1
|
Shang J, Zhou Q, Wang K, Wei Y. Engineering of Green Carbon Dots for Biomedical and Biotechnological Applications. Molecules 2024; 29:4508. [PMID: 39339503 PMCID: PMC11434350 DOI: 10.3390/molecules29184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Carbon dots (CDs) are attracting increasing research attention due to their exceptional attributes, including their biocompatibility, water solubility, minimal toxicity, high photoluminescence, and easy functionalization. Green CDs, derived from natural sources such as fruits and vegetables, present advantages over conventionally produced CDs, such as cost-effectiveness, stability, simplicity, safety, and environmental friendliness. Various methods, including hydrothermal and microwave treatments, are used to synthesize green CDs, which demonstrate strong biocompatibility, stability, and luminescence. These properties give green CDs versatility in their biological applications, such as bioimaging, biosensing, and drug delivery. This review summarizes the prevalent synthesis methods and renewable sources regarding green CDs; examines their optical features; and explores their extensive biological applications, including in bioimaging, biosensing, drug/gene delivery, antimicrobial and antiviral effects, formatting of mathematical components, cancer diagnosis, and pharmaceutical formulations.
Collapse
Affiliation(s)
| | | | | | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.S.); (Q.Z.); (K.W.)
| |
Collapse
|
2
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
3
|
Tian Z, Zhao C, Huang T, Yu L, Sun Y, Tao Y, Cao Y, Du R, Lin W, Zeng J. Silkworm Cocoon: Dual Functions as a Traditional Chinese Medicine and the Raw Material of Promising Biocompatible Carriers. Pharmaceuticals (Basel) 2024; 17:817. [PMID: 39065668 PMCID: PMC11279987 DOI: 10.3390/ph17070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The silkworm cocoon (SC), both as a traditional Chinese medicine and as the raw material for biocompatible carriers, has been extensively used in the medical and biomedical fields. This review elaborates on the multiple functions of SC, with an in-depth analysis of its chemical composition, biological activities, as well as its applications in modern medicine. The primary chemical components of SC include silk fibroin (SF), silk sericin (SS), and other flavonoid-like bioactive compounds demonstrating various biological effects. These include hypoglycemic, cardioprotective, hypolipidemic, anti-inflammatory, antioxidant, and antimicrobial actions, which highlight its potential therapeutic benefits. Furthermore, the review explores the applications of silk-derived materials in drug delivery systems, tissue engineering, regenerative medicine, and in vitro diagnostics. It also highlights the progression of SC from laboratory research to clinical trials, emphasizing the safety and efficacy of SC-based materials across multiple medical domains. Moreover, we discuss the market products developed from silk proteins, illustrating the transition from traditional uses to contemporary medical applications. This review provides support in understanding the current research status of SC and the further development and application of its derived products.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Chuncao Zhao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ting Huang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Lining Yu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yijie Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China;
| | - Yian Tao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yunfeng Cao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Wenhui Lin
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jia Zeng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| |
Collapse
|
4
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
5
|
Kota S, Dumpala P, Sajja R, Anantha R. Heteroatom-doped carbon dots from medicinal plants as novel biomaterials for as-use biomedical applications in comparison with synthetic drug, zaltoprofen. Sci Rep 2024; 14:13160. [PMID: 38849424 PMCID: PMC11161473 DOI: 10.1038/s41598-024-63700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
FN-doped carbon dots were synthesized using powdered leaves of Moringa oleifera L./Chromolaena odorata L./Tridax procumbens L./Tinospora cordifolia L./ and Lantana camara L., along with a precursor called 4,5-difluoro-1,2-benzenediamine (DFBD) and compared against the drug zaltoprofen derived carbon dots. They were assessed for their optical and structural characteristics using photoluminescence (optimal emission λ of 600 nm), vibrational (FTIR) spectroscopy (characteristic wave numbers of 1156 and 1269 cm-1 for C-F), as well as X-ray diffraction (XRD) (highest intensity at 27.56°) and high-resolution transmission electron microscopy (HR-TEM) (particles in the size range of 15-20 nm). Further, field emission scanning electron microscopy (FESEM) / energy dispersive spectroscopy (EDX) indicated FN doping of oval/oblong carbon dots. Membrane protection in percent is found to be 55.3 and 80.4 for FN-CDs and Z-FN-CDs respectively. The DPPH-free radical scavenging activity by FN-CDs was 69.4%, while with Z-FN-CDs, it was 54.2%. When tested on six bacterial strains (three each for gram-positive and gram-negative), the FN-CDs displayed a halo (ZOI) between 9 and 19 mm, whereas the Z-FN-CDs displayed a clearance zone between 9 and 17 mm. The FN-CDs showed significant emission-red-shift effects and demonstrated concentration-dependent biocompatibility and viability in neuroblastoma and beta-TC6-cell lines.
