1
|
Chen S, Lai J, Chen J, Zheng L, Wang M. 3D printed gelatin/PTMC core/shell scaffolds with NIR laser-tuned drug/biomolecule release for cancer therapy and uterine regeneration. Int J Biol Macromol 2024; 283:137193. [PMID: 39500434 DOI: 10.1016/j.ijbiomac.2024.137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Surgical resection is an efficient treatment for cancerous tissues and uterine fibroids in the women uterus. However, the insufficiency of clinical interventions could result in tumor recurrence, and the defective tissues remained would cause intrauterine adhesions (IUAs) and further affect reproduction capacity. In this study, 3D printed hydrogel/poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short) core/shell scaffolds with NIR-tuned doxorubicin hydrochloride (DOX) and estradiol (E2) dual release were designed and fabricated for cancer therapy and uterine regeneration. Gelatin (Gel) and DOX were homogeneously mixed and then 3D printed to form Gel-DOX scaffolds. Gel-DOX scaffolds were then immersed in PTMC-PDA@E2 solution to fabricate Gel-DOX/PTMC-PDA@E2 core/shell scaffolds. Consequently, Gel-DOX/PTMC-PDA@E2 scaffolds could release DOX and E2 in a chronological manner, firstly delivering DOX assisted by phototherapy (PTT) to effectively kill Hela cells and then sustainably releasing E2 to promote uterine tissue regeneration. In vitro experiments showed that core/shell scaffolds exhibited excellent anticancer efficiency through the synergy of DOX release and hyperthermia ablation. Moreover, E2 could be sustainably released for over 28 days in vitro to promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). The novel Gel-DOX/PTMC-PDA@E2 core/shell scaffolds have therefore exhibited potential promise for the treatment of cancer therapy and uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jiahui Lai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Jizhuo Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong Special Administrative Region of China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Pacary A, Peurichard D, Vaysse L, Monsarrat P, Bolut C, Girel A, Guissard C, Lorsignol A, Planat-Benard V, Paupert J, Ousset M, Casteilla L. A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration. NPJ Regen Med 2024; 9:29. [PMID: 39406754 PMCID: PMC11480365 DOI: 10.1038/s41536-024-00373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively. Therefore, this work positions the computational model as a predictive tool for tissue regeneration that with further development will behave as a digital twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals.
Collapse
Affiliation(s)
- Anastasia Pacary
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Diane Peurichard
- Sorbonne Université, Inria Paris, Université de Paris, CNRS, team MUSCLEES, Laboratoire Jacques-Louis Lions, UMR7598, Paris, France
| | - Laurence Vaysse
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France
| | - Clémence Bolut
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Toulouse Research Institute of Information Technology (IRIT), UMR 5505, CNRS, UT Capitole, UT2, UT3, Toulouse INP, Toulouse, France
| | - Adeline Girel
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Christophe Guissard
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
| | - Anne Lorsignol
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Valérie Planat-Benard
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Jenny Paupert
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France.
| | - Marielle Ousset
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France.
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France.
