1
|
Xing X, Shi J, Cui P, Yan C, Zhang Y, Zhang Y, Wang C, Chen Y, Zeng X, Tian G, Liu L, Guan Y, Li C, Suzuki Y, Deng G, Chen H. Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerg Microbes Infect 2024; 13:2284294. [PMID: 37966008 PMCID: PMC10769554 DOI: 10.1080/22221751.2023.2284294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 viruses between January 2017 and October 2020. To investigate the genetic relationship of the globally circulating H5N1 viruses and the biological properties of those detected in China, we performed a detailed phylogenic analysis of 274 representative H5N1 strains and analyzed the antigenic properties, receptor-binding preference, and virulence in mice of the H5N1 viruses isolated in China. The phylogenic analysis indicated that the HA genes of the 274 viruses belonged to six subclades, namely clades 2.3.2.1a to 2.3.2.1f; these viruses acquired gene mutations and underwent complicated reassortment to form 58 genotypes, with G43 being the dominant genotype detected in eight Asian and African countries. The 28 H5N1 viruses detected in this study carried the HA of clade 2.3.2.1c (two strains), 2.3.2.1d (three strains), or 2.3.2.1f (23 strains), and formed eight genotypes. These viruses were antigenically well-matched with the H5-Re12 vaccine strain used in China. Animal studies showed that the pathogenicity of the H5N1 viruses ranged from non-lethal to highly lethal in mice. Moreover, the viruses exclusively bound to avian-type receptors and have not acquired the ability to bind to human-type receptors. Our study reveals the overall picture of the evolution of clade 2.3.2.1 H5N1 viruses and provides insights into the control of these viruses.
Collapse
Affiliation(s)
- Xin Xing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuancheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Congcong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuntao Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Song X, Tian J, Li M, Bai X, Zhao Z, Shi J, Zeng X, Tian G, Guan Y, Chai H, Li Y, Chen H. Epidemiology and biological characteristics of influenza A (H4N6) viruses from wild birds. Emerg Microbes Infect 2024; 13:2418909. [PMID: 39417306 PMCID: PMC11523250 DOI: 10.1080/22221751.2024.2418909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
During the active surveillance, we isolated nine H4N6 subtype influenza A viruses from wild birds in China. To reveal the epidemiology and biology characteristics of H4 subtype influenza A virus from wild birds, we investigated H4 subtype viruses available in the public source, and found that the H4 viruses have been detected in at least 37 countries to date, and more than 73.6% of the viruses were from wild Anseriformes. Bayesian phylogeographic analysis showed that Mongolia worked as the important transmission centre for Eurasian lineage H4 viruses spreading. Phylogenetic analysis of HA genes indicated that global H4 influenza A viruses were divided into Eurasian and North American lineage, our nine H4N6 isolates fell into the Eurasian lineage. Recombination analysis suggested that nine H4N6 isolates underwent complex gene recombination with various subtypes of influenza A viruses and formed two genotypes. Notably, nine H4N6 isolates acquired mammalian virulence-increasing residues. Two representative H4N6 viruses possessed dual receptor binding specificity, they could efficiently replicate in MDCK and 293 T cells in vitro infection, also could cross the species barrier to infect mice directly without prior adaption in vivo experiments. These findings emphasize the public health issues represented by H4 viruses, and highlight the need to strengthen the active surveillance of H4 viruses from wild birds.
Collapse
Affiliation(s)
- Xingdong Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jingman Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Minghui Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiaoli Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhiguo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuntao Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Jang SG, Kim YI, Casel MAB, Choi JH, Gil JR, Rollon R, Kim EH, Kim SM, Ji HY, Park DB, Hwang J, Ahn JW, Kim MH, Song MS, Choi YK. HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts. Emerg Microbes Infect 2024; 13:2302854. [PMID: 38189114 PMCID: PMC10840603 DOI: 10.1080/22221751.2024.2302854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.
Collapse
Affiliation(s)
- Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Ryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ho Young Ji
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Dong Bin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Hou Y, Deng G, Cui P, Zeng X, Li B, Wang D, He X, Yan C, Zhang Y, Li J, Ma J, Li Y, Wang X, Tian G, Kong H, Tang L, Suzuki Y, Shi J, Chen H. Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination. Emerg Microbes Infect 2024; 13:2343912. [PMID: 38629574 PMCID: PMC11060016 DOI: 10.1080/22221751.2024.2343912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.
Collapse
Affiliation(s)
- Yujie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Bin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xinwen He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jiongjie Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jinming Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
5
|
Lee K, Yeom M, Vu TTH, Do HQ, Na W, Lee M, Jeong DG, Cheon DS, Song D. Characterization of highly pathogenic avian influenza A (H5N1) viruses isolated from cats in South Korea, 2023. Emerg Microbes Infect 2024; 13:2290835. [PMID: 38044871 PMCID: PMC10810616 DOI: 10.1080/22221751.2023.2290835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Kyungmoon Lee
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Minjoo Yeom
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | | | - Hai-Quynh Do
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam University, Gwangju, South Korea
| | | | - Dae Gwin Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | | | - Daesub Song
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhao Y, Chen P, Hu Y, Liu J, Jiang Y, Zeng X, Deng G, Shi J, Li Y, Tian G, Liu J, Chen H. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect 2024; 13:2284301. [PMID: 37966272 PMCID: PMC10769552 DOI: 10.1080/22221751.2023.2284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks play an important role in the transmission of avian influenza viruses from wild birds to domestic poultry, creating a substantial challenge to vaccination strategies for avian influenza control. To solve this problem, we constructed a recombinant duck enteritis virus (DEV), rDEV-dH5/H7, using a live attenuated DEV vaccine strain (vDEV) as a vector. rDEV-dH5/H7 carries the hemagglutinin gene of two H5 viruses [GZ/S4184/17 (H5N6) (clade 2.3.4.4 h) and LN/SD007/17 (H5N1) (clade 2.3.2.1d)] and an H7 virus [GX/SD098/17 (H7N9)]. These three hemagglutinin genes were stably inherited in rDEV-dH5/H7 and expressed in rDEV-dH5/H7-infected cells. Animal studies revealed that rDEV-dH5/H7 and vDEV induced similar neutralizing antibody responses and protection against lethal DEV challenge. Importantly, rDEV-dH5/H7 induced strong and long-lasting hemagglutinin inhibition antibodies against different H5 and H7 viruses and provided complete protection against challenges with homologous and heterologous highly pathogenic H5 and H7 influenza viruses in ducks. Our study shows that rDEV-dH5/H7 could serve as an ideal live attenuated vaccine to protect ducks against infection with lethal DEV and highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Yubo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jinxiong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
7
|
Kong D, He Y, Wang J, Chi L, Ao X, Ye H, Qiu W, Zhu X, Liao M, Fan H. A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerg Microbes Infect 2024; 13:2287682. [PMID: 37994795 PMCID: PMC10763850 DOI: 10.1080/22221751.2023.2287682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like particle (VLP) vaccine based on the insect cell-baculovirus expression system. Single immunization of the H5N1 VLP vaccines induced high levels of HI antibody titres and provided effective protection against homologous virus challenge comparable to the commercial inactivated vaccine. Meanwhile, we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the adjuvants ISA 201 and ISA 71 and evaluated whether the two adjuvants could induce broadly protective immunity. The ISA 71 adjuvanted vaccine induced significantly higher levels of Th1 and Th2 immune responses and provided superior cross-protection against antigenically divergent H5N1 virus challenge than the ISA 201 adjuvanted vaccine. Importantly, increasing the vaccine dose could further enhance the cross-protective efficacy of H5N1 VLP vaccine and confer completely sterilizing protection against antigenically divergent H5N1 virus challenge, which was mediated by neutralizing antibodies. Our results suggest that the H5N1 VLP vaccine can provide broad-spectrum protection against divergent H5N1 influenza viruses as determined by adjuvant and vaccine dose.