Collapse
Affiliation(s)
- Sobha Kota
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
| | - Pradeep Dumpala
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| | - Radhika Sajja
- Department of Mechanical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| | - Ratnakumari Anantha
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| |
Collapse
|
6
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
7
|
Fu C, Qin X, Shao W, Zhang J, Zhang T, Yang J, Ding C, Song Y, Ge X, Wu G, Bikker FJ, Jiang N. Carbon quantum dots as immune modulatory therapy in a Sjögren's syndrome mouse model. Oral Dis 2024; 30:1183-1197. [PMID: 37125663 DOI: 10.1111/odi.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVES The objective of the study was to evaluate the therapeutic effects of carbon quantum dots (CQDs) in immunomodulation on non-obese diabetic (NOD) mice, as the model for Sjögren's syndrome (SS). METHODS Carbon quantum dots were generated from Setaria viridis via a hydrothermal process. Their toxic effects were tested by cell viability and blood chemistry analysis, meanwhile therapeutic effects were investigated in NOD mice in the aspects of saliva flow, histology, and immune cell distribution. RESULTS Carbon quantum dots, with rich surface chemistry and unique optical properties, showed non-cytotoxicity in vitro or no damage in vivo. Intravenously applied CQDs alleviated inflammation in the submandibular glands in NOD mice after 6-week treatments. The inflammatory area index and focus score were significantly decreased in CQD-treated mice. Besides, the levels of anti-SSA and anti-SSB were decreased in the presence of CQDs. The stimulated saliva flow rates and weight of submandibular glands were significantly increased in CQD-treated mice by reducing the apoptosis of cells. The CD3+ and CD4+ T cells distributed around the ducts of submandibular glands were significantly decreased, while the percentage of Foxp3+ cells was higher in CQD-treated mice than that in the control group. CONCLUSIONS Our findings suggest that CQDs may ameliorate the dysregulated immune processes in NOD mice.
Collapse
Affiliation(s)
- Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wenlong Shao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jin Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiaqi Yang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuejun Ge
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
8
|
Zhao Y, Dai E, Dong L, Yuan J, Zhao Y, Wu T, Kong R, Li M, Wang S, Zhou L, Yang Y, Kong H, Zhao Y, Qu H. Available and novel plant-based carbon dots derived from Vaccaria Semen carbonisata alleviates liver fibrosis. Front Mol Biosci 2023; 10:1282929. [PMID: 38116381 PMCID: PMC10729316 DOI: 10.3389/fmolb.2023.1282929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Background: Liver fibrosis represents an intermediate stage in the progression of liver disease, and as of now, there exists no established clinical therapy for effective antifibrotic treatment. Purpose: Our aim is to explore the impact of Carbon dots derived from Vaccaria Semen Carbonisata (VSC-CDs) on carbon tetrachloride-induced liver fibrosis in mice. Methods: VSC-CDs were synthesized employing a modified pyrolysis process. Comprehensive characterization was performed utilizing various techniques, including transmission electron microscopy (TEM), multiple spectroscopies, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). A hepatic fibrosis model induced by carbon tetrachloride was utilized to evaluate the anti-hepatic fibrosis effects of VSC-CDs. Results: VSC-CDs, exhibiting a quantum yield (QY) of approximately 2.08%, were nearly spherical with diameters ranging from 1.0 to 5.5 nm. The VSC-CDs prepared in this study featured a negative charge and abundant chemical functional groups. Furthermore, these particles demonstrated outstanding dispersibility in the aqueous phase and high biocompatibility. Moreover, VSC-CDs not only enhanced liver function and alleviated liver damage in pathomorphology but also mitigated the extent of liver fibrosis. Additionally, this study marks the inaugural demonstration of the pronounced activity of VSC-CDs in inhibiting inflammatory reactions, reducing oxidative damage, and modulating the TGF-β/Smad signaling pathway. Conclusion: VSC-CDs exerted significant potential for application in nanodrugs aimed at treating liver fibrosis.
