1
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
3
|
Meng JN, Xu ZK, Li PR, Zeng X, Liu Y, Xu ZL, Wang J, Ding Y, Shen X. Universal and Naked-Eye Diagnostic Platform for Emetic Bacillus cereus Based on RPA-Assisted CRISPR/Cas12a. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8823-8830. [PMID: 38578074 DOI: 10.1021/acs.jafc.3c06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng μL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.
Collapse
Affiliation(s)
- Jing-Nan Meng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ke Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng-Ru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Amanzholova M, Shaizadinova A, Bulashev A, Abeldenov S. Genetic identification of Staphylococcus aureus isolates from cultured milk samples of bovine mastitis using isothermal amplification with CRISPR/Cas12a-based molecular assay. Vet Res Commun 2024; 48:291-300. [PMID: 37673833 DOI: 10.1007/s11259-023-10212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Bovine mastitis, a common and costly disease in dairy cattle, is primarily caused by Staphylococcus aureus. Timely and accurate detection of this pathogen is crucial for effective disease management. In this study, we developed and validated a novel molecular diagnostic assay based on the CRISPR/Cas12a system coupled with Recombinase Polymerase Amplification (RPA) and Loop-Mediated Isothermal Amplification (LAMP). We utilized specific primers targeting the nucleotide sequences of the S.aureus genes of interest, such as nuc and sea. RPA/LAMP reactions were performed under optimized conditions, and the resulting products were subsequently subjected to CRISPR/Cas12a detection. The CRISPR/Cas12a assay successfully detected the target nuc and sea genes, with a limit of detection of 104 and 102 gene copies per reaction, respectively. All 13 S.aureus clinical isolates were identified by RPA-CRISPR/Cas12a assay. The total reaction time is approximately 1 h. The assay demonstrated high sensitivity for the detection of S.aureus in both laboratory and clinical samples.
Collapse
Affiliation(s)
- Meruyert Amanzholova
- National Center for Biotechnology, Astana, 010000, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Aisha Shaizadinova
- National Center for Biotechnology, Astana, 010000, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aitbay Bulashev
- S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan
| | - Sailau Abeldenov
- National Center for Biotechnology, Astana, 010000, Kazakhstan.
- S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.
| |
Collapse
|
5
|
Bothra A, Perry ML, Wei E, Moayeri M, Ma Q, Biamonte MA, Siirin M, Leppla SH. S9.6-based hybrid capture immunoassay for pathogen detection. Sci Rep 2023; 13:22562. [PMID: 38110611 PMCID: PMC10728093 DOI: 10.1038/s41598-023-49881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The detection of pathogens is critical for clinical diagnosis and public health surveillance. Detection is usually done with nucleic acid-based tests (NATs) and rapid antigen tests (e.g., lateral flow assays [LFAs]). Although NATs are more sensitive and specific, their use is often limited in resource-poor settings due to specialized requirements. To address this limitation, we developed a rapid DNA-RNA Hybrid Capture immunoassay (HC) that specifically detects RNA from pathogens. This assay utilizes a unique monoclonal antibody, S9.6, which binds DNA-RNA hybrids. Biotinylated single-stranded DNA probes are hybridized to target RNAs, followed by hybrid capture on streptavidin and detection with S9.6. The HC-ELISA assay can detect as few as 104 RNA molecules that are 2.2 kb in length. We also adapted this assay into a LFA format, where captured Bacillus anthracis rpoB RNA of 3.5 kb length was detectable from a bacterial load equivalent to 107 CFU per 100 mg of mouse tissue using either HC-ELISA or HC-LFA. Importantly, we also demonstrated the versatility of HC by detecting other pathogens, including SARS-CoV-2 and Toxoplasma gondii, showing its potential for broad pathogen detection. Notably, HC does not require amplification of the target nucleic acid and utilizes economical formats like ELISA and LFA, making it suitable for use in sentinel labs for pathogen detection or as a molecular tool in basic research laboratories. Our study highlights the potential of HC as a sensitive and versatile method for RNA-based pathogen detection.
Collapse
Affiliation(s)
- Ankur Bothra
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Megan L Perry
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elena Wei
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Qian Ma
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | - Marina Siirin
- Drugs and Diagnostics for Tropical Diseases, San Diego, CA, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
6
|
Wang Y, Yang T, Liu G, Xie L, Guo J, Xiong W. Application of CRISPR/Cas12a in the rapid detection of pathogens. Clin Chim Acta 2023; 548:117520. [PMID: 37595863 DOI: 10.1016/j.cca.2023.117520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The combination of clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an effective gene-editing instrument. Among them, the CRISPR-Cas12a system forms a DNA-cleavage-capable complex with crRNA and exerts its trans-cleavage activity by recognising the PAM site on the target pathogen's gene. After amplifying the pathogenic gene, display materials such as fluorescent probes are added to the detection system, along with the advantages of rapid detection and high sensitivity of the CRISPR system, so that pathogenic bacteria can be diagnosed with greater speed and precision. This article reviews the mechanism of CRISPR-Cas12a in rapid detection, as well as its progress in the rapid detection of pathogenic bacteria in conjunction with various molecular biology techniques, in order to provide a foundation for the future development of a more effective detection platform.