Collapse
Affiliation(s)
- Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Jiaxin Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Lanyan Chi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Xiang Ao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Hejia Ye
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Weihong Qiu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Xiutong Zhu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2024:100973. [PMID: 39396528 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
9
|
Paz M, Franco-Trecu V, Szteren D, Costábile A, Portela C, Bruno A, Moratorio G, Moreno P, Cristina J. Understanding the emergence of highly pathogenic avian influenza A virus H5N1 in pinnipeds: An evolutionary approach. Virus Res 2024; 350:199472. [PMID: 39362411 PMCID: PMC11491970 DOI: 10.1016/j.virusres.2024.199472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Highly pathogenic influenza A virus (HPIAV) H5N1 within the genetic clade 2.3.4.4b has emerged in wild birds in different regions of the world, leading to the death of >70 million birds. When these strains spread to pinniped species a remarkable mortality has also been observed. A detailed genetic characterization of HPIAV isolated from pinnipeds is essential to understand the potential spread of these viruses to other mammalian species, including humans. To gain insight into these matters a detailed phylogenetic analysis of HPIAV H5N1 2.3.4.4b strains isolated from pinniped species was performed. The results of these studies revealed multiple transmission events from birds to pinnipeds in all world regions. Different evolutionary histories of different genes of HPIAV H5N1 2.3.4.4b strains gave rise to the viruses infecting pinnipeds in different regions of the world. European strains isolated from pinnipeds represent a completely different genetic lineage from strains isolated from South American ones. All strains isolated from pinnipeds bear characteristics of a highly pathogenic form for of avian influenza in poultry. Amino acid substitutions, previously shown to confer an adaptive advantage for infecting mammals, were observed in different genes in all pinniped species studied.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Igua 4224, 11400 Montevideo, Uruguay.
| | - Diana Szteren
- Departamento de Ecología y Evolución, Facultad de Ciencias, Igua 4224, 11400 Montevideo, Uruguay.
| | - Alicia Costábile
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Cecilia Portela
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Alfredo Bruno
- Instituto Nacional de Salud Pública e Investigación "Leopoldo Izquieta-Pérez", Guayaquil, Ecuador; Universidad Agraria del Ecuador, Ecuador
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay; Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
10
|
Zhang X, Wu J, Wang Y, Hao M, Liu H, Fan S, Li J, Sun J, He Y, Zhang Y, Chen J. Highly Pathogenic Avian Influenza A Virus in Wild Migratory Birds, Qinghai Lake, China, 2022. Emerg Infect Dis 2024; 30:2135-2139. [PMID: 39190545 PMCID: PMC11431930 DOI: 10.3201/eid3010.240460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
In July 2022, an outbreak of highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b occurred among migratory birds at Qinghai Lake in China. The virus circulated in June, and reassortants emerged after its introduction into the area. Surveillance in 2023 showed that the virus did not establish a stable presence in wild waterfowl.
Collapse
|
11
|
Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Kohnle L. Avian influenza overview June-September 2024. EFSA J 2024; 22:e9057. [PMID: 39434784 PMCID: PMC11492803 DOI: 10.2903/j.efsa.2024.9057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Between 15 June and 20 September 2024, 75 highly pathogenic avian influenza (HPAI) A(H5) and A(H7) virus detections were reported in domestic (16) and wild (59) birds across 11 countries in Europe. Although the overall number of detections in Europe continued to be low compared to previous epidemiological years, an increase in cases along the Atlantic, North Sea and Baltic coasts was notable, particularly an increase in the detection of HPAI viruses in colony-breeding seabirds. Besides EA-2022-BB and other circulating genotypes, these detections also included EA-2023-DT, a new genotype that may transmit more efficiently among gulls. In Germany, HPAI A(H7N5) virus emerged in a poultry establishment near the border with the Netherlands. No new HPAI virus detections in mammals were reported in Europe during this period, but the number of reportedly affected dairy cattle establishments in the United States of America (USA) rose to >230 in 14 states, and HPAI virus was identified in three new mammal species. Between 21 June and 20 September 2024, 19 new human cases with avian influenza virus infection were reported from the USA (six A(H5N1) cases and five A(H5) cases), Cambodia (five A(H5N1) cases, including one fatal), China (one fatal A(H5N6) case and one A(H9N2) case), and Ghana (one A(H9N2) case). Most of the human cases (90%, n = 17/19) had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no evidence of human-to-human transmission has been documented in the reporting period. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
12
|
Alava JJ, Tirapé A, Denkinger J, Calle P, Rosero R. P, Salazar S, Fair PA, Raverty S. Endangered Galápagos sea lions and fur seals under the siege of lethal avian flu: a cautionary note on emerging infectious viruses in endemic pinnipeds of the Galápagos Islands. Front Vet Sci 2024; 11:1457035. [PMID: 39372903 PMCID: PMC11449844 DOI: 10.3389/fvets.2024.1457035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
- Fundación Ecuatoriana para El Estudio de Mamíferos Marinos (FEMM), Guayaquil, Ecuador
| | - Ana Tirapé
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Judith Denkinger
- Universidad San Francisco de Quito, Galápagos Science Center, Quito, Ecuador
- Ocean Museum, Stralsund, Germany
| | - Paola Calle
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Patricia Rosero R.
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Sandie Salazar
- Universidad San Francisco de Quito, Galápagos Science Center, Quito, Ecuador
| | - Patricia A. Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Raverty
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Animal Health Centre, British Columbia Ministry of Agriculture, Food and Fisheries, Abbotsford, BC, Canada
| |
Collapse
|
13
|
Takadate Y, Mine J, Tsunekuni R, Sakuma S, Kumagai A, Nishiura H, Miyazawa K, Uchida Y. Genetic diversity of H5N1 and H5N2 high pathogenicity avian influenza viruses isolated from poultry in Japan during the winter of 2022-2023. Virus Res 2024; 347:199425. [PMID: 38906223 PMCID: PMC11250885 DOI: 10.1016/j.virusres.2024.199425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
High pathogenicity avian influenza viruses (HPAIVs) of the H5N1 and H5N2 subtypes were responsible for 84 HPAI outbreaks on poultry premises in Japan during October 2022-April 2023. The number of outbreaks during the winter of 2022-2023 is the largest ever reported in Japan. In this study, we performed phylogenetic analyses using the full genetic sequences of HPAIVs isolated in Japan during 2022-2023 and those obtained from a public database to identify their genetic origin. Based on the hemagglutinin genes, these HPAIVs were classified into the G2 group of clade 2.3.4.4b, whose ancestors were H5 HPAIVs that circulated in Europe in late 2020, and were then further divided into three subgroups (G2b, G2d, and G2c). Approximately one-third of these viruses were classified into the G2b and G2d groups, which also included H5N1 HPAIVs detected in Japan during 2021-2022. In contrast, the remaining two-thirds were classified into the G2c group, which originated from H5N1 HPAIVs isolated in Asian countries and Russia during the winter of 2021-2022. Unlike the G2b and G2d viruses, the G2c viruses were first detected in Japan in the fall of 2022. Importantly, G2c viruses caused the largest number of outbreaks throughout Japan over the longest period during the season. Phylogenetic analyses using eight segment genes revealed that G2b, G2d, and G2c viruses were divided into 2, 4, and 11 genotypes, respectively, because they have various internal genes closely related to those of avian influenza viruses detected in wild birds in recent years in Asia, Russia, and North America, respectively. These results suggest that HPAIVs were disseminated among migratory birds, which may have generated numerous reassortant viruses with various gene constellations, resulting in a considerable number of outbreaks during the winter of 2022-2023.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Junki Mine
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Ryota Tsunekuni
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Saki Sakuma
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Asuka Kumagai
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Hayate Nishiura
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Kohtaro Miyazawa
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Yuko Uchida
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan.