Collapse
Affiliation(s)
- Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ertong Dai
- Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Long Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic. Int J Nanomedicine 2023; 18:6503-6525. [PMID: 37965279 PMCID: PMC10642355 DOI: 10.2147/ijn.s431061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yuxun Wei
- Department of Pharmacy, Zhongjiang County People’s Hospital, Deyang, 618000, People’s Republic of China
| | - Jie Wen
- Department of Pharmacy, Shehong Municipal Hospital of Traditional Chinese Medicine, Shehong, 629600, People’s Republic of China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Nianyu He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
10
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Zhang Y, Cai L, Fu Z, Cui F. Facile and Green Synthesis of Carbon Dots from Melia Azedarach Leaves for pH Sensing and Cell Imaging. J Fluoresc 2023; 33:1841-1851. [PMID: 36853552 DOI: 10.1007/s10895-023-03188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Carbon dots (CDs) have preeminent application prospects as a new star in the nanomaterials field. In this work, a green and facile method to synthesize the blue-emitting CDs was proposed with Melia azedarach leaves as the carbon precursors. Using nature materials without other expensive reagents and instruments, the processes were simple and environmental-friendly. The CDs had high fluorescence quantum yield (11.8%) and excellent luminescence properties. The size of them were among 1.5-2.5 nm and the emission spectrum exhibited a strong peak at 460 nm when excited at 380 nm. Additionally, the CDs were stable in most ions but sensitive to different pH values. As a result, a pH sensor was established for the detection of pH with a linear range of 3-10 pH. Moreover, it was demonstrated that the synthesized CDs had extremely low cytotoxicity. Due to their low toxicity and good biocompatibility, they entered into the A549 cells successfully for cell imaging.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, School of Chemistry and Chemical Engineering, College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China.
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Lin Cai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, School of Chemistry and Chemical Engineering, College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zheng Fu
- Department of Electrical Engineering, Henan Institute of Science and Technology, Henan, Xinxiang, 453000, People's Republic of China
| | - Fengling Cui
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, School of Chemistry and Chemical Engineering, College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
12
|
Qiang R, Huang H, Chen J, Shi X, Fan Z, Xu G, Qiu H. Carbon Quantum Dots Derived from Herbal Medicine as Therapeutic Nanoagents for Rheumatoid Arthritis with Ultrahigh Lubrication and Anti-inflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38653-38664. [PMID: 37535012 DOI: 10.1021/acsami.3c06188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As a typical chronic inflammatory joint disease with swelling and pain syndromes, rheumatoid arthritis (RA) is closely related to articular lubrication deficiency and excessive proinflammatory cytokines in its progression and pathogenesis. Herein, inspired by the dual effects of joint lubrication improvement and anti-inflammation to treat RA, two novel potential therapeutic nanoagents have been developed rationally by employing herbal medicine-derived carbon quantum dots (CQDs), i.e., safflower (Carthamus tinctorius L.) CQDs and Angelica sinensis CQDs, yielding ultrahigh lubrication and anti-inflammation bioefficacy. In vitro experimental results show that the two nanoagents display excellent friction reduction due to their good water solubility and spherical structure. Using RA rat models, it is indicated that the nanoagents significantly relieved swelling symptoms and inhibited the expression of related inflammatory cytokines, including IL-1, IL-6, and TNF-α, indicating their extraordinary anti-inflammation bioefficacy. Thus, combining the lubricating and anti-inflammation bioefficacy of CQDs derived from herbal medicine is an attractive strategy to develop new nanoagents for RA treatment.
Collapse
Affiliation(s)
- Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haofei Huang
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zengjie Fan
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Zhang YL, Wang YL, Yan K, Deng QQ, Li FZ, Liang XJ, Hua Q. Nanostructures in Chinese herbal medicines (CHMs) for potential therapy. NANOSCALE HORIZONS 2023; 8:976-990. [PMID: 37278697 DOI: 10.1039/d3nh00120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With its long clinical history, traditional Chinese medicine (TCM) has gained acceptance for its specific efficacy and safety in the treatment of multiple diseases. Nano-sized materials study of Chinese herbal medicines (CHMs) leads to an increased understanding of assessing TCM therapies, which may be a promising way to illustrate the material basis of CHMs through their processing and extraction. In this review, we provide an overview of the nanostructures of natural and engineered CHMs, including extracted CHMs, polymer nanoparticles, liposomes, micelles, and nanofibers. Subsequently, the applications of these CHM-derived nanostructures to particular diseases are summarized and discussed. Additionally, we discuss the advantages of these nanostructures for studying the therapeutic efficacy of CHMs. Finally, the key challenges and opportunities for the development of these nanostructures are outlined.
Collapse
Affiliation(s)
- Ya-Li Zhang
- Beijing University of Chinese Medicine, Beijing, China.