| |
Collapse
|
3
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. EXPLORATION (BEIJING, CHINA) 2024; 4:20230141. [PMID: 39439492 PMCID: PMC11491300 DOI: 10.1002/exp.20230141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 10/25/2024]
Abstract
Scaffold-based tissue engineering provides an efficient approach for repairing uterine tissue defects and restoring fertility. In the current study, a novel trilayer tissue engineering scaffold with high similarity to the uterine tissue in structure was designed and fabricated via 4D printing, electrospinning and 3D bioprinting for uterine regeneration. Highly stretchable poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short)/thermoplastic polyurethane (TPU) polymer blend scaffolds were firstly made via 4D printing. To improve the biocompatibility, porous poly(lactic acid-co-glycolic acid) (PLGA)/gelatin methacryloyl (GelMA) fibers incorporated with polydopamine (PDA) particles were produced on PTMC/TPU scaffolds via electrospinning. Importantly, estradiol (E2) was encapsulated in PDA particles. The bilayer scaffolds thus produced could provide controlled and sustained release of E2. Subsequently, bone marrow derived mesenchymal stem cells (BMSCs) were mixed with gelatin methacryloyl (GelMA)-based inks and the formulated bioinks were used to fabricate a cell-laden hydrogel layer on the bilayer scaffolds via 3D bioprinting, forming ultimately biomimicking trilayer scaffolds for uterine tissue regeneration. The trilayer tissue engineering scaffolds thus formed exhibited a shape morphing ability by transforming from the planar shape to tubular structures when immersed in the culture medium at 37°C. The trilayer tissue engineering scaffolds under development would provide new insights for uterine tissue regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Junzhi Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Liwu Zheng
- Faculty of DentistryThe University of Hong KongSai Ying PunHong KongChina
| | - Jie Huang
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Min Wang
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
5
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
6
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Sehic E, de Miguel Gómez L, Rabe H, Thorén E, Gudmundsdottir I, Oltean M, Akouri R, Brännström M, Hellström M. Transplantation of a bioengineered tissue patch promotes uterine repair in the sheep. Biomater Sci 2024; 12:2136-2148. [PMID: 38482883 DOI: 10.1039/d3bm01912h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Innovative bioengineering strategies utilizing extracellular matrix (ECM) based scaffolds derived from decellularized tissue offer new prospects for restoring damaged uterine tissue. Despite successful fertility restoration in small animal models, the translation to larger and more clinically relevant models have not yet been assessed. Thus, our study investigated the feasibility to use a 6 cm2 graft constructed from decellularized sheep uterine tissue, mimicking a future application to repair a uterine defect in women. Some grafts were also recellularized with fetal sheep bone marrow-derived mesenchymal stem cells (SF-MSCs). The animals were followed for six weeks post-surgery during which blood samples were collected to assess the systemic immune cell activation by fluorescence-activated cell sorting (FACS) analysis. Tissue regeneration was assessed by histology, immunohistochemistry, and gene expression analyses. There was a large intra-group variance which prompted us to implement a novel scoring system to comprehensively evaluate the regenerative outcomes. Based on the regenerative score each graft received, we focused our analysis to map potential differences that may have played a role in the success or failure of tissue repair following the transplantation therapy. Notably, three out of 15 grafts exhibited major regeneration that resembled native uterine tissue, and an additional three grafts showed substantial regenerative outcomes. For the better regenerated grafts, it was observed that the systemic T-cell subgroups were significantly different compared with the failing grafts. Hence, our data suggest that the T-cell response play an important role for determining the uterus tissue regeneration outcomes. The remarkable regeneration seen in the best-performing grafts after just six weeks following transplantation provides compelling evidence that decellularized tissue for uterine bioengineering holds great promise for clinically relevant applications.
Collapse
Affiliation(s)
- Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Lucía de Miguel Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Hardis Rabe
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
- Institute of Biomedicine, Department of Infectious diseases, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Emy Thorén
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Ingigerdur Gudmundsdottir
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Stockholm IVF-EUGIN, Hammarby allé 93, 120 63 Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
| |
Collapse
|
9
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Hanuman S, Pande G, Nune M. Current status and challenges in uterine myometrial tissue engineering. Bioengineered 2023; 14:2251847. [PMID: 37665570 PMCID: PMC10478746 DOI: 10.1080/21655979.2023.2251847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
The uterus undergoes significant modifications throughout pregnancy to support embryo development and fetal growth. However, conditions like fibroids, adenomyosis, cysts, and C-section scarring can cause myometrial damage. The importance of the uterus and the challenges associated with myometrial damage, and the need for alternative approaches are discussed in this review. The review also explores the recent studies in tissue engineering, which involve principles of combining cells, scaffolds, and signaling molecules to create functional uterine tissues. It focuses on two key approaches in uterine tissue engineering: scaffold technique using decellularized, natural, and synthetic polymer and 3D bioprinting. These techniques create supportive structures for cell growth and tissue formation. Current treatment options for myometrial damage have limitations, leading to the exploration of regenerative medicine and integrative therapies. The review emphasizes the potential benefits of tissue engineering, including more effective and less invasive treatment options for myometrial damage. The challenges of developing biocompatible materials and optimizing cell growth and differentiation are discussed. In conclusion, uterine tissue engineering holds promise for myometrial regeneration and the treatment of related conditions. This review highlights the scientific advancements in the field and underscores the potential of tissue engineering as a viable approach. By addressing the limitations of current treatments, tissue engineering offers new possibilities for improving reproductive health and restoring uterine functionality. Future research shall focus on overcoming challenges and refining tissue engineering strategies to advance the field and provide effective solutions for myometrial damage and associated disorders.