| |
Collapse
|
14
|
Chen X, Mu W, Shao Y, Peng L, Zhang R, Luo S, He X, Zhang L, He F, Li L, Wang R, Yang L, Xiang B. Genetic and molecular characterization of H9N2 avian influenza viruses in Yunnan Province, Southwestern China. Poult Sci 2024; 103:104040. [PMID: 39043028 PMCID: PMC11318558 DOI: 10.1016/j.psj.2024.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The H9N2 subtype of the avian influenza virus (AIV) is widely prevalent in birds, threatening the poultry industry and providing genetic material for emerging human pathogens. The prevalence and genetic characteristics of H9N2 in Yunnan Province, China, are largely unknown. Samples were collected from live poultry markets (LPMs) and breeding farms in Yunnan Province. H9N2-positive samples were identified by polymerase chain reaction (PCR), with a high positivity rate of 42.86% in tissue samples. The positivity rate of swab samples in the LPMs in Kunming was 3.97% (17/564), but no AIV was detected in samples from poultry farms in Lijiang, Wenshan, and Yuxi. Evolutionary analysis and genotyping were performed for the 17 strains of isolated H9N2 virus. Phylogenetic analysis revealed that all H9N2 viral genes had 91.6%-100% nucleotide homology, belonged to the G57 genotype, and had high homology with H9N2 viruses isolated from Guangdong and Guangxi, suggesting that the H9N2 viruses in Yunnan Province may have been imported by chicks. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to evolve. The surface genes of the H9N2 isolates displayed substantial genetic diversity, highlighting the genetic diversity and complexity of the H9N2-subtype AIVs in Yunnan. Molecular analysis demonstrated that all 17 strains of H9N2 isolates had mutations at H183N, Q226L, L31P, and I268V in hemagglutinin; S31N in matrix protein 2; and no replacements at positions 274 and 292 of the neuraminidase protein. Sixteen strains had the A558V mutation and one strain had the E627V mutation in polymerase basic protein 2. Analysis of these amino acid sites suggests that H9N2 influenza viruses in Yunnan continue to mutate and adapt to mammals and are sensitive to neuraminidase inhibitors but resistant to adamantanes. It is necessary to strengthen surveillance of AIV H9N2 subtypes in poultry and LPMs in Yunnan to further understand their genetic diversity.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yunteng Shao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Li Peng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ronghai Wang
- Animal Husbandry and Veterinary Bureau, Yanjin 657599, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
15
|
Yang F, Zhao X, Huo C, Miao X, Qin T, Chen S, Peng D, Liu X. An avian-origin internal backbone effectively increases the H5 subtype avian influenza vaccine candidate yield in both chicken embryonated eggs and MDCK cells. Poult Sci 2024; 103:103988. [PMID: 38970848 PMCID: PMC11269899 DOI: 10.1016/j.psj.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024] Open
Abstract
Inactivated vaccines play an important role in preventing and controlling the epidemic caused by the H5 subtype avian influenza virus. The vaccine strains are updated in response to alterations in surface protein antigens, while an avian-derived vaccine internal backbone with a high replicative capacity in chicken embryonated eggs and MDCK cells is essential for vaccine development. In this study, we constructed recombinant viruses using the clade 2.3.4.4d A/chicken/Jiangsu/GY5/2017(H5N6, CkG) strain as the surface protein donor and the clade 2.3.4.4b A/duck/Jiangsu/84512/2017(H5N6, Dk8) strain with high replicative ability as an internal donor. After optimization, the integration of the M gene from the CkG into the internal genes from Dk8 (8GM) was selected as the high-yield vaccine internal backbone, as the combination improved the hemagglutinin1/nucleoprotein (HA1/NP) ratio in recombinant viruses. The r8GMΔG with attenuated hemagglutinin and neuraminidase from the CkG exhibited high-growth capacity in both chicken embryos and MDCK cell cultures. The inactivated r8GMΔG vaccine candidate also induced a higher hemagglutination inhibition antibody titer and microneutralization titer than the vaccine strain using PR8 as the internal backbone. Further, the inactivated r8GMΔG vaccine candidate provided complete protection against wild-type strain challenge. Therefore, our study provides a high-yield, easy-to-cultivate candidate donor as an internal gene backbone for vaccine development.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chenzhi Huo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
16
|
Zhang Y, Cui P, Shi J, Zeng X, Jiang Y, Chen Y, Zhang J, Wang C, Wang Y, Tian G, Chen H, Kong H, Deng G. A broad-spectrum vaccine candidate against H5 viruses bearing different sub-clade 2.3.4.4 HA genes. NPJ Vaccines 2024; 9:152. [PMID: 39160189 PMCID: PMC11333769 DOI: 10.1038/s41541-024-00947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
The global spread of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses threatens poultry and public health. The continuous circulation of these viruses has led to their considerable genetic and antigenic evolution, resulting in the formation of eight subclades (2.3.4.4a-h). Here, we examined the antigenic sites that determine the antigenic differences between two H5 vaccine strains, H5-Re8 (clade 2.3.4.4g) and H5-Re11 (clade 2.3.4.4h). Epitope mapping data revealed that all eight identified antigenic sites were located within two classical antigenic regions, with five sites in region A (positions 115, 120, 124, 126, and 140) and three in region B (positions 151, 156, and 185). Through antigenic cartography analysis of mutants with varying numbers of substitutions, we confirmed that a combination of mutations in these eight sites reverses the antigenicity of H5-Re11 to that of H5-Re8, and vice versa. More importantly, our analyses identified H5-Re11_Q115L/R120S/A156T (H5-Re11 + 3) as a promising candidate for a broad-spectrum vaccine, positioned centrally in the antigenic map, and offering potential universal protection against all variants within the clade 2.3.4.4. H5-Re11 + 3 serum has better cross-reactivity than sera generated with other 2.3.4.4 vaccines, and H5-Re11 + 3 vaccine provided 100% protection of chickens against antigenically drifted H5 viruses from various 2.3.4.4 antigenic groups. Our findings suggest that antigenic regions A and B are immunodominant in H5 viruses, and that antigenic cartography-guided vaccine design is a promising strategy for selecting a broad-spectrum vaccine.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Cui
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianying Zeng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Congcong Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Guohua Deng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
17
|
Misra S, Gilbride E, Ramasamy S, Pond SLK, Kuchipudi SV. Enhanced Diversifying Selection on Polymerase Genes in H5N1 Clade 2.3.4.4b: A Key Driver of Altered Species Tropism and Host Range Expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.606826. [PMID: 39229076 PMCID: PMC11370473 DOI: 10.1101/2024.08.19.606826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Highly pathogenic avian influenza H5N1 clade 2.3.4.4b viruses have shown unprecedented host range and pathogenicity, including infections in cattle, previously not susceptible to H5N1. We investigated whether selection pressures on clade 2.3.4.4b viral genes could shed light on their unique epidemiological features. Our analysis revealed that while the gene products of clade 2.3.4.4b H5N1 primarily undergo purifying selection, there are notable instances of episodic diversifying selection. Specifically, the polymerase genes PB2, PB1, and PA exhibit significantly greater selection pressures in clade 2.3.4.4b than all earlier H5N1 virus clades. Polymerases play critical roles in influenza virus adaptation, including viral fitness, interspecies transmission, and virulence. Our findings provide evidence that significant selection pressures have shaped the evolution of the H5N1 clade 2.3.4.4b viruses, facilitating their expanded host tropism and the potential for further adaptation to mammalian hosts. We discuss how exogenous factors, such as altered bird migration patterns and increased host susceptibility, may have contributed to the expanded host range. As H5N1 viruses continue to infect new hosts, there is a greater risk of emergent novel variants with increased pathogenicity in humans and animals. Thus, comprehensive One Health surveillance is critical to monitor transmission among avian and mammalian hosts.
Collapse
|
18
|
Zhao L, Li S, Deng L, Zhang Y, Jiang C, Wei Y, Xia J, Ping J. Host-specific SRSF7 regulates polymerase activity and replication of influenza A virus. Microbes Infect 2024:105401. [PMID: 39134172 DOI: 10.1016/j.micinf.2024.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Avian influenza viruses crossing the host barrier to infect humans have caused great panic in human society and seriously threatened public health. Herein, we revealed that knockdown of SRSF7 significantly down-regulated influenza virus titers and viral protein expression. We further observed for the first time that human SRSF7, but not avian SRSF7, significantly inhibited polymerase activity (PB2627E). Molecular mapping demonstrated that amino acids 206 to 228 of human SRSF7 play a decisive role in regulating the polymerase activity, which contains the amino acid motif absent in avian SRSF7. Importantly, our results illustrated that the PB2627K-encoding influenza virus induces SRSF7 protein degradation more strongly via the lysosome pathway and not via the proteasome pathway. Functional enrichment analysis of SRSF7-related KEGG pathways indicated that SRSF7 is closely related to cell growth and death. Lastly, our results showed that knocking down SRSF7 interferes with normal polymerase activity. Taken together, our results advance our understanding of interspecies transmission and our findings point out new targets for the development of drugs preventing or treating influenza virus infection.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shengmin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yijia Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenfeng Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China.
| | - Jun Xia
- Key Laboratory of Herbivore Disease Prevention and Control, (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Kim DH, Lee SH, Kim J, Lee J, Jeong JH, Kim JY, Song SU, Lee H, Cho AY, Hyeon JY, Youk S, Song CS. Efficacy of live and inactivated recombinant Newcastle disease virus vaccines expressing clade 2.3.4.4b H5 hemagglutinin against H5N1 highly pathogenic avian influenza in SPF chickens, Broilers, and domestic ducks. Vaccine 2024; 42:3756-3767. [PMID: 38724417 DOI: 10.1016/j.vaccine.2024.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024]
Abstract
A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).
