1
|
Sharma D, Chakraborty S. RNA editing sites and triplet usage in exomes of bat RNA virus genomes of the family Paramyxoviridae. Microb Pathog 2024; 194:106796. [PMID: 39025379 DOI: 10.1016/j.micpath.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
2
|
Huang M, Mark A, Pham J, Vera K, Saravia-Butler AM, Beheshti A, Jiang Q, Fisch KM. RNA editing regulates host immune response and T cell homeostasis in SARS-CoV-2 infection. PLoS One 2024; 19:e0307450. [PMID: 39178184 PMCID: PMC11343423 DOI: 10.1371/journal.pone.0307450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/04/2024] [Indexed: 08/25/2024] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing by ADAR1 has been implicated in maintaining self-tolerance, preventing autoimmunity, and mediating antiviral immunity. Foreign viral double-stranded RNA triggers rapid interferon response and activates ADAR1 in the host immune system. Emerging data points to a role of ADAR1 A-to-I editing in the inflammatory response associated with severe COVID-19 disease. We identify A-to-I editing events within human whole transcriptome data from SARS-CoV-2 infected individuals, non-infected individuals, and individuals with other viral illnesses from nasopharyngeal swabs. High levels of RNA editing in host cells are associated with low SARS-CoV-2 viral load (p = 9.27 E-06), suggesting an inhibitory effect of ADAR1 on viral infection. Additionally, we find differentially expressed genes associated with RNA-modifications and interferon response. Single cell RNA-sequencing analysis of SARS-CoV-2 infected nasopharyngeal swabs reveals that cytotoxic CD8 T cells upregulate ADAR1 in COVID-19 positive samples (p = 0.0269). We further reveal ADAR1 expression increases with CD4 and CD8 T cell activation, and knockdown of ADAR1 leads to apoptosis and aberrant IL-2 secretion. Together, our data suggests A-to-I RNA editing is required to maintain healthy homeostasis of activated T cells to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Molly Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Adam Mark
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Jessica Pham
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karina Vera
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Amanda M. Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- COVID-19 International Research Team, Medford, Massachusetts, United States of America
| | - Qingfei Jiang
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Delgado S, Somovilla P, Ferrer-Orta C, Martínez-González B, Vázquez-Monteagudo S, Muñoz-Flores J, Soria ME, García-Crespo C, de Ávila AI, Durán-Pastor A, Gadea I, López-Galíndez C, Moran F, Lorenzo-Redondo R, Verdaguer N, Perales C, Domingo E. Incipient functional SARS-CoV-2 diversification identified through neural network haplotype maps. Proc Natl Acad Sci U S A 2024; 121:e2317851121. [PMID: 38416684 PMCID: PMC10927536 DOI: 10.1073/pnas.2317851121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.
Collapse
Affiliation(s)
- Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid28031, Spain
| | - Pilar Somovilla
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Cristina Ferrer-Orta
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Sergi Vázquez-Monteagudo
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | | | - María Eugenia Soria
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Carlos García-Crespo
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Ana Isabel de Ávila
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en retrovirus, Centro Nacional de Microbiología, Instituto de salud Carlos III, Majadahonda28222, Spain
| | - Federico Moran
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL60611
| | - Nuria Verdaguer
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Esteban Domingo
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| |
Collapse
|
4
|
Vats G, Sharma V, Noorani S, Rani A, Kaushik N, Kaushik A, Kala D, Nagraik R, Srivastava A, Gupta S, Singh B, Kaushal A, Walia Y, Dhir S. Apple stem grooving capillovirus
: pliant pathogen and its potential as a tool in functional genomics and effective disease management. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2024; 57:261-295. [DOI: 10.1080/03235408.2024.2359948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Gourav Vats
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Vasudha Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Asha Rani
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naveen Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Amit Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Adjunct faculty, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan Himachal Pradesh, India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Department of Entomology and Plant Pathology, Division of Agriculture, University of AR System, Fayetteville, Arkansas, USA
| | - Shagun Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Bharat Singh
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Yashika Walia
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Sunny Dhir
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
5
|
Mattiuz G, Di Giorgio S, Conticello SG. An elusive debate on the evidence for RNA editing in SARS-CoV-2. RNA Biol 2024; 21:1-2. [PMID: 38426405 PMCID: PMC10913694 DOI: 10.1080/15476286.2024.2321032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Salvatore Di Giorgio
- German Cancer Research Center (DKFZ) - Division of Immune Diversity, Foundation under Public Law, Heidelberg, Germany
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
6
|
Kurkowiak M, Fletcher S, Daniels A, Mozolewski P, Silvestris DA, Król E, Marek-Trzonkowska N, Hupp T, Tait-Burkard C. Differential RNA editing landscapes in host cell versus the SARS-CoV-2 genome. iScience 2023; 26:108031. [PMID: 37876814 PMCID: PMC10590966 DOI: 10.1016/j.isci.2023.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Infection Medicine, University of Edinburgh, Little France Crescent, UK