Collapse
Affiliation(s)
- Srividya Hanuman
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gopal Pande
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
12
|
Lewies A, Botes L, van den Heever JJ, Dohmen PM, Smit FE. Monomeric glutaraldehyde fixation and amino acid detoxification of decellularized bovine pericardium for production of biocompatible tissue with tissue-guided regenerative potential. Heliyon 2023; 9:e19712. [PMID: 37809671 PMCID: PMC10559009 DOI: 10.1016/j.heliyon.2023.e19712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The effect of monomeric glutaraldehyde fixation and amino acid detoxification on biocompatibility and tissue-guided regenerative potential of decellularized bovine pericardium was evaluated. The degree of cross-linking, porosity, enzymatic degradation, alpha-galactosyl content, the efficacy of detoxification, and cytotoxicity towards human epithelial cells were assessed. Tissue was subcutaneously implanted for eight weeks in male juvenile Sprague-Dawley rats, and mechanical properties, host cell infiltration, and calcification were evaluated. Three groups were compared i) decellularized tissue, ii) decellularized, monomeric glutaraldehyde fixed and amino acid detoxified tissue, and iii) commercial glutaraldehyde fixed non-decellularized tissue (Glycar®) (n = 6 rats per group). The fixation process gave a high degree of cross-linking (>85%), and was resistant to enzymatic degradation, with no significant effect on porosity. The detoxification process was effective, and the tissue was not toxic to mammalian cells in vitro. Tissue from both decellularized groups had significantly higher (p < 0.05) porosity and host cell infiltration in vivo. The process mitigated calcification. A non-significant decrease in the alpha-galactosyl content was observed, which increased when including the alpha-galactosidase enzyme. Mechanical properties were maintained. The fixation and detoxification process adequately removes free aldehyde groups and reduces toxicity, preventing enzymatic degradation and allowing for host cell infiltration while mitigating calcification and retaining the mechanical properties of the tissue. This process can be considered for processing decellularized bovine pericardium with tissue-guided regeneration potential for use in cardiovascular bioprostheses; however, methods of further reducing antigenicity, such as the use of enzymes, should be investigated.
Collapse
Affiliation(s)
- Angélique Lewies
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Lezelle Botes
- Department of Health Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | | | - Pascal Maria Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Cardiac Surgery, Heart Centre Rostock, University of Rostock, Germany
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
13
|
Wang D, Charoensombut N, Kawabata K, Kimura T, Kishida A, Ushida T, Furukawa KS. Effect of Pressure Conditions in Uterine Decellularization Using Hydrostatic Pressure on Structural Protein Preservation. Bioengineering (Basel) 2023; 10:814. [PMID: 37508841 PMCID: PMC10376797 DOI: 10.3390/bioengineering10070814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Uterine regeneration using decellularization scaffolds provides a novel treatment for uterine factor infertility. Decellularized scaffolds require maximal removal of cellular components and minimal damage to the extracellular matrix (ECM). Among many decellularization methods, the hydrostatic pressure (HP) method stands out due to its low cytotoxicity and superior ECM preservation compared to the traditional detergent methods. Conventionally, 980 MPa was utilized in HP decellularization, including the first successful implementation of uterine decellularization previously reported by our team. However, structural protein denaturation caused by exceeding pressure led to a limited regeneration outcome in our previous research. This factor urged the study on the effects of pressure conditions in HP methods on decellularized scaffolds. The authors, therefore, fabricated a decellularized uterine scaffold at varying pressure conditions and evaluated the scaffold qualities from the perspective of cell removal and ECM preservation. The results show that by using lower decellularization pressure conditions of 250 MPa, uterine tissue can be decellularized with more preserved structural protein and mechanical properties, which is considered to be promising for decellularized uterine scaffold fabrication applications.