Collapse
MESH Headings
- Animals
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Ducks/virology
- Ducks/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Virus Shedding
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Specific Pathogen-Free Organisms
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Newcastle Disease/prevention & control
- Newcastle Disease/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Jiwon Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Jiho Lee
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Seung-Un Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hyukchae Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Ji-Yeon Hyeon
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea.
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea.
| |
Collapse
|
20
|
Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Grant M, Tampach S, Kohnle L. Avian influenza overview March-June 2024. EFSA J 2024; 22:e8930. [PMID: 39036773 PMCID: PMC11258884 DOI: 10.2903/j.efsa.2024.8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
21
|
Gadzhiev A, Petherbridge G, Sharshov K, Sobolev I, Alekseev A, Gulyaeva M, Litvinov K, Boltunov I, Teymurov A, Zhigalin A, Daudova M, Shestopalov A. Pinnipeds and avian influenza: a global timeline and review of research on the impact of highly pathogenic avian influenza on pinniped populations with particular reference to the endangered Caspian seal ( Pusa caspica). Front Cell Infect Microbiol 2024; 14:1325977. [PMID: 39071164 PMCID: PMC11273096 DOI: 10.3389/fcimb.2024.1325977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study reviews chronologically the international scientific and health management literature and resources relating to impacts of highly pathogenic avian influenza (HPAI) viruses on pinnipeds in order to reinforce strategies for the conservation of the endangered Caspian seal (Pusa caspica), currently under threat from the HPAI H5N1 subtype transmitted from infected avifauna which share its haul-out habitats. Many cases of mass pinniped deaths globally have occurred from HPAI spill-overs, and are attributed to infected sympatric aquatic avifauna. As the seasonal migrations of Caspian seals provide occasions for contact with viruses from infected migratory aquatic birds in many locations around the Caspian Sea, this poses a great challenge to seal conservation. These are thus critical locations for the surveillance of highly pathogenic influenza A viruses, whose future reassortments may present a pandemic threat to humans.
Collapse
Affiliation(s)
- Alimurad Gadzhiev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Guy Petherbridge
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Caspian Centre for Nature Conservation, International Institute of Ecology and Sustainable Development, Association of Universities and Research Centers of Caspian Region States, Makhachkala, Russia
| | - Kirill Sharshov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan Sobolev
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Alekseev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina Gulyaeva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Litvinov
- Laboratory of Ecological and Biological Research, Astrakhan State Nature Biosphere Reserve, Astrakhan, Russia
| | - Ivan Boltunov
- Department of Vertebrate Zoology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Abdulgamid Teymurov
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Zhigalin
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Madina Daudova
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Shestopalov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Lin S, Chen J, Li K, Liu Y, Fu S, Xie S, Zha A, Xin A, Han X, Shi Y, Xu L, Liao M, Jia W. Evolutionary dynamics and comparative pathogenicity of clade 2.3.4.4b H5 subtype avian influenza viruses, China, 2021-2022. Virol Sin 2024; 39:358-368. [PMID: 38679333 PMCID: PMC11280280 DOI: 10.1016/j.virs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
The recent concurrent emergence of H5N1, H5N6, and H5N8 avian influenza viruses (AIVs) has led to significant avian mortality globally. Since 2020, frequent human-animal interactions have been documented. To gain insight into the novel H5 subtype AIVs (i.e., H5N1, H5N6 and H5N8), we collected 6102 samples from various regions of China between January 2021 and September 2022, and identified 41 H5Nx strains. Comparative analyses on the evolution and biological properties of these isolates were conducted. Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b, with 13 related to H5N1, 19 to H5N6, and 9 to H5N8. Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8, exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015-2022 worldwide. H5N1 showed a higher rate of evolution in 2021-2022 and more sites under positive selection pressure in 2015-2022. The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations. Further hemagglutination inhibition assay suggested that some A(H5N1) viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains. Mammalian challenge assays demonstrated that the H5N8 virus (21GD001_H5N8) displayed the highest pathogenicity in mice, followed by the H5N1 virus (B1557_H5N1) and then the H5N6 virus (220086_H5N6), suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts. Based on the above results, we speculate that A(H5N1) viruses have a higher risk of emergence in the future. Collectively, these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b, contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs.
Collapse
MESH Headings
- Animals
- China/epidemiology
- Phylogeny
- Influenza in Birds/virology
- Influenza in Birds/epidemiology
- Evolution, Molecular
- Mice
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N8 Subtype/genetics
- Influenza A Virus, H5N8 Subtype/pathogenicity
- Influenza A Virus, H5N8 Subtype/classification
- Influenza A Virus, H5N8 Subtype/isolation & purification
- Virulence
- Influenza A virus/genetics
- Influenza A virus/pathogenicity
- Influenza A virus/classification
- Chickens/virology
- Mice, Inbred BALB C
- Female
- Birds/virology
- Humans
Collapse
Affiliation(s)
- Siru Lin
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junhong Chen
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ke Li
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Yang Liu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Siyuan Fu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shumin Xie
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Aimin Zha
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Aiguo Xin
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyu Han
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Shi
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Zhou X, Wang S, Ma Y, Jiang Y, Li Y, Shi J, Deng G, Tian G, Kong H, Wang X. On-Site and Visual Detection of the H5 Subtype Avian Influenza Virus Based on RT-RPA and CRISPR/Cas12a. Viruses 2024; 16:753. [PMID: 38793634 PMCID: PMC11125590 DOI: 10.3390/v16050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/μL (blue light) and 1.9 × 103 copies/μL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| | - Xiurong Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| |
Collapse
|
24
|
Mao Q, Li Z, Li Y, Zhang Y, Liu S, Yin X, Peng C, Ma R, Li J, Hou G, Jiang W, Liu H. H5N1 high pathogenicity avian influenza virus in migratory birds exhibiting low pathogenicity in mallards increases its risk of transmission and spread in poultry. Vet Microbiol 2024; 292:110038. [PMID: 38458047 DOI: 10.1016/j.vetmic.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.
Collapse
Affiliation(s)
- Qiuyan Mao
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, Yinchuan 750001, PR China
| | - Yuecheng Li
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Yaxin Zhang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shuo Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Xin Yin
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Cheng Peng
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Rui Ma
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Jinping Li
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Guangyu Hou
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Wenming Jiang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| | - Hualei Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| |
Collapse
|
25
|
Tare DS, Keng SS, Walimbe AM, Pawar SD. Phylogeography and gene pool analysis of highly pathogenic avian influenza H5N1 viruses reported in India from 2006 to 2021. Arch Virol 2024; 169:111. [PMID: 38664271 DOI: 10.1007/s00705-024-06032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 05/24/2024]
Abstract
India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Sachin S Keng
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Atul M Walimbe
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
26
|
Tomás G, Marandino A, Panzera Y, Rodríguez S, Wallau GL, Dezordi FZ, Pérez R, Bassetti L, Negro R, Williman J, Uriarte V, Grazioli F, Leizagoyen C, Riverón S, Coronel J, Bello S, Páez E, Lima M, Méndez V, Pérez R. Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: Implications for bird-mammal transmission in South America. Virus Evol 2024; 10:veae031. [PMID: 38756986 PMCID: PMC11096771 DOI: 10.1093/ve/veae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
The highly pathogenic avian influenza viruses of clade 2.3.4.4b have caused unprecedented deaths in South American wild birds, poultry, and marine mammals. In September 2023, pinnipeds and seabirds appeared dead on the Uruguayan Atlantic coast. Sixteen influenza virus strains were characterized by real-time reverse transcription PCR and genome sequencing in samples from sea lions (Otaria flavescens), fur seals (Arctocephalus australis), and terns (Sterna hirundinacea). Phylogenetic and ancestral reconstruction analysis showed that these strains have pinnipeds most likely as the ancestral host, representing a recent introduction of clade 2.3.4.4b in Uruguay. The Uruguayan and closely related strains from Peru (sea lions) and Chile (sea lions and a human case) carry mammalian adaptative residues 591K and 701N in the viral polymerase basic protein 2 (PB2). Our findings suggest that clade 2.3.4.4b strains in South America may have spread from mammals to mammals and seabirds, revealing a new transmission route.