| | - Paweł Mozolewski
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Cell Signalling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
7
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
8
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Laxminarayana D. Perceptions into causes and consequences of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants. RHEUMATOLOGY & AUTOIMMUNITY 2023; 3:1-8. [DOI: 10.1002/rai2.12065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 01/02/2025]
Abstract
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants are emerging worldwide and pathogenicity varies widely from no symptoms to death. The SARS‐CoV‐2 is evolving as lineages like Alpha, Beta, Gamma, Epsilon, Iota, Delta, and Omicron in the course of time. The main reasons for such viral evolution are (a) the imperfect nature of SARS‐CoV‐2 RNA polymerase, and viral exonuclease mediated proofreading functions resulting in the generation of mutations in viral genomes; (b) fusions of the 5′ leader sequence to unexpected 3′ sites, and transcription regulatory sequences (TRSs) in subgenomic RNAs (sgRNAs), which result in the generation of structural variants and novel open reading frames; (c) these viruses are combated by the host type I interferons (IFNs). In such a process IFNs upregulate viral RNA editing APOBEC3G/F and ADAR1 genes, which induce mutations in viral genomes. These factors play important roles in causing viral evolution and the emergence of more efficient SARS‐CoV‐2 genomes, which escape the host immune defense system, and vaccine‐elicited antibodies and impede therapeutic strategies. The main challenges we now face are how to control future SARS‐CoV‐2 evolution, the elimination of their deleterious side effects, and the onset of new diseases as aftermaths of SARS‐CoV‐2 infections. Preventive measures like (a) the development of broadly neutralizing antibodies and novel vaccines, therapies based on genomics and proteomics data will help in avoiding, and/or minimizing SARS‐CoV‐2 infections; (b) targeted therapies, application of patient‐based precision medicine methodology can help in achieving the goal and avoiding unwanted deleterious side effects and the onset of SARS‐CoV‐2 infections mediated several diseases in future.
Collapse
|
10
|
Laxminarayana D. Molecular insights into onset of autoimmunity in SARS-CoV-2 infected patients. RHEUMATOLOGY & AUTOIMMUNITY 2022; 2:198-202. [PMID: 36714799 PMCID: PMC9874720 DOI: 10.1002/rai2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Some of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients are facing long-term devastating effects like induction of autoimmune diseases. Here, I discuss molecular mechanisms and risk factors involved in the induction of autoimmune diseases after SARS-CoV-2 infections. Transcript editing genes were upregulated during SARS-CoV-2 infections, which might have edited host gene transcripts and paved the way for autoantigens generation and presented as nonself to generate autoantibodies followed by auto immunogenicity after SARS-CoV-2 infections. Therefore, some SARS-CoV-2 patients acquire autoimmunity. The transient and/or innocuous autoimmune response in some SARS-CoV-2 infected patients may be due to a lack of repeated production of autoantibodies to host autoantigens and/or viral antigens, which are needed to boost autoimmune response. In the future, SARS-CoV-2 mediated autoimmune disease onset will be a challenging task. Therefore, possible preventive measures and strategies to minimize and/or preclude such SARS-CoV-2 mediated autoimmune diseases have been presented in this commentary.
Collapse
|
11
|
Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:ijms232314654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
|
12
|
Wassenaar TM, Wanchai V, Buzard G, Ussery DW. The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiol Rev 2022; 46:fuac003. [PMID: 35076068 PMCID: PMC9075578 DOI: 10.1093/femsre/fuac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.
Collapse
Affiliation(s)
- Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 772205, USA
| | | | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 772205, USA
| |
Collapse
|
13
|
Martignano F, Di Giorgio S, Mattiuz G, Conticello SG. Commentary on "Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2". J Appl Genet 2022; 63:423-428. [PMID: 35279801 PMCID: PMC8917825 DOI: 10.1007/s13353-022-00688-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Analysis of the SARS-CoV-2 transcriptome has revealed a background of low-frequency intra-host genetic changes with a strong bias towards transitions. A similar pattern is also observed when inter-host variability is considered. We and others have shown that the cellular RNA editing machinery based on ADAR and APOBEC host-deaminases could be involved in the onset of SARS-CoV-2 genetic variability. Our hypothesis is based both on similarities with other known forms of viral genome editing and on the excess of transition changes, which is difficult to explain with errors during viral replication. Zong et al. criticize our analysis on both conceptual and technical grounds. While ultimate proof of an involvement of host deaminases in viral RNA editing will depend on experimental validation, here, we address the criticism to suggest that viral RNA editing is the most reasonable explanation for the observed intra- and inter-host variability.
Collapse
Affiliation(s)
- F Martignano
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy
| | - S Di Giorgio
- German Cancer Research Center (DKFZ), Division of Immune Diversity, Foundation Under Public Law, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - G Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Firenze, Italy
| | - S G Conticello
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy.