Collapse
Affiliation(s)
- Yiheng Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tianmu Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guifang Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Mao G, Luo X, Ye S, Wang X, He J, Kong J, Dai J, Yin W, Ma Y. Fluorescence and Colorimetric Analysis of African Swine Fever Virus Based on the RPA-Assisted CRISPR/Cas12a Strategy. Anal Chem 2023; 95:8063-8069. [PMID: 37167072 DOI: 10.1021/acs.analchem.3c01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
It is well-established that different detection modes are necessary for corresponding applications, which can effectively reduce matrix interference and improve the detection accuracy. Here, we reported a magnetic separation method based on recombinase polymerase amplification (RPA)-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a for dual-mode analysis of African swine fever virus (ASFV) genes, including colorimetry and fluorescence. The ASFV gene was selected as the initial RPA template to generate the amplicon. The RPA amplicon was then recognized by CRISPR-associated RNA (crRNA), activating the trans-cleavage activity of Cas12a and leading to the nonspecific cleavage of ssDNA as well as a significant release of alkaline phosphatase (ALP) in the ALP-ssDNA modified magnetic bead. The released ALP can catalyze para-nitrophenyl phosphate to generate para-nitrophenol, resulting in substantial changes in absorbance and fluorescence, both of which can be used for detection with the naked eye. This strategy allows the sensitive detection of ASFV DNA, with a 20 copies/mL detection limit; no cross-reactivity with other viruses was observed. A good linear relationship was obtained in serum. In addition, this sensor displayed 100% specificity and sensitivity for clinical sample analysis. This method integrates the high sensitivity of fluorescence with easy readout of colorimetry and enables a simple, low-cost, and highly sensitive dual-mode detection of viral nucleic acid, thereby providing a broad prospect for the practical application in the diagnosis of virus infection.
Collapse
Affiliation(s)
- Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Silu Ye
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023; 61:13-36. [PMID: 36723794 PMCID: PMC9890466 DOI: 10.1007/s12275-022-00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/02/2023]
Abstract
With developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
9
|
Yang T, Li J, Zhang D, Cheng X, Li J, Huang X, Ding S, Tang BZ, Cheng W. Pre-Folded G-Quadruplex as a Tunable Reporter to Facilitate CRISPR/Cas12a-Based Visual Nucleic Acid Diagnosis. ACS Sens 2022; 7:3710-3719. [PMID: 36399094 DOI: 10.1021/acssensors.2c01391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based detection strategies with a fluorophore quencher-labeled ssDNA reporter or gold nanoparticle ssDNA reporter have been widely used in point-of-care (POC) molecular diagnostics. However, the potential of these CRISPR/Cas12a strategies for POC molecular diagnostics is often compromised due to the complex labeling, high cost, and low signal-to-noise ratio. Herein, we show a pre-folded G-quadruplex (G4) structure with tunable tolerance to CRISPR/Cas12a trans-cleavage and explore its mechanism. Two G4 structures (i.e., Tel22-10 and G16C) sensitive or tolerant to CRISPR/Cas12a trans-cleavage are designed and used as signal elements to fabricate a label-free visible fluorescent strategy or "signal-on" colorimetric strategy, respectively. These two strategies facilitate an ultrasensitive visual nucleic acid determination of Group B Streptococci with a naked-eye limit of detection of 1 aM. The feasibility of the developed G4-assisted CRISPR/Cas12a strategies for real-world applications is demonstrated in clinical vaginal/anal specimens and further verified by a commercial qPCR assay. This work suggests that the proposed G4 structures with tunable tolerance can act as promising signal reporters in the CRISPR/Cas12a system to enable ultrasensitive visible nucleic acid detection.
Collapse
Affiliation(s)
- Tiantian Yang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Juan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Decai Zhang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaoxue Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Jia Li
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing400016, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Wei Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
10
|
Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K. Omicron (B.1.1.529 variant of SARS-CoV-2); an emerging threat: Current global scenario. J Med Virol 2022; 94:1780-1783. [PMID: 34964506 PMCID: PMC9015454 DOI: 10.1002/jmv.27561] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022]
Affiliation(s)
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Mohammad Azam
- Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesUttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyIndia
| |
Collapse
|
12
|
Mohapatra RK, Tiwari R, Sarangi AK, Sharma SK, Khandia R, Saikumar G, Dhama K. Twin combination of Omicron and Delta variant triggering a Tsunami wave of ever high surges in COVID-19 cases: a challenging global threat with a special focus on Indian sub-continent. J Med Virol 2022; 94:1761-1765. [PMID: 35014038 PMCID: PMC9015634 DOI: 10.1002/jmv.27585] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
Due to the continuous emergence of multiple variants of severe acute respiratory syndrome cronavirus-2 (SARS-CoV-2), the Coronavirus disease (COVID-19) pandemic has caused severe morbidity and mortality worldwide in the last two years amidst waves of pandemic within the ongoing pandemic resulting into high global health concerns and adverse socioeconomics impacts. 1-4 Omicron, the recent highly mutated SARS-CoV-2 variant (B.1.1.529), classified as variant of concern (VoC) by WHO on 26 November 2021, is now becoming a dominant strain in several countries and a very massive surge in COVID-19 cases is being faced presently with nearly 300 million cumulative cases and 5.5 million deaths reported as of January 5, 2022 This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit DeenDayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Sanjay K Sharma
- Department of Chemistry, JECRC University, Jaipur, Rajasthan, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|