Collapse
Affiliation(s)
- Gonzalo Tomás
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Sirley Rodríguez
- Departamento de Virología, División de Laboratorios Veterinarios ‘Miguel C. Rubino’, Dirección’General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 km 17,000, Montevideo 12100, Uruguay
| | - Gabriel Luz Wallau
- Departamento de Entomología, Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz (FIOCRUZ), Av. Moraes Rego, s/n, Campus da UFPE- Cidade Universitária, Recife, Pernambuco 50740-465, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg 20359, Germany
| | - Filipe Zimmer Dezordi
- Departamento de Entomología, Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz (FIOCRUZ), Av. Moraes Rego, s/n, Campus da UFPE- Cidade Universitária, Recife, Pernambuco 50740-465, Brazil
| | - Ramiro Pérez
- Departamento de Virología, División de Laboratorios Veterinarios ‘Miguel C. Rubino’, Dirección’General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 km 17,000, Montevideo 12100, Uruguay
| | - Lucía Bassetti
- Departamento de Virología, División de Laboratorios Veterinarios ‘Miguel C. Rubino’, Dirección’General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 km 17,000, Montevideo 12100, Uruguay
| | - Raúl Negro
- Departamento de Virología, División de Laboratorios Veterinarios ‘Miguel C. Rubino’, Dirección’General de Servicios Ganaderos, Ministerio de Ganadería, Agricultura y Pesca, Ruta 8 km 17,000, Montevideo 12100, Uruguay
| | - Joaquín Williman
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Valeria Uriarte
- Dirección Nacional de Biodiversidad y Servicios Ecosistémicos (DINABISE), Ministerio de Ambiente, Juncal 1385, Montevideo 11000, Uruguay
| | - Fabiana Grazioli
- Dirección Nacional de Biodiversidad y Servicios Ecosistémicos (DINABISE), Ministerio de Ambiente, Juncal 1385, Montevideo 11000, Uruguay
| | - Carmen Leizagoyen
- Dirección Nacional de Biodiversidad y Servicios Ecosistémicos (DINABISE), Ministerio de Ambiente, Juncal 1385, Montevideo 11000, Uruguay
| | - Sabrina Riverón
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Jaime Coronel
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Soledad Bello
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Enrique Páez
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Martín Lima
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Virginia Méndez
- Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería, Agricultura y Pesca, Constituyente 1497, Montevideo 11200, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
27
|
Kang YM, Tseren Ochir EO, Heo GB, An SH, Jeong H, Dondog U, Myagmarsuren T, Lee YJ, Lee KN. Surveillance and Genetic Analysis of Low-Pathogenicity Avian Influenza Viruses Isolated from Feces of Wild Birds in Mongolia, 2021 to 2023. Animals (Basel) 2024; 14:1105. [PMID: 38612344 PMCID: PMC11011059 DOI: 10.3390/ani14071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The introduction of novel highly pathogenic (HPAI) viruses into Korea has been attributed to recombination events occurring at breeding sites in the Northern Hemisphere. This has increased interest in monitoring and genetically analyzing avian influenza viruses (AIVs) in northern regions, such as Mongolia, which share migratory bird flyways with Korea. AIVs in Mongolia were monitored by analyzing 10,149 fecal samples freshly collected from wild birds from April to October in 2021 to 2023. The prevalence of AIVs in wild birds was 1.01%, with a total of 77 AIVs isolated during these 3 years. These 77 AIVs included hemagglutinin (HA) subtypes H1, H2, H3, H4, H6, H10 and H13 and neuraminidase (NA) subtypes N1, N2, N3, N6, N7 and N8. The most frequently detected subtype combinations were H3N8 (39.0%) and H4N6 (19.5%), although HPAI viruses were not detected. Genetic analysis indicated that theses AIVs isolated from Mongolian samples were closely related to AIVs in wild birds in Korea, including those of Eurasian lineage. These findings indicate the necessity of continuous AIV surveillance and monitoring, as HPAI viruses introduced into Korea may derive from strains in Mongolia.
Collapse
Affiliation(s)
- Yong-Myung Kang
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Erdene-Ochir Tseren Ochir
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Gyeong-Beom Heo
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Se-Hee An
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Hwanseok Jeong
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Urankhaich Dondog
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Temuulen Myagmarsuren
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Kwang-Nyeong Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| |
Collapse
|
28
|
Zeng J, Du F, Xiao L, Sun H, Lu L, Lei W, Zheng J, Wang L, Shu S, Li Y, Zhang Q, Tang K, Sun Q, Zhang C, Long H, Qiu Z, Zhai K, Li Z, Zhang G, Sun Y, Wang D, Zhang Z, Lycett SJ, Gao GF, Shu Y, Liu J, Du X, Pu J. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J Virol 2024; 98:e0140123. [PMID: 38358287 PMCID: PMC10949427 DOI: 10.1128/jvi.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.
Collapse
Affiliation(s)
- Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fanshu Du
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linna Xiao
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Lu
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ke Zhai
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Geli Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Hu Y, Jiang L, Wang G, Song Y, Shan Z, Wang X, Deng G, Shi J, Tian G, Zeng X, Liu L, Chen H, Li C. M6PR interacts with the HA2 subunit of influenza A virus to facilitate the fusion of viral and endosomal membranes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:579-595. [PMID: 38038885 DOI: 10.1007/s11427-023-2471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.
Collapse
Affiliation(s)
- Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yangming Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhibo Shan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuyuan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
30
|
Cui Y, Li S, Xu W, Li Y, Xie J, Wang D, Guo J, Zhou J, Feng X, Hou L, Liu J. A Receptor Integrin β1 Promotes Infection of Avian Metapneumovirus Subgroup C by Recognizing a Viral Fusion Protein RSD Motif. Int J Mol Sci 2024; 25:829. [PMID: 38255903 PMCID: PMC10815723 DOI: 10.3390/ijms25020829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin β1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Siting Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yeqiu Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiali Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Li Y, Shang J, Wang Y, Luo J, Jiang W, Yin X, Zhang F, Deng C, Yu X, Liu H. Establishment of two assays based on reverse transcription recombinase-aided amplification technology for rapid detection of H5 subtype avian influenza virus. Microbiol Spectr 2023; 11:e0218623. [PMID: 37811963 PMCID: PMC10715165 DOI: 10.1128/spectrum.02186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Avian influenza virus (AIV) subtype H5 is a highly contagious zoonotic disease and a serious threat to the farming industry and public health. Traditional detection methods, including virus isolation and real-time PCR, require tertiary biological laboratories and are time-consuming and complex to perform, making it difficult to rapidly diagnose H5 subtype avian influenza viruses. In this study, we successfully developed two methods, namely, RF-RT-RAA and RT-RAA-LFD, for rapid detection of H5-AIV. The assays are characterized by their high specificity, sensitivity, and user-friendliness. Moreover, the results of the reaction can be visually assessed, which are suitable for both laboratory testing and grassroots farm screening for H5-AIV.
Collapse
Affiliation(s)
- Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Chunran Deng
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - HuaLei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
32
|
Zhao W, Liu X, Zhang X, Qiu Z, Jiao J, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Jiao X, Peng D, Gu M, Liu X. Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. Virulence 2023; 14:2250065. [PMID: 37635408 PMCID: PMC10464537 DOI: 10.1080/21505594.2023.2250065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. In 2021, we isolated four H5N6 viruses from ducks during the routine surveillance of AIV in China. The whole-genome sequencing results demonstrated that the four isolates all belonged to the currently prevalent clade 2.3.4.4b but had different internal gene constellations, which could be divided into G1 and G2 genotypes. Specifically, G1 possessed H9-like PB2 and PB1 genes on the H5-like genetic backbone while G2 owned an H3-like PB1 gene and the H5-like remaining internal genes. By determining the characteristics of H5N6 viruses, including growth performance on different cells, plaque-formation ability, virus attachment ability, and pathogenicity and transmission in different animal models, we found that G1 strains were more conducive to replication in mammalian cells (MDCK and A549) and BALB/c mice than G2 strains. However, G2 strains were more advantageously replicated in avian cells (CEF and DF-1) and slightly more transmissible in waterfowls (mallards) than G1 strains. This study enriched the epidemiological data of H5 subtype AIV to further understand its dynamic evolution, and laid the foundation for further research on the mechanism of low pathogenic AIV internal genes in generating novel H5 subtype reassortants.