Collapse
Affiliation(s)
- Dongzhe Wang
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Narintadeach Charoensombut
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kinyoshi Kawabata
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuko S Furukawa
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Yoshimasa Y, Takao T, Katakura S, Tomisato S, Masuda H, Tanaka M, Maruyama T. A Decellularized Uterine Endometrial Scaffold Enhances Regeneration of the Endometrium in Rats. Int J Mol Sci 2023; 24:7605. [PMID: 37108764 PMCID: PMC10145056 DOI: 10.3390/ijms24087605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Partial or whole regeneration of the uterine endometrium using extracellular matrix (ECM)-based scaffolds is a therapeutic strategy for uterine infertility due to functional and/or structural endometrial defects. Here, we examined whether the entire endometrium can be regenerated circumferentially using an acellular ECM scaffold (decellularized endometrial scaffold, DES) prepared from rat endometrium. We placed a silicone tube alone to prevent adhesions or a DES loaded with a silicone tube into a recipient uterus in which the endometrium had been surgically removed circumferentially. Histological and immunofluorescent analyses of the uteri one month after tube placement revealed more abundant regenerated endometrial stroma in the uterine horns treated with tube-loaded DES compared to those treated with a tube alone. Luminal and glandular epithelia, however, were not fully recapitulated. These results suggest that DES can enhance the regeneration of endometrial stroma but additional intervention(s) are needed to induce epithelization. Furthermore, the prevention of adhesions alone allowed the endometrial stroma to regenerate circumferentially even without a DES, but to a lesser degree than that with a DES. The use of a DES together with the prevention of adhesions may be beneficial for efficient endometrial regeneration in the uterus that is largely deficient of endometrium.
Collapse
Affiliation(s)
- Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Obstetrics and Gynecology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- HM Ladies Clinic Ginza, 3-4-16 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
16
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. SEPARATIONS 2023. [DOI: 10.3390/separations10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to establish a collagen determination method based on an isotope-labeled collagen peptide as an internal reference via high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS), and using the established method to evaluate the degradation process of collagen-based implants in vivo. The specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer. Then, the quantification method based on the peptide detection with HPLC-MS/MS was established and validated, and then further used to analyze the degradation trend of the collagen sponge and acellular matrix (ACM) in vivo at 2, 4, 6, 8, 12, 16, and 18 weeks after implantation. The results indicate that the relative standard deviation (RSD) of the detection precision and repeatability of the peptide-based HPLC-MS/MS quantification method were 3.55% and 0.63%, respectively. The limitations of quantification and detection were 2.05 × 10−3 μg/mL and 1.12 × 10−3 μg/mL, respectively. The collagen sponge and ACM were completely degraded at 10 weeks and 18 weeks, respectively. Conclusion: A specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer, and a standardized HPLC-MS/MS-based internal reference method for the quantification of bovine type I collagen was established. The method can be used for the analysis of the degradation of collagen-based implants in vivo.
Collapse
|
18
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
19
|
Nicholls DL, Rostami S, Karoubi G, Haykal S. Perfusion decellularization for vascularized composite allotransplantation. SAGE Open Med 2022; 10:20503121221123893. [PMID: 36120388 PMCID: PMC9478687 DOI: 10.1177/20503121221123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
Vascularized composite allotransplantation is becoming the emerging standard for reconstructive surgery treatment for patients with limb trauma and facial injuries involving soft tissue loss. Due to the complex immunogenicity of composite grafts, patients who undergo vascularized composite allotransplantation are reliant on lifelong immunosuppressive therapy. Decellularization of donor grafts to create an extracellular matrix bio-scaffold provides an immunomodulatory graft that preserves the structural and bioactive function of the extracellular matrix. Retention of extracellular matrix proteins, growth factors, and signaling cascades allow for cell adhesion, migration, proliferation, and tissue regeneration. Perfusion decellularization of detergents through the graft vasculature allows for increased regent access to all tissue layers, and removal of cellular debris through the venous system. Grafts can subsequently be repopulated with appropriate cells through the vasculature to facilitate tissue regeneration. The present work reviews methods of decellularization, process parameters, evaluation of adequate cellular and nuclear removal, successful applications of perfusion decellularization for use in vascularized composite allotransplantation, and current limitations.