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy.
| |
Collapse
|
14
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos R, Cortón M, López-Rodríguez R, García-Crespo C, Gallego I, de Ávila AI, Gómez J, Enjuanes L, Salar-Vidal L, Esteban J, Fernandez-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiol Spectr 2022; 10:e0022122. [PMID: 35348367 PMCID: PMC9045161 DOI: 10.1128/spectrum.00221-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19. IMPORTANCE The study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low-frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, Madrid, Spain
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ricardo Fernandez-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
15
|
Quer J, Colomer-Castell S, Campos C, Andrés C, Piñana M, Cortese MF, González-Sánchez A, Garcia-Cehic D, Ibáñez M, Pumarola T, Rodríguez-Frías F, Antón A, Tabernero D. Next-Generation Sequencing for Confronting Virus Pandemics. Viruses 2022; 14:600. [PMID: 35337007 PMCID: PMC8950049 DOI: 10.3390/v14030600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Virus pandemics have happened, are happening and will happen again. In recent decades, the rate of zoonotic viral spillover into humans has accelerated, mirroring the expansion of our global footprint and travel network, including the expansion of viral vectors and the destruction of natural spaces, bringing humans closer to wild animals. Once viral cross-species transmission to humans occurs, transmission cannot be stopped by cement walls but by developing barriers based on knowledge that can prevent or reduce the effects of any pandemic. Controlling a local transmission affecting few individuals is more efficient that confronting a community outbreak in which infections cannot be traced. Genetic detection, identification, and characterization of infectious agents using next-generation sequencing (NGS) has been proven to be a powerful tool allowing for the development of fast PCR-based molecular assays, the rapid development of vaccines based on mRNA and DNA, the identification of outbreaks, transmission dynamics and spill-over events, the detection of new variants and treatment of vaccine resistance mutations, the development of direct-acting antiviral drugs, the discovery of relevant minority variants to improve knowledge of the viral life cycle, strengths and weaknesses, the potential for becoming dominant to take appropriate preventive measures, and the discovery of new routes of viral transmission.
Collapse
Affiliation(s)
- Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (C.C.); (D.G.-C.); (M.I.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), UAB Campus, Plaça Cívica, 08193 Bellaterra, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (C.C.); (D.G.-C.); (M.I.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (C.C.); (D.G.-C.); (M.I.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
| | - Cristina Andrés
- Microbiology Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (C.A.); (M.P.); (A.G.-S.); (T.P.)
| | - Maria Piñana
- Microbiology Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (C.A.); (M.P.); (A.G.-S.); (T.P.)
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
- Clinical Biochemistry Research Group, Biochemistry Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Alejandra González-Sánchez
- Microbiology Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (C.A.); (M.P.); (A.G.-S.); (T.P.)
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (C.C.); (D.G.-C.); (M.I.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
| | - Marta Ibáñez
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (C.C.); (D.G.-C.); (M.I.)
| | - Tomàs Pumarola
- Microbiology Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (C.A.); (M.P.); (A.G.-S.); (T.P.)
- Microbiology Department, Universitat Autònoma de Barcelona (UAB), UAB Campus, Plaça Cívica, 08193 Bellaterra, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), UAB Campus, Plaça Cívica, 08193 Bellaterra, Spain
- Clinical Biochemistry Research Group, Biochemistry Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Andrés Antón
- Microbiology Department, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (C.A.); (M.P.); (A.G.-S.); (T.P.)
- Microbiology Department, Universitat Autònoma de Barcelona (UAB), UAB Campus, Plaça Cívica, 08193 Bellaterra, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.F.C.); (F.R.-F.); (D.T.)
- Microbiology Departments, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
16
|
Wu L, Wang D. The "Janus-like" RNA-editing machinery in innate antiviral immunity. CURRENT TRENDS IN IMMUNOLOGY 2022; 23:23-32. [PMID: 36398055 PMCID: PMC9668064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Our innate immune systems are evolved to provide the first line of immune defense against microbial infections. A key effector component is the adenosine deaminase acting on the RNA-1 (ADAR-1)/interferon (IFN) pathway of the innate cytoplasmic immunity that mounts rapid responses to many viral pathogens. As an RNA-editing enzyme, ADAR-1 targets viral RNA intermediates in the cytoplasmic compartment to interfere with the infection. However, ADAR-1 may also edit characteristic RNA structures of certain host genes, notably, the 5-hydroxytryptamine (serotonin) receptor 2C (5-HT2CR). Dysfunction of 5-HT2CR has been linked to the pathology of several human mental conditions, such as Schizophrenia, anxiety, bipolar disorder, major depression, and the mental illnesses of substance use disorders (SUD). Thus, the ADAR-1-mediated RNA editing may be either beneficial or harmful; these effects need to be tightly modulated to sustain innate antiviral immunity while restricting undesired off-target self-reactivity. In this communication, we discuss ideas and tools to identify the orphan drug candidates, including small molecules and biologics that may serve as effective modulators of the ADAR-1/IFN innate immunity and are thereby promising for use in treating or preventing SUD- and/or viral infection-associated mental illnesses.
Collapse
Affiliation(s)
- Lisa Wu
- Tumor Glycomics Laboratory, SRI International Biosciences, 333 Ravenswood Ave., Menlo Park, CA, USA
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences, 333 Ravenswood Ave., Menlo Park, CA, USA
| |
Collapse
|