Collapse
Affiliation(s)
- Wanchen Zhao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Zhang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiwei Qiu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Li
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
33
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Willgert K, Baldinelli F, Chuzhakina K, Delacourt R, Georganas A, Georgiev M, Kohnle L. Avian influenza overview September-December 2023. EFSA J 2023; 21:e8539. [PMID: 38116102 PMCID: PMC10730024 DOI: 10.2903/j.efsa.2023.8539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Between 2 September and 1 December 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (88) and wild (175) birds across 23 countries in Europe. Compared to previous years, the increase in the number of HPAI virus detections in waterfowl has been delayed, possibly due to a later start of the autumn migration of several wild bird species. Common cranes were the most frequently affected species during this reporting period with mortality events being described in several European countries. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds, with the exception of Hungary, where two clusters involving secondary spread occurred. HPAI viruses identified in Europe belonged to eleven different genotypes, seven of which were new. With regard to mammals, the serological survey conducted in all fur farms in Finland revealed 29 additional serologically positive farms during this reporting period. Wild mammals continued to be affected mostly in the Americas, from where further spread into wild birds and mammals in the Antarctic region was described for the first time. Since the last report and as of 1 December 2023, three fatal and one severe human A(H5N1) infection with clade 2.3.2.1c viruses have been reported by Cambodia, and one A(H9N2) infection was reported from China. No human infections related to the avian influenza detections in animals in fur farms in Finland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.
Collapse
|
34
|
Chen JM, Tan SM, Chen RX, Gong HY, Wang X, Lu SS. Distribution and risks of the infections of humans and other mammals with H5 subtype highly pathogenic avian influenza viruses in 2020-2023. J Infect 2023; 87:574-575. [PMID: 37689396 DOI: 10.1016/j.jinf.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Ji-Ming Chen
- School of Life Science and Technology, Foshan University, Foshan, Guangdong, China.
| | - Su-Mei Tan
- School of Life Science and Technology, Foshan University, Foshan, Guangdong, China
| | - Rui-Xu Chen
- School of Life Science and Technology, Foshan University, Foshan, Guangdong, China
| | - Huan-Yu Gong
- School of Life Science and Technology, Foshan University, Foshan, Guangdong, China
| | - Xiu Wang
- School of Life Science and Technology, Foshan University, Foshan, Guangdong, China
| | - Shou-Sheng Lu
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou, China.
| |
Collapse
|
35
|
Wang Y, Wang M, Zhang H, Zhao C, Zhang Y, Shen J, Sun X, Xu H, Xie Y, Gao X, Cui P, Chu D, Li Y, Liu W, Peng P, Deng G, Guo J, Li X. Prevalence, evolution, replication and transmission of H3N8 avian influenza viruses isolated from migratory birds in eastern China from 2017 to 2021. Emerg Microbes Infect 2023; 12:2184178. [PMID: 36913241 PMCID: PMC10013397 DOI: 10.1080/22221751.2023.2184178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The continued evolution and emergence of novel influenza viruses in wild and domestic animals poses an increasing public health risk. Two human cases of H3N8 avian influenza virus infection in China in 2022 have caused public concern regarding the risk of transmission between birds and humans. However, the prevalence of H3N8 avian influenza viruses in their natural reservoirs and their biological characteristics are largely unknown. To elucidate the potential threat of H3N8 viruses, we analyzed five years of surveillance data obtained from an important wetland region in eastern China and evaluated the evolutionary and biological characteristics of 21 H3N8 viruses isolated from 15,899 migratory bird samples between 2017 and 2021. Genetic and phylogenetic analyses showed that the H3N8 viruses circulating in migratory birds and ducks have evolved into different branches and have undergone complicated reassortment with viruses in waterfowl. The 21 viruses belonged to 12 genotypes, and some strains induced body weight loss and pneumonia in mice. All the tested H3N8 viruses preferentially bind to avian-type receptors, although they have acquired the ability to bind human-type receptors. Infection studies in ducks, chickens and pigeons demonstrated that the currently circulating H3N8 viruses in migratory birds have a high possibility of infecting domestic waterfowl and a low possibility of infecting chickens and pigeons. Our findings imply that circulating H3N8 viruses in migratory birds continue to evolve and pose a high infection risk in domestic ducks. These results further emphasize the importance of avian influenza surveillance at the wild bird and poultry interface.
Collapse
Affiliation(s)
- Yanwen Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Yaping Zhang
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hongke Xu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yujiao Xie
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinxin Gao
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Pengfei Cui
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Dong Chu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Guohua Deng
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| |
Collapse
|
36
|
Barman S, Turner JCM, Kamrul Hasan M, Akhtar S, Jeevan T, Franks J, Walker D, Mukherjee N, Seiler P, Kercher L, McKenzie P, Webster RG, Feeroz MM, Webby RJ. Emergence of a new genotype of clade 2.3.4.4b H5N1 highly pathogenic avian influenza A viruses in Bangladesh. Emerg Microbes Infect 2023; 12:e2252510. [PMID: 37622753 PMCID: PMC10563617 DOI: 10.1080/22221751.2023.2252510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.
Collapse
Affiliation(s)
- Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jasmine C. M. Turner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - M. Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David Walker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
37
|
Cronk BD, Caserta LC, Laverack M, Gerdes RS, Hynes K, Hopf CR, Fadden MA, Nakagun S, Schuler KL, Buckles EL, Lejeune M, Diel DG. Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits ( Vulpes vulpes). Emerg Microbes Infect 2023; 12:2249554. [PMID: 37589241 PMCID: PMC10512766 DOI: 10.1080/22221751.2023.2249554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Avian influenza H5N1 is a highly pathogenic virus that primarily affects birds. However, it can also infect other animal species, including mammals. We report the infection of nine juvenile red foxes (Vulpes vulpes) with Highly Pathogenic Avian Influenza A type H5N1 (Clade 2.3.4.4b) in the spring of 2022 in the central, western, and northern regions of New York, USA. The foxes displayed neurologic signs, and examination of brain and lung tissue revealed lesions, with brain lesions ranging from moderate to severe meningoencephalitis. Analysis of tissue tropism using RT-PCR methods showed a comparatively lower Ct value in the brain, which was confirmed by in situ hybridization targeting Influenza A RNA. The viral RNA labelling was highly clustered and overlapped the brain lesions, observed in neurons, and grey matter. Whole viral genome sequences obtained from the affected foxes were subjected to phylogenetic and mutation analysis to determine influenza A clade, host specificity, and potential occurrence of viral reassortment. Infections in red foxes likely occurred due to preying on infected wild birds and are unlikely due to transmission between foxes or other mammals.
Collapse
Affiliation(s)
- Brittany D. Cronk
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rhea S. Gerdes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kevin Hynes
- New York State Department of Environmental Conservation, Wildlife Health Program, Albany, NY, USA
| | - Cynthia R. Hopf
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa A. Fadden
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shotaro Nakagun
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L. Schuler
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth L. Buckles
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect 2023; 12:2155072. [PMID: 36458831 DOI: 10.1080/22221751.2022.2155072] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Avian influenza viruses continue to present challenges to animal and human health. Viruses bearing the hemagglutinin (HA) gene of the H5 subtype and H7 subtype have caused 2634 human cases around the world, including more than 1000 deaths. These viruses have caused numerous disease outbreaks in wild birds and domestic poultry, and are responsible for the loss of at least 422 million domestic birds since 2005. The H5 influenza viruses are spread by migratory wild birds and have caused three waves of influenza outbreaks across multiple continents, and the third wave that started in 2020 is ongoing. Many countries in Europe and North America control highly pathogenic avian influenza by culling alone, whereas some countries, including China, have adopted a "cull plus vaccination" strategy. As the largest poultry-producing country in the world, China lost relatively few poultry during the three waves of global H5 avian influenza outbreaks, and nearly eliminated the pervasive H7N9 viruses that emerged in 2013. In this review, we briefly summarize the damages the H5 and H7 influenza viruses have caused to the global poultry industry and public health, analyze the origin, evolution, and spread of the H5 viruses that caused the waves, and discuss how and why the vaccination strategy in China has been a success. Given that the H5N1 viruses are widely circulating in wild birds and causing problems in domestic poultry around the world, we recommend that any unnecessary obstacles to vaccination strategies should be removed immediately and forever.