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Ya-Lei Wang
- Beijing University of Chinese Medicine, Beijing, China.
| | - Ke Yan
- Beijing University of Chinese Medicine, Beijing, China.
| | - Qi-Qi Deng
- Beijing University of Chinese Medicine, Beijing, China.
| | - Fang-Zhou Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Qian Hua
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
14
|
Sharma A, Choi HK, Lee HJ. Carbon Dots for the Treatment of Inflammatory Diseases: An Appraisal of In Vitro and In Vivo Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3076119. [PMID: 37273553 PMCID: PMC10234732 DOI: 10.1155/2023/3076119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023]
Abstract
In recent decades, several studies demonstrating various applications of carbon dots (C-dots), including metal sensing, bioimaging, pH sensing, and antimicrobial activities, have been published. Recent developments have shifted this trend toward biomedical applications that target various biomarkers relevant to chronic diseases. However, relevant developments and research results regarding the anti-inflammatory properties of C-dots against inflammation-associated diseases have not been systematically reviewed. Hence, this review discusses the anti-inflammatory effects of C-dots in in vivo and in vitro models of LPS-induced inflammation, gout, cartilage tissue engineering, drug-induced inflammation, spinal cord injury, wound healing, liver diseases, stomach cancer, gastric ulcers, acute kidney and lung injury, psoriasis, fever or hypothermia, and bone tissue regeneration. The compiled studies demonstrate the promising potential of C-dots as anti-inflammatory agents for the development of new drugs.
Collapse
Affiliation(s)
- Anshul Sharma
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea 55365
| | - Hae-Jeung Lee
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
15
|
Chen R, Ma H, Li X, Wang M, Yang Y, Wu T, Zhang Y, Kong H, Qu H, Zhao Y. A Novel Drug with Potential to Treat Hyperbilirubinemia and Prevent Liver Damage Induced by Hyperbilirubinemia: Carbon Dots Derived from Platycodon grandiflorum. Molecules 2023; 28:molecules28062720. [PMID: 36985691 PMCID: PMC10056707 DOI: 10.3390/molecules28062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Platycodon grandiflorum (PG) is a traditional Chinese medicine with a long history, but its active compounds have not been reported. In this study, novel carbon dots (CDs), PG-based CDs (PGC-CDs), were discovered and prepared from PG via calcinations and characterized by transmission electron microscopy; high-resolution transmission electron microscopy; X-ray diffraction, fluorescence, ultraviolet-visible, and Fourier-transform infrared spectrometers; X-ray photoelectron spectroscopy; and high-performance liquid chromatography. In addition, the safety and antioxidant activity of PGC-CDs was evaluated by RAW264.7 cells and LO2 cells. The therapeutic effects of PGC-CDs on hyperbilirubinemia and liver protection were evaluated in a bilirubin-induced hyperbilirubinemia mice model. The experiment confirmed that the diameter range of PGC-CDs was from 1.2 to 3.6 nm. PGC-CDs had no toxicity to RAW264.7 cells and LO2 cells at a concentration of 3.91 to 1000 µg/mL and could reduce the oxidative damage of cells caused by H2O2. PGC-CDs could inhibit the increase levels of bilirubin and inflammation factors and increase the levels of antioxidants and survival rate, demonstrating that PGC-CDs possessed anti-inflammatory and anti-oxidation activity. PGC-CDs may reduce the content of bilirubin, so as to reduce a series of pathological lesions caused by bilirubin, which has potential in treating hyperbilirubinemia and preventing liver damage induced by hyperbilirubinemia.
Collapse
Affiliation(s)
- Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: ; Tel.: +86-010-6428-6705; Fax: +86-010-6428-6821
| |
Collapse
|
16
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials. Molecules 2022; 27:molecules27196186. [PMID: 36234727 PMCID: PMC9573568 DOI: 10.3390/molecules27196186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Today, sustainable and natural resources including biowastes have been considered attractive starting materials for the fabrication of biocompatible and biodegradable carbon dots (CDs) due to the benefits of availability, low cost, biorenewability, and environmentally benign attributes. These carbonaceous nanomaterials have been widely explored in the field of sensing/imaging, optoelectronics, photocatalysis, drug/gene delivery, tissue engineering, regenerative medicine, and cancer theranostics. Designing multifunctional biowaste-derived CDs with a high efficacy-to-toxicity ratio for sustained and targeted drug delivery, along with imaging potentials, opens a new window of opportunity toward theranostic applications. However, crucial challenges regarding the absorption/emission wavelength, up-conversion emission/multiphoton fluorescence mechanisms, and phosphorescence of these CDs still need to be addressed to attain the maximum functionality and efficacy. Future studies ought to focus on optimizing the synthesis techniques/conditions, evaluating the influence of nucleation/growth process on structures/properties, controlling their morphology/size, and finding the photoluminescence mechanisms. Reproducibility of synthesis techniques is another critically important factor that needs to be addressed in the future. Herein, the recent developments related to the biowaste-derived CDs with respect to their biomedical applications are deliberated, focusing on important challenges and future perspectives.
