1
|
Lan Q, Chen J, Yang Y. Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. Biotechnol Appl Biochem 2024. [PMID: 39358914 DOI: 10.1002/bab.2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.
Collapse
Affiliation(s)
- Qing Lan
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Jian Chen
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yongqiang Yang
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| |
Collapse
|
2
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Xu F, Tian Z, Wang Z. Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway. Cell Div 2024; 19:2. [PMID: 38233884 DOI: 10.1186/s13008-024-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no literatures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-interacting protein (TXNIP), NOD‑like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immunosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol rescues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising therapeutic candidates for DCM.
Collapse
Affiliation(s)
- Fei Xu
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China
| | - Zhuo Tian
- Department of General Surgery, Yantai hospital of traditional Chinese medicine, Yantai, Shandong, China
| | - Zhengguang Wang
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China.
| |
Collapse
|
4
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
5
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
6
|
Efficacy and safety of cilostazol for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:390. [DOI: 10.1097/fjc.0000000000001195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
|
7
|
Klassen A, Faccio AT, Picossi CRC, Derogis PBMC, Dos Santos Ferreira CE, Lopes AS, Sussulini A, Cruz ECS, Bastos RT, Fontoura SC, Neto AMF, Tavares MFM, Izar MC, Fonseca FAH. Evaluation of two highly effective lipid-lowering therapies in subjects with acute myocardial infarction. Sci Rep 2021; 11:15973. [PMID: 34354179 PMCID: PMC8342504 DOI: 10.1038/s41598-021-95455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
For cardiovascular disease prevention, statins alone or combined with ezetimibe have been recommended to achieve low-density lipoprotein cholesterol targets, but their effects on other lipids are less reported. This study was designed to examine lipid changes in subjects with ST-segment elevation myocardial infarction (STEMI) after two highly effective lipid-lowering therapies. Twenty patients with STEMI were randomized to be treated with rosuvastatin 20 mg QD or simvastatin 40 mg combined with ezetimibe 10 mg QD for 30 days. Fasting blood samples were collected on the first day (D1) and after 30 days (D30). Lipidomic analysis was performed using the Lipidyzer platform. Similar classic lipid profile was obtained in both groups of lipid-lowering therapies. However, differences with the lipidomic analysis were observed between D30 and D1 for most of the analyzed classes. Differences were noted with lipid-lowering therapies for lipids such as FA, LPC, PC, PE, CE, Cer, and SM, notably in patients treated with rosuvastatin. Correlation studies between classic lipid profiles and lipidomic results showed different information. These findings seem relevant, due to the involvement of these lipid classes in crucial mechanisms of atherosclerosis, and may account for residual cardiovascular risk. Randomized clinical trial: ClinicalTrials.gov, NCT02428374, registered on 28/09/2014.
Collapse
Affiliation(s)
- Aline Klassen
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Andrea Tedesco Faccio
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Carolina Raissa Costa Picossi
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | - Aline Soriano Lopes
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Elisa Castañeda Santa Cruz
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rafaela Tudela Bastos
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | | | | | - Marina Franco Maggi Tavares
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Maria Cristina Izar
- Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Rua Loefgren 1350, São Paulo, SP, CEP 04040-001, Brazil
| | | |
Collapse
|
8
|
Ashrafizadeh M, Najafi M, Kavyiani N, Mohammadinejad R, Farkhondeh T, Samarghandian S. Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome. Inflammation 2021; 44:1207-1222. [PMID: 33651308 DOI: 10.1007/s10753-021-01428-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Kavyiani
- Department of Basic Science, Faculty of Veterinary Medicine Faculty, Islamic Azad Branch, University of Shushtar, Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
He B, Nie Q, Wang F, Han Y, Yang B, Sun M, Fan X, Ye Z, Liu P, Wen J. Role of pyroptosis in atherosclerosis and its therapeutic implications. J Cell Physiol 2021; 236:7159-7175. [PMID: 33755211 DOI: 10.1002/jcp.30366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a significant cardiovascular burden and a leading cause of death worldwide, recognized as a chronic sterile inflammatory disease. Pyroptosis is a novel proinflammatory regulated cell death, characterized by cell swelling, plasma membrane bubbling, and robust release of proinflammatory cytokines (such as interleukin IL-1β and IL-18). Mounting studies have addressed the crucial contribution of pyroptosis to atherosclerosis and clarified the candidate therapeutic agents targeting pyroptosis for atherosclerosis. Herein, we review the initial characterization of pyroptosis, the detailed mechanisms of pyroptosis, current evidence about pyroptosis and atherosclerosis, and potential therapeutic strategies that target pyroptosis in the development of atherosclerosis.