Collapse
Affiliation(s)
- Jianzhong Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
39
|
Zhang Y, Cui P, Shi J, Chen Y, Zeng X, Jiang Y, Tian G, Li C, Chen H, Kong H, Deng G. Key Amino Acid Residues That Determine the Antigenic Properties of Highly Pathogenic H5 Influenza Viruses Bearing the Clade 2.3.4.4 Hemagglutinin Gene. Viruses 2023; 15:2249. [PMID: 38005926 PMCID: PMC10674173 DOI: 10.3390/v15112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The H5 subtype highly pathogenic avian influenza viruses bearing the clade 2.3.4.4 HA gene have been pervasive among domestic poultry and wild birds worldwide since 2014, presenting substantial risks to human and animal health. Continued circulation of clade 2.3.4.4 viruses has resulted in the emergence of eight subclades (2.3.4.4a-h) and multiple distinct antigenic groups. However, the key antigenic substitutions responsible for the antigenic change of these viruses remain unknown. In this study, we analyzed the HA gene sequences of 5713 clade 2.3.4.4 viruses obtained from a public database and found that 23 amino acid residues were highly variable among these strains. We then generated a series of single-amino-acid mutants based on the H5-Re8 (a vaccine seed virus) background and tested their reactivity with a panel of eight monoclonal antibodies (mAbs). Six mutants bearing amino acid substitutions at positions 120, 126, 141, 156, 185, or 189 (H5 numbering) led to reduced or lost reactivity to these mAbs. Further antigenic cartography analysis revealed that the amino acid residues at positions 126, 156, and 189 acted as immunodominant epitopes of H5 viruses. Collectively, our findings offer valuable guidance for the surveillance and early detection of emerging antigenic variants.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Pengfei Cui
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Jianzhong Shi
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Xianying Zeng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Yongping Jiang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guobin Tian
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Chengjun Li
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Hualan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guohua Deng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| |
Collapse
|
40
|
SODA K, MEKATA H, USUI T, ITO H, MATSUI Y, YAMADA K, YAMAGUCHI T, ITO T. Genetic and antigenic analyses of H5N8 and H5N1 subtypes high pathogenicity avian influenza viruses isolated from wild birds and poultry farms in Japan in the winter of 2021-2022. J Vet Med Sci 2023; 85:1180-1189. [PMID: 37766550 PMCID: PMC10686771 DOI: 10.1292/jvms.23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
In the winter of 2021-2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. H5 subtype hemagglutinin (HA) genes of 32 representative HPAIV isolates were classified into clade 2.3.4.4b lineage and subsequently divided into three groups (G2a, G2b, and G2d). All H5N8 HPAIVs were isolated in early winter and had HA genes belonging to the G2a group. H5N1 HPAIVs belong to the G2b and G2d groups. Although G2b viruses were widespread throughout the season, G2d viruses endemically circulated in Northeast Japan after January 2022. Deep sequence analysis showed that the four HPAIVs isolated at the beginning of winter had both N8 and N1 subtypes of neuraminidase genes. Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season.
Collapse
Affiliation(s)
- Kosuke SODA
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hirohisa MEKATA
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tatsufumi USUI
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroshi ITO
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yuto MATSUI
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Kentaro YAMADA
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi YAMAGUCHI
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshihiro ITO
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
41
|
Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wit E, van Riel D. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci 2023; 46:953-970. [PMID: 37684136 PMCID: PMC10591965 DOI: 10.1016/j.tins.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, infections are associated with severe neurological disease, a unique feature of HPAI H5Nx viruses compared with other influenza A viruses. Here, we provide an overview of the neuropathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects: neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as well as studies on naturally or experimentally infected mammals. Additionally, we discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx virus infections and the efficacy of intervention strategies to prevent neuroinvasion or the development of neurological disease.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Wu Y, Zhan J, Shan Z, Li Y, Liu Y, Li Y, Wang Y, Liu Z, Wen X, Wang X. CRISPR-Cas13a-based detection method for avian influenza virus. Front Microbiol 2023; 14:1288951. [PMID: 37886067 PMCID: PMC10598603 DOI: 10.3389/fmicb.2023.1288951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Avian influenza virus (AIV) causes huge losses to the global poultry industry and poses a threat to humans and other mammals. Fast, sensitive, and portable diagnostic methods are essential for efficient avian influenza control. Here, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a based platform was developed to detect AIV. This novel method was developed to specifically detect H1-H16 subtypes of AIV with fluorescence and lateral flow-based readouts and exhibited no cross-reactivity with Newcastle disease virus, avian infectious bronchitis virus, or infectious bursal disease virus. The limit of detection was determined to be 69 and 690 copies/μL using fluorescence and lateral flow as readouts, respectively. The developed assay exhibited 100% consistency with quantitative real-time polymerase chain reaction in detecting clinical samples. The heating of unextracted diagnostic samples to obliterate nuclease treatment was introduced to detect viral RNA without nucleic acid extraction. Single-step optimization was used to perform reverse transcription, recombinase polymerase amplification, and CRISPR-Cas13a detection in a tube. These advances resulted in an optimized assay that could specifically detect AIV with simplified procedures and reduced contamination risk, highlighting the potential to be used in point-of-care testing.
Collapse
Affiliation(s)
- Yuhan Wu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Zhan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhaomeng Shan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yining Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yan Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixin Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xuexia Wen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
43
|
Cui P, Shi J, Yan C, Wang C, Zhang Y, Zhang Y, Xing X, Chen Y, Zhang J, Liu L, Zeng X, Tian G, Li C, Suzuki Y, Deng G, Chen H. Analysis of avian influenza A (H3N8) viruses in poultry and their zoonotic potential, China, September 2021 to May 2022. Euro Surveill 2023; 28:2200871. [PMID: 37824247 PMCID: PMC10571489 DOI: 10.2807/1560-7917.es.2023.28.41.2200871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/14/2023] [Indexed: 10/14/2023] Open
Abstract
BackgroundTwo human cases of avian influenza A (H3N8) virus infection were reported in China in 2022.AimTo characterise H3N8 viruses circulating in China in September 2021-May 2022.MethodsWe sampled poultry and poultry-related environments in 25 Chinese provinces. After isolating H3N8 viruses, whole genome sequences were obtained for molecular and phylogenetic analyses. The specificity of H3N8 viruses towards human or avian receptors was assessed in vitro. Their ability to replicate in chicken and mice, and to transmit between guinea pigs was also investigated.ResultsIn total, 98 H3N8 avian influenza virus isolates were retrieved from 38,639 samples; genetic analysis of 31 representative isolates revealed 17 genotypes. Viruses belonging to 10 of these genotypes had six internal genes originating from influenza A (H9N2) viruses. These reassorted viruses could be found in live poultry markets and comprised the strains responsible for the two human infections. A subset of nine H3N8 viruses (including six reassorted) that replicated efficiently in mice bound to both avian-type and human-type receptors in vitro. Three reassorted viruses were shed by chickens for up to 9 days, replicating efficiently in their upper respiratory tract. Five reassorted viruses tested on guinea pigs were transmissible among these by respiratory droplets.ConclusionAvian H3N8 viruses with H9N2 virus internal genes, causing two human infections, occurred in live poultry markets in China. The low pathogenicity of H3N8 viruses in poultry allows their continuous circulation with potential for reassortment. Careful monitoring of spill-over infections in humans is important to strengthen early-warning systems and maintain influenza pandemic preparedness.
Collapse
Affiliation(s)
- Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, China
- These authors contributed equally to this manuscript
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, China
- These authors contributed equally to this manuscript
- Western Research Institute, CAAS, Changji, China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
- These authors contributed equally to this manuscript
| | - Congcong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuancheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Xin Xing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
44
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Staubach C, Terregino C, Baldinelli F, Rusinà A, Kohnle L. Avian influenza overview June-September 2023. EFSA J 2023; 21:e08328. [PMID: 37809353 PMCID: PMC10552073 DOI: 10.2903/j.efsa.2023.8328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.
Collapse
|
45
|
Xu Y, Tang L, Gu X, Bo S, Ming L, Ma M, Zhao C, Sun K, Liu Y, He G. Characterization of avian influenza A (H4N2) viruses isolated from wild birds in Shanghai during 2019 to 2021. Poult Sci 2023; 102:102948. [PMID: 37604021 PMCID: PMC10465953 DOI: 10.1016/j.psj.2023.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
The H4 subtype of avian influenza viruses has been widely distributed among wild birds. During the surveillance of the avian influenza virus in Shanghai from 2019 to 2021, a total of 4,451 samples were collected from wild birds, among which 46 H4 subtypes of avian influenza viruses were identified, accounting for 7.40% of the total positive samples. The H4 subtype viruses have a wide range of hosts, including the spot-billed duck, common teal, and other wild birds in Anseriformes. Among all H4 subtypes, the most abundant are the H4N2 viruses. To clarify the genetic characteristics of H4N2 viruses, the whole genome sequences of 20 H4N2 viruses were analyzed. Phylogenetical analysis showed that all 8 genes of these viruses belonged to the Eurasian lineage and closely clustered with low pathogenic avian influenza viruses from countries along the East Asia-Australia migratory route. However, the PB1 gene of 1 H4N2 virus (NH21920) might provide its internal gene for highly pathogenic avian influenza H5N8 viruses in Korea and Japan. At least 10 genotypes were identified in these viruses, indicating that they underwent multiple complex recombination events. Our study has provided a better epidemiological understanding of the H4N2 viruses in wild birds. Considering the mutational potential, comprehensive surveillance of the H4N2 virus in both poultry and wild birds is imperative.