Collapse
Affiliation(s)
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Mechanical and Industrial Engineering and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Origin of critical nature and stability enhancement in collagen matrix based biomaterials: Comprehensive modification technologies. Int J Biol Macromol 2022; 216:741-756. [PMID: 35908679 DOI: 10.1016/j.ijbiomac.2022.07.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 02/08/2023]
Abstract
Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved. The establishment of covalent bonds among collagen noumenon has been verified assuringly to have pregnant influences on its physicochemical properties and biological properties, enlightening to discuss the disparate modification technologies on specific effects on the multihierarchical structures and pivotal performances of collagen. In this review, various existing modification methods were classified from a new perspective, scilicet whether to introduce exogenous substances, to reveal the basic scientific theories of collagen modification. Understanding the role of modification technologies in the enhancement of collagen performance is crucial for developing novel collagen-based biomaterials. Moreover, the different modification effects caused by the interaction sites between the modifier and collagen, and the structure-activity relationship between the structure of the modifier and the properties of collagen were reviewed.
Collapse
|
21
|
Kong Y, Xu J, Han Q, Zheng T, Wu L, Li G, Yang Y. Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol 2022; 209:1867-1881. [PMID: 35489621 DOI: 10.1016/j.ijbiomac.2022.04.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The composition and spatial structure of bioscaffold materials are essential for constructing tissue regeneration microenvironments. In this study, by using an electrospinning technique without any other additives, we successfully developed pure porcine decellularized nerve matrix (xDNME) conduits. The developed xDNME was composed of an obvious decellularized matrix fiber structure and effectively retained the natural components in the decellularized matrix of the nerve tissue. The xDNME conduit exhibited superior biocompatibility and the ability to overcome inter-species barriers. In vivo, after 12 weeks of implantation, xDNME significantly promoted the regeneration of rat sciatic nerve. The regenerated nerve fibers completely connected the two ends of the nerve defect, which were about 8 mm apart. The xDNME and xDNME-OPC groups showed myelin structures in the regenerated nerve fibers. In the xDNME group, the average thickness of the regenerated myelin sheath was 0.640 ± 0.013 μm, which was almost comparable to that in the autologous nerve group (0.646 ± 0.017 μm). Electrophysiological experiments revealed that both of the regenerated nerve fibers in the xDNME and xDNME-OPC groups had excellent abilities to transmit electrical signals. Respectively, the average conduction velocities of xDNME and xDNME-OPC were 8.86 ± 3.57 m/s and 6.99 ± 3.43 m/s. In conclusion, the xDNME conduits have a great potential for clinical treatment of peripheral nerve injuries, which may clinically transform peripheral nerve related regenerative medicine.
Collapse
Affiliation(s)
- Yan Kong
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiawei Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yumin Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
22
|
Du A, Liu D, Zhang W, Wang X, Chen S. Genipin-crosslinked decellularized scaffold induces regeneration of defective rat kidneys. J Biomater Appl 2022; 37:415-428. [DOI: 10.1177/08853282221104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: The purpose of this study was to improve the performance of decellularized renal scaffolds by the genipin crosslinking method to facilitate the regeneration of tissues and cells and provide better conditions for the regeneration and repair of defective kidneys. Methods: SD rats were randomly divided into three groups: normal group, uncrosslinked scaffold group and genipin-crosslinked scaffold group. Hematoxylin eosin, Masson and immunofluorescence staining was used to observe the histomorphological characteristics of the kidneys in each group. The preservation of the renal vascular structure in the three groups was observed by vascular casting. A collagenase degradation assay was used to detect the antidegradation ability of the kidney in the three groups. CCK8 assays were used to test the in vitro biocompatibility of the scaffolds. The lower 1/3 of the rat left kidney was excised, and the defect was filled with decellularized renal scaffolds to observe the effect of scaffold implantation on the regenerative ability of the defective kidney. Results: Histological images showed that the genipin-crosslinked scaffold did not destroy the structure of the scaffold, and the collagen fibers in the scaffold was more regular, and the outline of the glomerulus was clearer than uncrosslinked scaffold. The results of casting showed that the vascular structure of genipin-crosslinked scaffold was still intact. The anti-degradation ability test showed that the anti-degradation ability of genipin-crosslinked scaffold was significantly higher than that of the uncrosslinked scaffold. Cell culture experiments showed that the genipin-crosslinked scaffold had no cytotoxicity and promoted cell proliferation to some extent. In vivo scaffold transplantation experiments further demonstrated that the genipin-crosslinked scaffold had better anti-degradation and anti-inflammatory ability. Conclusion: Genipin-crosslinked rat kidney scaffold complemented kidney defects in rats can enhance scaffold-induced kidney regeneration and repair.
