pb remains unknown. The purpose of this research is to identify anti-inflammatory role of Se on testicular toxicity induced by Pb with an emphasis on oxidative stress, inflammation and NLRP3 signaling pathway in chicken. In present study, sixty seven-day-old Hyline male chickens were assigned into four groups. The feeding program consisted of a commercial diet (0.49 mg/kg Se), a Se-supplemented diet (1 mg/kg Se), a Pb-supplemented diet (0.49 mg/kg Se and 350 mg/kg Pb) and a Se-supplemented and Pb-supplemented diet (1 mg/kg Se and 350 mg/kg Pb), respectively. On the 12th week, blood was collected to measure serum testosterone level and testicular tissues were removed to determine Se and Pb concentrations, testicular function, histological structure, oxidative stress indicators and inflammation-related factors (Nuclear factor-kappaB, tumor necrosis factor-α, cyclooxygenase-2, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interluekin (IL)-1β, IL-6, IL-18 and interferon-γ). The experimental results showed that after Pb administration, testicular injury was confirmed via histological assessment; testicular dysfunction were further indicated by decreased testosterone level and mRNA expression of steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. Moreover, NLRP3 signaling pathway activated by Pb-caused oxidative stress was up-regulated accompanied by promotion in reactive oxygen species, nitric oxide, inducible nitric oxide synthase and malondialdehyde and reduction in antioxidants including glutathione peroxidase and glutathione s-transferase. Se administration ameliorated testicular tissue injury, testicular function, oxidative stress and inflammation. In conclusion, Se exhibited antagonistic role in Pb-induced testicular injury via enhancing antioxidant system and inhibiting inflammation in chickens.
Collapse
Affiliation(s)
- He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziming Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Zhu X, Zhou D, Han F, Yang X. Dexmedetomidine for prevention of postoperative pulmonary complications in patients after oral and maxillofacial surgery with fibular free flap reconstruction:a prospective, double-blind, randomized, placebo-controlled trial. BMC Anesthesiol 2020; 20:127. [PMID: 32460699 PMCID: PMC7251859 DOI: 10.1186/s12871-020-01045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Postoperative pulmonary complications (PPCs) are common and significant problems for oral and maxillofacial surgery patients. Dexmedetomidine (DEX), an α2-adrenoreceptor agonist, has been proven having lung protection effects. However, since now, there has not been final conclusion about whether DEX can reduce the incidence of PPCs. We hypothesize that, in oral and maxillofacial surgery with fibular free flap reconstruction patients, DEX may decrease the incidence of PPCs. METHODS This was a prospective, double-blind, randomized, placebo-controlled, single-centered trial with two parallel arms. A total of 160 patients at intermediate-to-high risk of PPCs undergoing oral and maxillofacial surgery with fibular free flap reconstruction and tracheotomy were enrolled and randomized to receive continuous infusion of either DEX or placebo (normal saline). 0.4 μg/kg of DEX was given over 10mins as an initial dose followed by a maintaining dose of 0.4 μg/kg/h till the second day morning after surgery. At the same time, the normal saline was administered a similar quantity. The primary outcome was the incidence of PPCs according to Clavien-Dindo score within 7 days after surgery. RESULTS The two groups had similar characteristics at baseline. 18(22.5%) of 80 patients administered DEX, and 32(40.0%) of 80 patient administered placebo experienced PPCs within the first 7 days after surgery (relative risk [RR] 0.563,95% confidence interval [CI] 0.346-0.916; P = 0.017). In the first 7 days after surgery, the DEX group had a lower incidence of PPCs and a better postoperative survival probability (Log-rank test, P = 0.019), and was less prone to occur PPCs (Cox regression, P = 0.025, HR = 0.516). When the total dose of DEX was more than 328 μg, the patients were unlikely to have PPCs (ROC curve, AUC = 0.614, P = 0.009). CONCLUSIONS For patients undergoing oral and maxillofacial surgery with fibular free flap reconstruction and tracheotomy who were at intermediate or high risk of developing PPCs, continuous infusion of DEX could decrease the occurrence of PPCs during the first 7 days after surgery and shorten the length of hospital stay after surgery, but did not increase the prevalence of bradycardia or hypotension. TRIAL REGISTRATION Chinese Clinical Trial Registry, www.chictr.org.cn, number: ChiCTR1800016153; Registered on May 15, 2018.
Collapse
Affiliation(s)
- Yun Liu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Dan Zhou
- Department of Anesthesiology, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Fang Han
- Department of Anesthesiology, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Xudong Yang
- Department of Anesthesiology, Peking University Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
21
|
Ruan H, Li W, Wang J, Chen G, Xia B, Wang Z, Zhang M. Propofol alleviates ventilator-induced lung injury through regulating the Nrf2/NLRP3 signaling pathway. Exp Mol Pathol 2020; 114:104427. [PMID: 32199914 DOI: 10.1016/j.yexmp.2020.104427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Ventilator-induced lung injury (VILI) causes problems during acute lung injury treatment, and propofol is a well-known drug to prevent VILI. Herein, we discussed how propofol protects against VILI-induced inflammation with the interaction of nuclear factor E2-related factor 2 (Nrf2)/NOD-like receptor protein 3 (NLRP3). We established VILI mouse models for collecting lung tissues, and these mice were later treated with propofol and Nrf2/NLRP3 activator or inhibitor to observe their effects on VILI with inflammatory factors, 8-hydroxy-2 deoxyguanosine, malondialchehyche level, mitochondrial reactive oxygen species production rate, lung wet/dry weight ratio, lung permeability index measured. Propofol treatment improved VILI, alleviated pulmonary inflammation induced by mechanical ventilation. Propofol up-regulated Nrf2 and down-regulated NLRP3 in VILI model. Activating Nrf2 or inhibiting NLRP3 downregulated pro-inflammatory factors in lung tissues in VILI mice. Above all, we can conclude that propofol exerts it protective function against VILI and the subsequent inflammatory responses through activating Nrf2 and inhibiting NLRP3 expression. Therefore, Nrf2 activator and NLRP3 inhibitor might be latent targets in the VILI prevention.
Collapse
Affiliation(s)
- Hongyan Ruan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China
| | - Wei Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China
| | - Jilan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China
| | - Gang Chen
- Department of thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China
| | - Bin Xia
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China
| | - Zhou Wang
- Department of thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China.
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, PR China.
| |
Collapse
|