Collapse
Affiliation(s)
- Yuting Xu
- School of Life Science, East China Normal University, Shanghai, China
| | - Ling Tang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, China
| | - Xiaojun Gu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Le Ming
- School of Life Science, East China Normal University, Shanghai, China
| | - Min Ma
- School of Life Science, East China Normal University, Shanghai, China
| | | | - Kaibo Sun
- Shanghai Forestry Station, Shanghai, China
| | - Yuyi Liu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Guimei He
- School of Life Science, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| |
Collapse
|
46
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
47
|
Szaluś-Jordanow O, Golke A, Dzieciątkowski T, Chrobak-Chmiel D, Rzewuska M, Czopowicz M, Sapierzyński R, Kardas M, Biernacka K, Mickiewicz M, Moroz-Fik A, Łobaczewski A, Stefańska I, Kwiecień E, Markowska-Daniel I, Frymus T. A Fatal A/H5N1 Avian Influenza Virus Infection in a Cat in Poland. Microorganisms 2023; 11:2263. [PMID: 37764107 PMCID: PMC10538095 DOI: 10.3390/microorganisms11092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A European Shorthair male cat, neutered, approximately 6 years of age, was presented to the veterinary clinic due to apathy and anorexia. The cat lived mostly outdoors and was fed raw chicken meat. After 3 days of diagnostic procedures and symptomatic treatment, respiratory distress and neurological signs developed and progressed into epileptic seizures, followed by respiratory and cardiac arrest within the next 3 days. Post-mortem examination revealed necrotic lesions in the liver, lungs, and intestines. Notably, the brain displayed perivascular infiltration of lymphocytes and histiocytes. Few foci of neuronal necrosis in the brain were also confirmed. Microscopic examination of the remaining internal organs was unremarkable. The A/H5N1 virus infection was confirmed using a one-step real-time reverse transcription polymerase chain reaction (RT-qPCR). The disease caused severe neurological and respiratory signs, evidence of consolidations and the presence of numerous B lines, which were detected on lung ultrasound examination; the postmortem findings and detection of A/H5N1 viral RNA in multiple tissues indicated a generalized A/H5N1 virus infection. Moreover, a multidrug-resistant strain of Enterococcus faecium was isolated in pure culture from several internal organs. The source of infection could be exposure to infected birds or their excrements, as well as contaminated raw poultry meat but, in this case, the source of infection could not be identified.
Collapse
Affiliation(s)
- Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Anna Golke
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Michał Kardas
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Kinga Biernacka
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Agata Moroz-Fik
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Andrzej Łobaczewski
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
48
|
Soda K, Tomioka Y, Usui T, Ozaki H, Ito H, Nagai Y, Yamamoto N, Okamatsu M, Isoda N, Kajihara M, Sakoda Y, Takada A, Ito T. Susceptibility of common dabbling and diving duck species to clade 2.3.2.1 H5N1 high pathogenicity avian influenza virus: an experimental infection study. J Vet Med Sci 2023; 85:942-949. [PMID: 37495526 PMCID: PMC10539830 DOI: 10.1292/jvms.23-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
In the winter of 2010-2011, Japan experienced a large outbreak of infections caused by clade 2.3.2.1 H5N1 high pathogenicity avian influenza viruses (HPAIVs) in wild birds. Interestingly, many tufted ducks (Aythya fuligula), which are migratory diving ducks, succumbed to the infection, whereas only one infection case was reported in migratory dabbling duck species, the major natural hosts of the influenza A virus, during the outbreak. To assess whether the susceptibility of each duck species to HPAIVs was correlated with the number of cases, tufted duck and dabbling duck species (Eurasian wigeon, Mareca penelope; mallard, Anas platyrhynchos; Northern pintail, Anas acuta) were intranasally inoculated with A/Mandarin duck/Miyazaki/22M807-1/2011 (H5N1), an index clade 2.3.2.1 virus previously used for experimental infection studies in various bird species. All ducks observed for 10 days post-inoculation (dpi) mostly shed the virus via the oral route and survived. The tufted ducks shed a higher titer of the virus than the other dabbling duck species, and one of them showed apparent neurological symptoms after 7 dpi, which were accompanied by eye lesions. No clinical symptoms were observed in the dabbling ducks, although systemic infection and viremia were observed in some of them sacrificed at 3 dpi. These results suggest that the susceptibility of clade 2.3.2.1 HPAIVs might differ by duck species.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yukiko Tomioka
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tatsufumi Usui
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroichi Ozaki
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yasuko Nagai
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Present address: Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
49
|
Ariyama N, Pardo-Roa C, Muñoz G, Aguayo C, Ávila C, Mathieu C, Almonacid LI, Medina RA, Brito B, Johow M, Neira V. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Wild Birds, Chile. Emerg Infect Dis 2023; 29:1842-1845. [PMID: 37487166 PMCID: PMC10461661 DOI: 10.3201/eid2909.230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry.
Collapse
|
50
|
Mahmoud SH, Khalil AA, Abo Shama NM, El Sayed MF, Soliman RA, Hagag NM, Yehia N, Naguib MM, Arafa AS, Ali MA, El-Safty MM, Mostafa A. Immunogenicity and Cross-Protective Efficacy Induced by an Inactivated Recombinant Avian Influenza A/H5N1 (Clade 2.3.4.4b) Vaccine against Co-Circulating Influenza A/H5Nx Viruses. Vaccines (Basel) 2023; 11:1397. [PMID: 37766075 PMCID: PMC10538193 DOI: 10.3390/vaccines11091397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Controlling avian influenza viruses (AIVs) is mainly based on culling of the infected bird flocks or via the implementation of inactivated vaccines in countries where AIVs are considered to be endemic. Over the last decade, several avian influenza virus subtypes, including highly pathogenic avian influenza (HPAI) H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b and the recent H5N1 clade 2.3.4.4b, have been reported among poultry populations in Egypt. This demanded the utilization of a nationwide routine vaccination program in the poultry sector. Antigenic differences between available avian influenza vaccines and the currently circulating H5Nx strains were reported, calling for an updated vaccine for homogenous strains. In this study, three H5Nx vaccines were generated by utilizing the reverse genetic system: rgH5N1_2.3.4.4, rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2. Further, the immunogenicity and the cross-reactivity of the generated inactivated vaccines were assessed in the chicken model against a panel of homologous and heterologous H5Nx HPAIVs. Interestingly, the rgH5N1_2.3.4.4 induced high immunogenicity in specific-pathogen-free (SPF) chicken and could efficiently protect immunized chickens against challenge infection with HPAIV H5N1_2.3.4.4, H5N8_2.3.4.4 and H5N1_2.2.1.2. In parallel, the rgH5N1_2.2.1.2 could partially protect SPF chickens against infection with HPAIV H5N1_2.3.4.4 and H5N8_2.3.4.4. Conversely, the raised antibodies to rgH5N1_2.3.4.4 could provide full protection against HPAIV H5N1_2.3.4.4 and HPAIV H5N8_2.3.4.4, and partial protection (60%) against HPAIV H5N1_2.2.1.2. Compared to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2 vaccines, chickens vaccinated with rgH5N1_2.3.4.4 showed lower viral shedding following challenge infection with the predefined HPAIVs. These data emphasize the superior immunogenicity and cross-protective efficacy of the rgH5N1_2.3.4.4 in comparison to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2.
Collapse
Affiliation(s)
- Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Ahmed A. Khalil
- Veterinary Serum and Vaccine Research Institute, Agricultural Research Center (ARC), Abbasia, Cairo 11381, Egypt;
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Marwa F. El Sayed
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Reem A. Soliman
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Naglaa M. Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
| | - Mounir M. El-Safty
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center (ARC), Abbasia, Cairo 11517, Egypt (M.M.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (S.H.M.); (M.A.A.)
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|