Collapse
Affiliation(s)
- Aoling Du
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- School of Basic Medicine, Xiangnan University, Chenzhou, China
| | - Wenhui Zhang
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| | | | - Shenghua Chen
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| |
Collapse
|
23
|
Decellularized Organ-Derived Scaffold Is a Promising Carrier for Human Induced Pluripotent Stem Cells-Derived Hepatocytes. Cells 2022; 11:cells11081258. [PMID: 35455938 PMCID: PMC9025569 DOI: 10.3390/cells11081258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for elucidating disease pathology and therapy. The mass supply of hiPSC-derived cells is technically feasible. Carriers that can contain a large number of hiPSC-derived cells and evaluate their functions in vivo-like environments will become increasingly important for understanding disease pathogenesis or treating end-stage organ failure. hiPSC-derived hepatocyte-like cells (hiPSC-HLCs; 5 × 108) were seeded into decellularized organ-derived scaffolds under circumfusion culture. The scaffolds were implanted into immunodeficient microminiature pigs to examine their applicability in vivo. The seeded hiPSC-HLCs demonstrated increased albumin secretion and up-regulated cytochrome P450 activities compared with those in standard two-dimensional culture conditions. Moreover, they showed long-term survival accompanied by neovascularization in vivo. The decellularized organ-derived scaffold is a promising carrier for hiPSC-derived cells for ex vivo and in vivo use and is an essential platform for regenerative medicine and research.
Collapse
|
24
|
Francés-Herrero E, Rodríguez-Eguren A, Gómez-Álvarez M, de Miguel-Gómez L, Ferrero H, Cervelló I. Future Challenges and Opportunities of Extracellular Matrix Hydrogels in Female Reproductive Medicine. Int J Mol Sci 2022; 23:3765. [PMID: 35409119 PMCID: PMC8998701 DOI: 10.3390/ijms23073765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioengineering and reproductive medicine have progressed shoulder to shoulder for several decades. A key point of overlap is the development and clinical translation of technologies to support reproductive health, e.g., scaffold-free constructs, polymeric scaffolds, bioprinting or microfluidics, and hydrogels. Hydrogels are the focus of intense study, and those that are derived from the extracellular matrix (ECM) of reproductive tissues and organs are emerging as promising new players given their results in pre-clinical models. This literature review addresses the recent advances in the use of organ-specific ECM hydrogels in reproductive medicine, considering the entire female reproductive tract. We discuss in-depth papers describing the development of ECM hydrogels, their use in in vitro models, and their in vivo application in preclinical studies. We also summarize the functions of hydrogels, including as grafts, carriers for cell transplantation, or drug depots, and present the potential and possible scope for use of ECM hydrogels in the near future based on recent scientific advances.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Adolfo Rodríguez-Eguren
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - María Gómez-Álvarez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Lucía de Miguel-Gómez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Hortensia Ferrero
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Irene Cervelló
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
25
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
26
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
27
|
Functional survey of decellularized tissues transplantation for infertile females. Cell Tissue Bank 2021; 23:407-415. [PMID: 34806123 DOI: 10.1007/s10561-021-09979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Numbers of women worldwide face infertility, which will have a significant impact on a couple's life. As a result, assisting with the treatment of these individuals is seen as a critical step. Successful births following uterus and ovary donation have been reported in recent. When immunosuppressive drugs are used in patients who receive donated tissues, there are always problems with the drugs' side effects. In recent years, tissue engineering has mainly been successful in treating infertility using decellularization techniques. Engineered uterus and ovary prevent immunological reactions and do not require immunosuppressive drugs. The most important aspect of using decellularized tissue is its proper function after transplantation. These tissues must be able to produce follicles, secrete hormones and cause pregnancy. This study aimed to investigate research on decellularized tissues and transplanted into the female reproductive system. In this study, just tissues that, after transplantation, have the proper function for fertility were investigated.