Collapse
|
18
|
Biganeh H, Kabiri M, Zeynalpourfattahi Y, Costa Brancalhão RM, Karimi M, Shams Ardekani MR, Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022; 8:e10496. [PMID: 36105465 PMCID: PMC9465338 DOI: 10.1016/j.heliyon.2022.e10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Silk cocoon, naturally produced by silkworms scientifically named Bombyx mori L. (Lepidoptera, Bombycidae), is one of the well-known medicinal agents with several therapeutic activities. The present study aims to review the various aspects of the silk cocoon, including chemical composition, traditional uses, biological and biotechnological activities, and toxicological issues, to provide a scientific source for scholars. For this purpose, Electronic databases including PubMed, Scopus, Google Scholar, Web of Science, and traditional literature, were searched up to December 2021. According to the historical data, silk farming is acknowledged as one of the most ancient agricultural findings. The silk is generally composed of 75–83% fibroin, 17–25% sericin, and 1–5% non-sericin components, including secondary metabolites, wax, pigments, carbohydrates, and other impurities. Flavonoids, especially quercetin and kaempferol, alkaloids, coumarin derivatives, and phenolic acids, are among the secondary metabolites isolated from the silk cocoon. In recent years the biological properties of the silk cocoon, especially its major proteins, namely fibroin and sericin, have drawn special attention. Scientific literature has investigated several pharmacological effects of the silk cocoon and its ingredients, including cardioprotective, antioxidant, anticancer, antidiabetic, antihyperlipidemia, gastroprotective, as well as ameliorated skin health activities. In addition, it has been extensively taken into consideration in drug delivery and tissue engineering study fields. Furthermore, its toxicity is in acceptable range.
Collapse
|
19
|
Cen Q, Fu F, Xu H, Luo L, Huang F, Xiang J, Li W, Pan X, Zhang H, Zheng M, Zheng Y, Li Q, Lei B. Glycine assists in efficient synthesis of herbal carbon dots with enhanced yield and performance. J Mater Chem B 2022; 10:6433-6442. [PMID: 35984665 DOI: 10.1039/d2tb01334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a special type of biomass, herbal medicine often contains a variety of biologically active substances, and taking it as a carbon source, it is expected to produce various types of biologically functional carbon dots (CDs). However, there are few reports in this field, especially in achieving enhanced performance of CDs by improving the utilization efficiency of active substances in medicinal materials. In this work, by adding glycine as an auxiliary agent in the preparation of CDs from herbal medicine (Exocarpium Citri Grandis), the carboxyl and amino groups of the adjuvant provided more reactive sites, which greatly improved the yield of CDs (about 6 times). More importantly, the antioxidant and biological activities of herbal CDs were also improved. By controlling the functional groups of adjuvants, the effects of carboxyl and amino groups in adjuvants on the synthesis of herbal CDs were compared. The results reveal that both carboxyl and amino groups can react with the substances in the carbon source, and the influence of amino groups was greater. After adding glycine, the size of the CDs became larger, resulting from the more abundant functional groups on the carbon skeleton, which was the main reason for the improved performance of the CDs. Finally, the biological activity experiment demonstrated that CDs derived from Exocarpium Citri Grandis and glycine could greatly enhance the vitality of cells and activate immune cells, which are expected to be applied in the field of cell reproduction and biological immunity. The method proposed in this work provides a potential strategy for high-yield preparation of CDs from biomass.
Collapse
Affiliation(s)
- Qingyuan Cen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Fangmei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Hong Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Fanfan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Jing Xiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, P. R. China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| |
Collapse
|
20
|
Zhao J, Zhang Y, Zhao Y, Wu T, Chen Y, Zhang Y, Kong H, Zhao Y, Qu H. Protective Effects of Zingiberis Carbonisata-Based Carbon Dots on Diabetic Liver Injury in Mice. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To explain the active components of ZRC-CDs from the perspective of nanomaterials and investigate the potential mechanism for the treatment of diabetic liver injury, the structure, electron transfer properties, and elemental composition of ZRC-CDs were characterized. The protective
effects of ZRC-CDs on the diabetic liver injury were demonstrated using the Alloxan-induced diabetic model. The ZRC-CDs are spherical, with a diameter ranging from 1.0–4.5 nm and a yield of 0.56%. The results showed that ZRC-CDs decreased the levels of blood glucose in diabetic mice
and had a mitigating effect on elevated ALT and AST. More studies found that ZRC-CDs were able to decrease the levels of inflammatory cytokines and suppress the protein expression in related signaling pathways.
