1
|
Lee JH, Shin Y, Shin KS, Park JY, Kim MS, Park YS, Kim W, Song JY, Noh JY, Cheong HJ, Kang CY, Seo SH, Kim JO, Kim DR, Hwang NS, Yang JS, Kim JH, Shim BS, Song M. Dose-dependent serological profiling of AdCLD-CoV19-1 vaccine in adults. mSphere 2024:e0099824. [PMID: 39723823 DOI: 10.1128/msphere.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions. While both low- and high-dose vaccines induced robust humoral immune responses following vaccination, the quality of antibody features differed between the dose groups. Notably, while no significant difference was observed between the groups in the induction of most S1-specific antibody features, the high-dose group exhibited higher levels of antibodies and a stronger Fc receptor binding response specific to the S2 antigen. Moreover, univariate and multivariate analyses revealed that the high-dose vaccine induced higher levels of S2-specific antibodies binding to FcγR2A and FcγR3B, closely associated with antibody-dependent neutrophil phagocytosis (ADNP). Further analysis using the Omicron BA.2 variant demonstrated that the high-dose group maintained significantly higher levels of IgG and FcγR3B binding to the S2 antigen and exhibited a significantly higher ADNP response for the S2 antigen compared with the low-dose group. These findings underscore the importance of considering diverse humoral immune responses when evaluating vaccine efficacy and provide insights for optimizing adenovirus vector-based SARS-CoV-2 vaccine doses.IMPORTANCEOptimization of vaccine dose is crucial for eliciting effective immune responses. In addition to neutralizing antibodies, non-neutralizing antibodies that mediate Fc-dependent effector functions play a key role in protection against various infectious diseases, including coronavirus disease 2019. Using a systems serology approach, we demonstrated significant dose-dependent differences in the humoral immune responses induced by the AdCLD-CoV19-1 chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, particularly against the SARS-CoV-2 spike 2 domain. These findings highlight the importance of assessing not only neutralizing antibody titers but also the quality and functionality of antibody responses when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Jung Hyuk Lee
- International Vaccine Institute, Seoul, South Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Yuna Shin
- International Vaccine Institute, Seoul, South Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Ju Yeon Park
- International Vaccine Institute, Seoul, South Korea
| | - Mi Sun Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Wuhyun Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | | | - Jae-Ouk Kim
- International Vaccine Institute, Seoul, South Korea
| | | | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
- BioMAX Institute, Seoul National University, Seoul, South Korea
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, South Korea
- College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Manki Song
- International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
2
|
Harris AW, Kurtovic L, Nogueira J, Bouzas I, Opi DH, Wines BD, Lee WS, Hogarth PM, Poumbourios P, Drummer HE, Valim C, Porto LC, Beeson JG. Induction of Fc-dependent functional antibodies against different variants of SARS-CoV-2 varies by vaccine type and prior infection. COMMUNICATIONS MEDICINE 2024; 4:273. [PMID: 39702507 DOI: 10.1038/s43856-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND SARS-CoV-2 transmission and COVID-19 disease severity is influenced by immunity from natural infection and/or vaccination. Population-level immunity is complicated by the emergence of viral variants. Antibody Fc-dependent effector functions are as important mediators in immunity. However, their induction in populations with diverse infection and/or vaccination histories and against variants remains poorly defined. METHODS We evaluated Fc-dependent functional antibodies following vaccination with two widely used vaccines, AstraZeneca (AZ) and Sinovac (SV), including antibody binding of Fcγ-receptors and complement-fixation in vaccinated Brazilian adults (n = 222), some of who were previously infected with SARS-CoV-2, as well as adults with natural infection only (n = 200). IgG, IgM, IgA, and IgG subclasses were also quantified. RESULTS AZ induces greater Fcγ-receptor-binding (types I, IIa, and IIIa/b) antibodies than SV or natural infection. Previously infected individuals have significantly greater vaccine-induced responses compared to naïve counterparts. Fcγ-receptor-binding is highest among AZ vaccinated individuals with a prior infection, for all receptor types, and substantial complement-fixing activity is only seen among this group. SV induces higher IgM than AZ, but this does not drive better complement-fixing activity. Some SV responses are associated with subject age, whereas AZ responses are not. Importantly, functional antibody responses are well retained against the Omicron BA.1 S protein, being best retained for Fcγ-receptor-1 binding, and are higher for AZ than SV. CONCLUSIONS Hybrid immunity, from combined natural exposure and vaccination, generates strong Fc-mediated antibody functions which may contribute to immunity against evolving SARS-CoV-2 variants. Understanding determinants of Fc-mediated functions may enable future vaccines with greater efficacy against different variants.