Collapse
|
28
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
29
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
30
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
31
|
Sargazi Z, Zavareh S, Jafarabadi M, Salehnia M. An efficient protocol for decellularization of the human endometrial fragments for clinical usage. Prog Biomater 2021; 10:119-130. [PMID: 34021494 DOI: 10.1007/s40204-021-00156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022] Open
Abstract
The present study was aimed to compare different decellularization protocols for human endometrial fragments. The freeze-thaw cycles in combination with treatment by Triton X-100 and four concentrations of sodium dodecyl sulfate (SDS; 0.1, 0.5, 1, and 1.5%) with two exposure times (24 and 72 h) were applied for tissues decellularization. After analysis the morphology and DNA content of tissues the group with better morphology and lower DNA content was selected for further assessments. The nucleus by Acridine orange and extracellular matrix (ECM) using Masson's trichrome, Alcian blue, and periodic acid-Schiff staining were studied. The amount of tissues collagen types I and IV, fibronectin, glycosaminoglycans (GAGs), and elastin was analyzed by Raman spectroscopy. The ultrastructure and porosity of decellularized scaffold were studied by scanning electron microscopy (SEM). The MTT assay was applied for assessments of cytotoxicity of scaffold. The treated group with 1% SDS for 72 h showed the morphology similar to native control in having the minimum level of DNA and well preserved ECM. Raman spectroscopy results demonstrated, the amount of collagen types I and IV, GAG, and fibronectin was not significantly different in decellularized scaffold compared with native group but the elastin protein level was significantly decreased (P < 0.001). SEM micrographs also showed a porous and fiber rich ECM in decellularized sample similar to the native control. This combined protocol for decellularization of human endometrial tissue is effective and it could be suitable for recellularization and clinical applications in the future.
Collapse
Affiliation(s)
- Zinat Sargazi
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | - Mina Jafarabadi
- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran.
| |
Collapse
|
32
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
33
|
Li X, Lv HF, Zhao R, Ying MF, Samuriwo A, Zhao YZ. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio 2021; 11:100101. [PMID: 34036261 PMCID: PMC8138682 DOI: 10.1016/j.mtbio.2021.100101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesions (IUAs) refer to the repair disorder after endometrial injury and may lead to uterine infertility, recurrent miscarriage, abnormal menstrual bleeding, and other obstetric complications. It is a pressing public health issue among women of childbearing age. Presently, there are limited clinical treatments for IUA, and there is no sufficient evidence that these treatment modalities can effectively promote regeneration after severe endometrial injury or improve pregnancy outcome. The inhibitory pathological micro-environment is the main factor hindering the repair of endometrial damaged tissues. To address this, tissue engineering and regenerative medicine have been achieving promising developments. Particularly, biomaterials have been used to load stem cells or therapeutic factors or construct an in situ delivery system as a treatment strategy for endometrial injury repair. This article comprehensively discusses the characteristics of various bio-scaffold materials and their application as stem cell or therapeutic factor delivery systems constructed for uterine tissue regeneration.
Collapse
Key Words
- Asherman's syndrome/endometrium regeneration
- BMNCs, autologous bone marrow mononuclear cells
- BMSCs, bone marrow mesenchymal stem cells
- Biological scaffold material
- D&C, Dilatation and curettage
- ECM, extracellular matrix
- En-PSC, endometrial perivascular cells
- IUA, Intrauterine adhesions
- KGF, Keratinocyte growth factor
- MSC-Sec, Mesenchymal stem cell-secretome
- SDF-1α, stromal cell-derived factor-1α
- Scaffold-based therapeutics delivery systems
- Stem cell
- Therapeutic factor
- UCMSCs, umbilical cord derived mesenchymal stem cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factors
- dEMSCs, endometrial stromal cells
- hESCs, human embryonic stem cells
Collapse
Affiliation(s)
- X. Li
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - H.-F. Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
- Corresponding author.