Collapse
Affiliation(s)
- Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
21
|
Liu Y, Meng X. A Novel Vaccaria Semen Carbonisatum Carbon Nanocomposites and Their Protective Effects on Alcohol-Induced Liver Injury in Mice. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To discover the efficacy of Vaccariae Semen Carbonisatum nano-components (VSC-NCs) on alcoholic liver injury in mice. Methods: VSC was calcined at high temperature in a muffle furnace, and VSC-NCs were extracted and isolated. Mouse model of alcoholic
liver injury was used and alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bile acid (TBA), oxidative stress and histopathological assessments were done. Results: Characterization and analysis showed that VSC-NCs were spherical, with
a particle size distribution of 1.0 to 5.5 nm. The results of animal experiments showed that VSC-NCs could significantly reduce the content of ALT, AST, TBA and ALP in mice with alcohol-induced liver injury, and at the same time significantly increase the level of SOD and reduce the level
of malondialdehyde. These results indicated that VSC-NCs could improve the scavenging of reactive oxygen species (ROS) in the body. The ability to reduce the production of lipid peroxides, so as to achieve hepatoprotective effect. Conclusion: VSC-NCs were prepared for the first time,
and was confirmed that it has a significant protective effect on liver injury caused by alcohol. In addition, VSC-NCs can be used as a potential drug for the treatment of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yantong Liu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
22
|
Lin HY, Zeng YT, Lin CJ, Harroun SG, Anand A, Chang L, Wu CJ, Lin HJ, Huang CC. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J Colloid Interface Sci 2022; 622:481-493. [PMID: 35525149 DOI: 10.1016/j.jcis.2022.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Inflenza A viruses (IAVs) are highly transmissible and pathogenic Orthomyxoviruses, which have led to worldwide outbreaks and seasonal pandemics of acute respiratory diseases, causing serious threats to public health. Currently used anti-influenza drugs may cause neurological side effects, and they are increasingly less effective against mutant strains. To help prevent the spread of IAVs, in this work, we have developed quercetin-derived carbonized nanogels (CNGsQur) that display potent viral inhibitory, antioxidative, and anti-inflammatory activities. The antiviral CNGsQur were synthesized by mild carbonization of quercetin (Qur), which successfully preserved their antioxidative and anti-inflammatory properties while also contributed enhanced properties, such as water solubility, viral binding, and biocompatibility. Antiviral assays of co-treatment, pre-treatment, and post-treatment indicate that CNGsQur interacts with the virion, revealing that the major antiviral mechanism resulting in the inhibition of the virus is by their attachment on the cell surface. Among them, the selectivity index (SI) of CNGsQur270 (>857.1) clearly indicated its great potential for clinical application in IAVs inhibition, which was much higher than that of pristine quercetin (63.7) and other clinical drugs (4-81). Compared with quercetin at the same dose, the combined effects of viral inhibition, antioxidative and anti-inflammatory activities impart the superior therapeutic effects of CNGsQur270 aerosol inhalation in the treatment of IAVs infection, as evidenced by a mouse model. These CNGsQur effectively prevent the spread of IAVs and suppress virus-induced inflammation while also exhibiting good in vivo biocompatibility. CNGsQur shows much promise as a clinical therapeutic agent against infection by IVAs.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ting Zeng
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Lung Chang
- Department of Pediatrics, Nursing and Management, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei 10449, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
23
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Zhang Y, Lu Y, Zeng W, Cheng J, Zhang M, Kong H, Qu H, Lu T, Zhao Y. Fluorescence Imaging, Metabolism, and Biodistribution of Biocompatible Carbon Dots Synthesized Using Punica granatum L. Peel. J Biomed Nanotechnol 2022; 18:381-393. [PMID: 35484738 DOI: 10.1166/jbn.2022.