Collapse
Affiliation(s)
- Bin He
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yongxin Han
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bo Yang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Motta NAV, Autran LJ, Brazão SC, Lopes RDO, Scaramello CBV, Lima GF, Brito FCFD. Could cilostazol be beneficial in COVID-19 treatment? Thinking about phosphodiesterase-3 as a therapeutic target. Int Immunopharmacol 2021; 92:107336. [PMID: 33418248 PMCID: PMC7768212 DOI: 10.1016/j.intimp.2020.107336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) that has emerged and rapidly spread across the world. The COVID-19 severity is associated to viral pneumonia with additional extrapulmonary complications. Hyperinflammation, dysfunctional immune response and hypercoagulability state are associated to poor prognosis. Therefore, the repositioning of multi-target drugs to control the hyperinflammation represents an important challenge for the scientific community. Cilostazol, a selective phosphodiesterase type-3 inhibitor (PDE-3), is an antiplatelet and vasodilator drug, that presents a range of pleiotropic effects, such as antiapoptotic, anti-inflammatory, antioxidant, and cardioprotective activities. Cilostazol also can inhibit the adenosine uptake, which enhances intracellular cAMP levels. In the lungs, elevated cAMP promotes anti-fibrotic, vasodilator, antiproliferative effects, as well as mitigating inflammatory events. Interestingly, a recent study evaluated antiplatelet FDA-approved drugs through molecular docking-based virtual screening on viral target proteins. This study revealed that cilostazol is a promising drug against COVID-19 by inhibiting both main protease (Mpro) and Spike glycoprotein, reinforcing its use as a promising therapeutic approach for COVID-19. Considering the complexity associated to COVID-19 pathophysiology and observing its main mechanisms, this article raises the hypothesis that cilostazol may act on important targets in development of the disease. This review highlights the importance of drug repurposing to address such an urgent clinical demand safely, effectively and at low cost, reinforcing the main pharmacological actions, to support the hypothesis that a multi-target drug such as cilostazol could play an important role in the treatment of COVID-19.
Collapse
Affiliation(s)
- Nadia Alice Vieira Motta
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Lis Jappour Autran
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Stephani Correia Brazão
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Rosane de Oliveira Lopes
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Christianne Brêtas Vieira Scaramello
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Gabriel Ferreira Lima
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil
| | - Fernanda Carla Ferreira de Brito
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, 24420-210 Niterói, RJ, Brazil.
| |
Collapse
|
11
|
Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22041693. [PMID: 33567593 PMCID: PMC7914816 DOI: 10.3390/ijms22041693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) is a metabolism- oxidative- and inflammation-related marker induced in cardiovascular diseases and is believed to represent a possible link between metabolism and cellular redox status. TXNIP is a potential biomarker in cardiovascular and ischemic diseases but also a novel identified target for preventive and curative medicine. The goal of this review is to focus on the novelties concerning TXNIP. After an overview in TXNIP involvement in oxidative stress, inflammation and metabolism, the remainder of this review presents the clues used to define TXNIP as a new marker at the genetic, blood, or ischemic site level in the context of cardiovascular and ischemic diseases.
Collapse
Affiliation(s)
- Alison Domingues
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Julia Jolibois
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Perrine Marquet de Rougé
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Valérie Nivet-Antoine
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
- Clinical Biochemistry Department, Assistance Publique des Hôpitaux de Paris, Necker Hospital, 75015 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Lee DH, Chun EJ, Moon JH, Yun HM, Lim S. Effect of cilostazol on carotid plaque volume measured by three-dimensional ultrasonography in patients with type 2 diabetes: The FANCY study. Diabetes Obes Metab 2020; 22:2257-2266. [PMID: 32700396 DOI: 10.1111/dom.14147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
AIMS To conduct a prospective randomized study to evaluate cilostazol, a phosphodiesterase 3 inhibitor, and compare it with aspirin for the prevention of the progression of atherosclerosis in patients with type 2 diabetes (T2D). MATERIALS AND METHODS Fifty patients with T2D and carotid atherosclerotic plaques were randomly assigned to either a 200 mg/d cilostazol (CTZ) group or a 100 mg/d aspirin (ASA) group for 6 months. The primary endpoint was change in plaque volume measured by carotid three-dimensional ultrasonography. The secondary endpoints were changes in carotid intima-media thickness (IMT) and endothelial function, assessed by laser Doppler. RESULTS Twenty-four patients in the CTZ group and 23 in the ASA group were included in the final analysis. The mean ± SD age of male (n = 20) and female (n = 16) patients was 62.2 and 59.1 years, respectively. The total plaque volume was slightly decreased in the CTZ group (from 183.8 ± 52.5 to 181.5 ± 54.0 mm3 ; P = .567), but significantly increased in the ASA group (from 112.9 ± 21.2 to 128.5 ± 23.3 mm3 ; P = .043). A significant regression in the maximum IMT was observed only in the CTZ group (right: from 2.19 ± 0.17 to 1.96 ± 0.12 mm; left: from 2.02 ± 0.20 to 1.72 ± 0.19 mm). The CTZ group exhibited an increase in HDL cholesterol and a decrease in triglycerides and liver enzymes. CONCLUSIONS Cilostazol treatment for 6 months significantly attenuated the progression of carotid plaque compared with aspirin in patients with T2D (NCT03248401).
Collapse
Affiliation(s)
- Dong-Hwa Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Ju Chun
- Department of Radiology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Hye Moon
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Han Mi Yun
- Physiologic Diagnostic Laboratory, Vascular Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
13
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11:776. [PMID: 32948742 PMCID: PMC7501262 DOI: 10.1038/s41419-020-02985-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.
Collapse
Affiliation(s)
- Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of lmmunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266032, China.
| |
Collapse
|