Collapse
Affiliation(s)
- Alexander W Harris
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Jeane Nogueira
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabel Bouzas
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D Herbert Opi
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Departments of Medicine, The University of Melbourne, Melbourne, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Pantelis Poumbourios
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Heidi E Drummer
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Clarissa Valim
- Boston University School of Public Health, Boston University, Boston, USA
| | - Luís Cristóvão Porto
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.
- Department of Immunology, Monash University, Melbourne, Australia.
- Departments of Medicine, The University of Melbourne, Melbourne, Australia.
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Li C, Yu J, Issa R, Wang L, Ning M, Yin S, Li J, Wu C, Chen Y. CoronaVac-induced antibodies that facilitate Fc-mediated neutrophil phagocytosis track with COVID-19 disease resolution. Emerg Microbes Infect 2024:2434567. [PMID: 39584817 DOI: 10.1080/22221751.2024.2434567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear. To fully define the potential immune correlates of Fc-mediated effector functions, we comprehensively analyzed the above Fc-mediated effector functions in two study cohorts. In the CoronaVac vaccinee cohort, individuals without breakthrough infection exhibited higher levels of ADCP and ADNP activities with a greater degree of cross-reactivity compared to those who had breakthrough infection. A predictive model was established incorporating ADNP activity and IgG titer, achieving an area under the curve (AUC)of 0.837. In the COVID-19 patient cohort, BA.5-specific ADCP and ADNP responses were significantly reduced in COVID-19 patients with fatal outcomes compared to milder outcomes. The prognostic model incorporating WT, BA.5, and XBB.1.5 spike-specific ADNP demonstrated effective predictive ability, achieving an AUC of 0.890. Meanwhile, transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients in the acute phases of infection highlighted remarkably upregulation of neutrophil activity and phagocytic function, further reinforcing the essential role of ADNP. Collectively, our findings underscored Fc-mediated effector activities, especially neutrophil phagocytosis, as significant antibody biomarkers for the risk of SARS-CoV-2 breakthrough infection and COVID-19 prognosis.
Collapse
Affiliation(s)
- Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Yu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rahma Issa
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Pharmacy, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Lili Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Chen Y, Zhao T, Chen L, Jiang G, Geng Y, Li W, Yin S, Tong X, Tao Y, Ni J, Lu Q, Ning M, Wu C. SARS-CoV-2 Omicron infection augments the magnitude and durability of systemic and mucosal immunity in triple-dose CoronaVac recipients. mBio 2024; 15:e0240723. [PMID: 38456703 PMCID: PMC11005357 DOI: 10.1128/mbio.02407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The inactivated whole-virion vaccine, CoronaVac, is one of the most widely used coronavirus disease 2019 (COVID-19) vaccines worldwide. There is a paucity of data indicating the durability of the immune response and the impact of immune imprinting induced by CoronaVac upon Omicron infection. In this prospective cohort study, 41 recipients of triple-dose CoronaVac and 14 unvaccinated individuals were recruited. We comprehensively profiled adaptive immune parameters in both groups, including spike-specific immunoglobulin (Ig) G and IgA titers, neutralizing activity, B cells, circulating follicular helper T (cTfh) cells, CD4+ and CD8+ T cells, and their memory subpopulations at 12 months after the third booster dose and at 4 and 20 weeks after Omicron BA.5 infection. Twelve months after the third CoronaVac vaccination, spike-specific antibodies and cellular responses were detectable in most vaccinated individuals. BA.5 infection significantly augmented the magnitude, cross-reactivity, and durability of serum neutralization activities, Fc-mediated phagocytosis, nasal spike-specific IgA responses, memory B cells, activated cTfh cells, memory CD4+ T cells, and memory CD8+ T cells for both the ancestral strain and Omicron subvariants, compared to unvaccinated individuals. Notably, the increase in BA.5-specific immunity after breakthrough infection was consistently comparable to or higher than that of the ancestral strain, suggesting no evidence of immune imprinting. Immune landscape analyses showed that vaccinated individuals have better synchronization of multiple immune components than unvaccinated individuals upon heterologous infection. Our data provide detailed insight into the protective role of the inactivated COVID-19 vaccine in shaping humoral and cellular immunity to Omicron infection. IMPORTANCE There is a paucity of data indicating the durability of the immune response and the impact of immune imprinting induced by CoronaVac upon Omicron breakthrough infection. In this prospective cohort study, the anti-severe acute respiratory syndrome coronavirus 2 adaptive responses were analyzed before and after the Omicron BA.5 infection. Our data provide detailed insight into the protective role of the inactivated COVID-19 vaccine in shaping humoral and cellular immune responses to heterologous Omicron infection. CLINICAL TRIAL This study is registered with ClinicalTrials.gov as NCT05680896.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Tiantian Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wanting Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Tong
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Ni
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qiuhan Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|