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a green, low-cost strategy is reported for the synthesis of carbon dots (CDs) using Punica granatum L. A systematic metabolic analysis and determination of the biodistribution of the nitrogen-doped carbon dots was conducted in vivo in mice. Fluorescence images of carbon dots in the whole body, in individual organs (kidney, gallbladder, and bladder), and in two cell lines from different tissue sources were observed. The results suggest not only that the carbon dots are fluorescent in solution, as reported previously, but also that they behave well as contrast agents in live mice. Moreover, metabolic process curves of carbon dots in blood and urine were obtained for the first time. Unlike quantum dots, which can persist in the body for more than 7 days, the carbon dots diffused and were excreted very quickly after injection into mice; within 3 min, fluorescence could be observed in blood, tissue and urine, indicating the rapid distribution of CDs. The fluorescence faded by approximately 4 h in organs and by approximately 10 h in urine, indicating that the CDs were excreted completely in half a day. Our results on the absorption, distribution, metabolism, and excretion of carbon dots may have great significance for the application of these CDs in drug delivery, as drug targets, and for biological imaging. We also demonstrated that these CDs have good biocompatibility for use in studies of mother-child barriers and in fluorescence imaging in plants.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, 10029, China
| | - Yu Lu
- School of Life Science, Beijing University of Chinese Medicine, 10029, China
| | - Wenhao Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 10029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 10029, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 10029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 10029, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, 10029, China
| | - Tao Lu
- School of Life Science, Beijing University of Chinese Medicine, 10029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 10029, China
| |
Collapse
|
25
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
27
|
Zhang M, Cheng J, Hu J, Luo J, Zhang Y, Lu F, Kong H, Qu H, Zhao Y. Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnology 2021; 19:105. [PMID: 33858431 PMCID: PMC8048166 DOI: 10.1186/s12951-021-00847-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Background Carbon dots (CDs) with multifaceted advantages have provided hope for development brand-new nanodrug for treating thorny diseases. This study developed a green and simple calcination method to prepare novel CDs as promising drug for psoriasis treatment. The as-prepared CDs using Phellodendri Chinensis Cortex (PCC) as sole precursor were characterized by a series of methods, mainly including electron microscopy, optical technology and X-ray photoelectron spectroscopy (XPS). Results Results displayed that fluorescence (Quantum yield = 5.63%) and nontoxic PCC-based CDs (PCC-CDs) with abundant chemical groups exhibited solubility and tiny sizes at average of (1.93 ± 0.53) nm, which may be beneficial for its inherent biological activity. Moreover, by using the typical imiquimod (IMQ)-induced psoriasis-like skin mouse model, we firstly demonstrated the pronounced anti-psoriasis activity of as-prepared PCC-CDs on ameliorating the appearance, psoriasis area and severity index (PASI) scores as well as histopathological morphology of both back skin tissues and right ears in IMQ-induced mouse. Further potential mechanisms behind the anti-psoriasis activities may be related to suppress M1 polarization and relatively promote M2 polarization of macrophage both in vitro and in vivo. Conclusion These results suggested that PCC-CDs have potential to be an anti-psoriasis candidate for clinical applications to treat psoriasis, which not only provided an evidence for further broadening the biological application of CDs, but also provided a potential hope for application nanodrugs to treat thorny diseases. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00847-y.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
28
|
Yang D, Li L, Cao L, Zhang Y, Ge M, Yan R, Dong WF. Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging. Analyst 2021; 146:2330-2338. [PMID: 33624640 DOI: 10.1039/d0an02479a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of excessive ROS can cause much harm to the human body and can even cause diseases. Therefore, it is important to detect and remove ROS, but there is no ideal method available for this at present. In this research, using procyanidins, a type of plant extract with strong reducibility, as raw materials, fluorescent carbon dots (CDs) were prepared by a hydrothermal method. The proanthocyanidin-based carbon dots (PCDs) emit a light-green colored light under UV irradiation. The PCDs retain the strong reducibility of procyanidins and are highly water-soluble compared with procyanidins. The PCDs, in addition to having good biocompatibility, also have the superior properties of radical scavenging activity and cell imaging. In in vitro experiments, 1,1-diphenyl-2-picrylhydrazyl (DPPH; 100 μM) was reduced by 30% when PCDs were added up to a concentration of 87.5 μg mL-1. At the same time, the fluorescence quenching correlates with the concentration of hypochlorite and hydrogen peroxide and has a good linearity in the range of 250-2250 nM and 60-180 μM with a detection limit of 3.676 nM and 0.602 μM, respectively. Based on the previously described advantages, PCDs have potential as a biomedicine.