| | - R. Zhao
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - M.-f. Ying
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - A.T. Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Y.-Z. Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding author.
| |
Collapse
|
34
|
Zhang Y, Chen Y, Zhao B, Gao J, Xia L, Xing F, Kong Y, Li Y, Zhang G. Detection of Type I and III collagen in porcine acellular matrix using HPLC-MS. Regen Biomater 2020; 7:577-582. [PMID: 33365143 PMCID: PMC7748446 DOI: 10.1093/rb/rbaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acellular matrix (ACM) has been widely used as a biomaterial. As the main component of ACM, collagen type and content show influence on the material properties. In this research, the collagen in ACM from different tissues of pig were determined by detection of marker peptides. The marker peptides of Type I and III collagen were identified from the digested collagen standards using ions trap mass spectrometry (LCQ). The relationship between the abundance of marker peptide and collagen concentration was established using triple quadrupole mass spectrometer (TSQ). The contents of Type I and III collagen in ACM from different tissues were determined. The method was further verified by hydroxyproline determination. The results showed that, the sum of Type I and III collagen contents in the ACM from small intestinal submucosa, dermis and Achilles tendon of pig were about 87.59, 81.41 and 61.13%, respectively, which were close to the total collagen contents in these tissues. The results proved that this method could quantitatively detect the collagen with different types in the ACM of various tissues.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yi Chen
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Leilei Xia
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yongchao Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| |
Collapse
|
35
|
Wu Y, Li Z, Ji Y, Lu R. Experimental study of rheological properties of solid propellant slurry at low‐shear rate and numerical simulation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yue Wu
- College of Chemical EngineeringInner Mongolia University of Technology Hohhot China
| | - Zhuo Li
- College of ScienceInner Mongolia University of Technology Hohhot China
| | - Yong‐chao Ji
- College of ScienceInner Mongolia University of Technology Hohhot China
| | - Rong Lu
- China Aerospace Science & Industry Corporation Hohhot China
| |
Collapse
|
36
|
Rajab TK, O’Malley TJ, Tchantchaleishvili V. Decellularized scaffolds for tissue engineering: Current status and future perspective. Artif Organs 2020; 44:1031-1043. [DOI: 10.1111/aor.13701] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Thomas J. O’Malley
- Division of Cardiac Surgery Thomas Jefferson University Philadelphia PA USA
| | | |
Collapse
|
37
|
Yao Q, Zheng YW, Lan QH, Wang LF, Huang ZW, Chen R, Yang Y, Xu HL, Kou L, Zhao YZ. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment. Eur J Pharm Sci 2020; 148:105316. [PMID: 32201342 DOI: 10.1016/j.ejps.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial stromal replaced with fibrous tissue during the trauma or operation induced injury. Current clinic IUA management mainly involves surgical removal of the connective tissues and physical separation and often results in reoccurrence. It is of clinic interest to directly address the issue via facilitating the endometrial repair and thereby inhibiting the formation of re-adhesion. To this end, we designed a nanocomposite aloe/poloxamer hydrogel for β-estradiol (E2) intrauterine delivery to exert multi-therapeutic effects and promote endometrial regeneration for IUA treatment. Nanoparticulate decellularized uterus (uECMNPs) was prepared to encapsulate E2 (E2@uECMNPs), which improved the solubility and prolonged cargo release. Then, E2@uECMNPs were further embedded into the thermosensitive aloe-poloxamer hydrogel (E2@uECMNPs/AP). Multiple components from E2@uECMNPs/AP system could collectively promote proliferation and inhibit apoptosis of endometrial stromal cells. E2@uECMNPs/AP significantly increased morphological recovery and decreased uterine fibrosis rate compared with IUA rats in other groups in vivo. Additionally, the levels of Ki67, cytokeratin, and estrogen receptor β were all up-regulated, along with the decreased expression of TGF-β1 and TNF-α in the uterus from rats receiving E2@uECMNPs/AP therapy. Taken together, in situ administration of E2@uECMNPs/AP hydrogel could effectively promote endometrial regeneration and prevent the re-adhesion.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Li-Fen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Zhi-Wei Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Rui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|