Collapse
Affiliation(s)
- Dian Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu J, Luo J, Zhang M, Wu J, Zhang Y, Kong H, Qu H, Cheng G, Zhao Y. Protective Effects of Radix Sophorae Flavescentis Carbonisata-Based Carbon Dots Against Ethanol-Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities. Int J Nanomedicine 2021; 16:2461-2475. [PMID: 33814910 PMCID: PMC8009542 DOI: 10.2147/ijn.s289515] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
AIM To explore the effects of Radix Sophorae Flavescentis carbonisata-based carbon dots (RSFC-CDs) on an ethanol-induced acute gastric ulcer rat model. METHODS The structure, optical properties, functional groups and elemental composition of RSFC-CDs synthesized by one-step pyrolysis were characterized. The gastric protective effects of RSFC-CDs were evaluated and confirmed by applying a rat model of ethanol-induced acute gastric ulcers. The underlying mechanisms were investigated through the nuclear factor-kappa B (NF-κB) signalling pathway and oxidative stress. RESULTS RSFC-CDs with a diameter ranging from 2-3 nm mainly showed gastric protective effects by reducing the levels of NF-κB, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) to inhibit ethanol-induced inflammation and oxidative stress. CONCLUSION RSFC-CDs have anti-inflammatory and anti-oxidative effects, making them promising for application in ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276000, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
30
|
Hao X, Dai S, Wang J, Fang Z. Synthesis of blue fluorescent carbon dots and their application in detecting mercury and iodine based on "off-on" mode. LUMINESCENCE 2021; 36:721-732. [PMID: 33300263 DOI: 10.1002/bio.3993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
In this study, a type of blue-emission fluorescent carbon dot was synthesized using malic acid, urea, and water. This material demonstrates strong stability to heat, ionic strength, and time. It was found that mercury ions can quench the blue fluorescence of the material, and using iodine ions, the fluorescence can be recovered. Hence, we designed an "off-on" mode to detect mercury and iodine ions using the carbon dots. The results showed that this material exhibits good selectivity and recovery rate. Concurrently, imaging experiments showed that this material demonstrates low cytotoxicity and can be used in cell fluorescence imaging. The study concludes that this material has wider application prospects in the future.
Collapse
Affiliation(s)
- Xiaoliang Hao
- College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Shujuan Dai
- College of Mining Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jing Wang
- College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Zhigang Fang
- College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
31
|
Wu J, Zhang M, Cheng J, Zhang Y, Luo J, Liu Y, Kong H, Qu H, Zhao Y. Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide. Int J Nanomedicine 2020; 15:4139-4149. [PMID: 32606669 PMCID: PMC7297362 DOI: 10.2147/ijn.s248467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction A correlation is established between the efficacy of Chinese herbal medicine and its charcoal drugs. Lonicerae japonicae Flos (LJF) is commonly used to treat fever, carbuncle, and tumors, among others. LJF Carbonisatas (LJFC) is preferred for detoxifying and relieving dysentery and its related symptoms. However, the mechanisms underlying the effects of LJFC remain unknown. Aim The aim of this study was to explore the effects of LJFC-derived carbon dots (LJFC-CDs) on lipopolysaccharide (LPS)-induced fever and hypothermia rat models. Methods LJFC-CDs were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. The anti-inflammatory effects of LJFC-CDs were evaluated and confirmed using rat models of LPS-induced fever or hypothermia. Results The LJFC-CDs ranged from 1.0 to 10.0 nm in diameter, with a yield of 0.5%. LJFC-CDs alleviated LPS-induced inflammation, as demonstrated by the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 and the recovery of normal body temperature. Conclusion LJFC-CDs may have an anti-inflammatory effect and a potential to alleviate fever and hypothermia caused by inflammation.
Collapse
Affiliation(s)
- Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yue Zhang
- School of Science Life, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuhan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
32
|
Zhang M, Cheng J, Zhang Y, Kong H, Wang S, Luo J, Qu H, Zhao Y. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine (Lond) 2020; 15:851-869. [PMID: 32238028 DOI: 10.2217/nnm-2019-0369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To evaluate the analgesic activity of Zingiberis rhizoma-based carbon dots (ZR-CDs). Materials & methods: Novel ZR-CDs were prepared via a facile, green pyrolysis method. Microstructure, optical and functional group properties were characterized. Acetic acid writhing, hot-plate and tail-immersion tests were performed using mice to evaluate the analgesic activity of ZR-CDs, followed by a preliminary study on the analgesic mechanism. Results: ZR-CDs with a quantum yield of 5.2% had a diameter ranging from 2.23 to 3.77 nm. Remarkable analgesic effect of ZR-CDs was observed against both thermal and chemical stimulus tests, possibly mediated by an opioid-like mechanism and the regulation of 5-hydroxytryptamine levels. Conclusion: ZR-CDs have a promising potential for biomedical application in relieving pain-related diseases.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Suna Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|