1
|
Liu Y, Ni J, Gu J, Liu S, Huang Y, Sadeghi H. Influence of biopolymer-vegetation interaction on soil hydro-mechanical properties under climate change: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176535. [PMID: 39332716 DOI: 10.1016/j.scitotenv.2024.176535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil reinforcement using eco-friendly biopolymer and vegetation has been increasingly popular in geotechnical engineering. However, research is still in its early stages due to complex biochemical interactions between biopolymers and plants. Moreover, under the increasing climate change, extreme weather poses severe challenges to the effectiveness of biopolymer-vegetation on soil treatment. Therefore, this paper provides a comprehensive review and summary of recent research on the influence of biopolymer and biopolymer-vegetation interaction on soil properties. First, this paper evaluates the various hydraulic and mechanical properties of soils after biopolymer treatment, including compaction characteristics, Atterberg limits, unconfined compressive strength, shear strength, tensile strength, permeability, water holding capacity, slaking behavior, and erosion resistance, as well as the influence of climate change. Then, the application of biopolymer-vegetation measure in the current field of soil treatment is summarized, and the biopolymer-vegetation interaction is discussed, including the influence of biopolymers on plant germination rate, growth conditions, wilting rate, and other indicators. Under drought and water scarcity conditions, biopolymers can improve soil mechanical strength and water retention, reducing plant wilting rate, and enhancing the survival ability of plants under extreme climate changes. Appropriate biopolymers can increase soil strength by >50 %, reduce strength and mass losses from dry-wet cycles to within 10 %, enhance grass seed germination rates by over 60 %, and reduce wilting rates under drought stress by 80 %. Finally, the research gaps and deficiencies in this field are highlighted, and potential research hotspots that can be strengthened and studied in the future are proposed. This review demonstrates the biopolymer-vegetation measure to be a new ecological restoration technology with widespread application prospects.
Collapse
Affiliation(s)
- Yifei Liu
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
| | - Junjun Ni
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China.
| | - Jiayu Gu
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
| | - Shusen Liu
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
| | - Yi Huang
- State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China
| | - Hamed Sadeghi
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Ishaq W, Afzal A, Farooq M, Sarfraz M, Adnan S, Ahmed H, Waqas M, Safdar Z. Design and Evaluation of Inorganic/Organic Hybrid Bio-composite for Site-Specific Oral Delivery of Darifenacin. AAPS PharmSciTech 2024; 25:204. [PMID: 39237789 DOI: 10.1208/s12249-024-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.
Collapse
Affiliation(s)
- Wafa Ishaq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| | - Attia Afzal
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- School of Pharmacy, Multan University of Science and Technology, Multan, 59201, Pakistan.
| | - Muhammad Sarfraz
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland.
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51311, Pakistan
| | - Hammad Ahmed
- Department of Pharmacy, Sialkot Institute of Science and Technology, Sialkot, 51311, Pakistan
| | - Muhammad Waqas
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Zainab Safdar
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| |
Collapse
|
3
|
Sajjadi M, Nasrollahzadeh M, Sattari MR, Ghafuri H, Jaleh B. Sulfonic acid functionalized cellulose-derived (nano)materials: Synthesis and application. Adv Colloid Interface Sci 2024; 328:103158. [PMID: 38718629 DOI: 10.1016/j.cis.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The preparation/application of heterogeneous (nano)materials from natural resources has currently become increasingly fascinating for researchers. Cellulose is the most abundant renewable polysaccharide on earth. The unique physicochemical, structural, biological, and environmental properties of this natural biopolymer have led to its increased application in many fields. The more desirable features of cellulose-based (nano)materials such as biodegradability, renewability, biocompatibility, cost-effectiveness, simplicity of preparation, environmentally friendly nature, and widespread range of applications have converted them into promising compounds in medicine, catalysis, biofuel cells, and water/wastewater treatment processes. Functionalized cellulose-based (nano)materials containing sulfonic acid groups may prove to be one of the most promising sustainable bio(nano)materials of modern times in the field of cellulose science and (nano)technology owing to their intrinsic features, high crystallinity, high specific surface area, abundance, reactivity, and recyclability. In this review, the developments in the application of sulfonated cellulose-based (nano)materials containing sulfonic acid (-SO3H) groups in catalysis, water purification, biological/biomedical, environmental, and fuel cell applications have been reported. This review provides an overview of the methods used to chemically modify cellulose and/or cellulose derivatives in different forms, including nanocrystals, hydrogels, films/membranes, and (nano)composites/blends by introducing sulfonate groups on the cellulose backbone, focusing on diverse sulfonating agents utilized and substitution regioselectivity, and highlights their potential applications in different industries for the generation of alternative energies and products.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
4
|
Nagaraja S, Anand PB, K MK, Ammarullah MI. Synergistic advances in natural fibre composites: a comprehensive review of the eco-friendly bio-composite development, its characterization and diverse applications. RSC Adv 2024; 14:17594-17611. [PMID: 38828274 PMCID: PMC11140556 DOI: 10.1039/d4ra00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
In recent years, there has been enhanced interest in the domain of natural fibre composites (NFCs) because of their capacity to provide eco-compatible solutions to ever-increasing ecological concerns. This review provides an intensive assessment of the current situation with examination, progress, and applications concerning NFCs. Natural fibres, viz., jute, kenaf, ramie, banana, coir, wheat grass, etc., and their scope in the development of sustainable composites, techniques involved in the fabrication of the composites, characterization techniques, viz., thermo-mechanical and morphological, biodegradability, dampness retention attributes, and potential applications have been extensively reviewed and reported. Besides, this review encompasses the deterrents and conceivable outcomes connected to NFCs, alongside their environmental implications and monetary feasibility. Through a critical evaluation of the existing literature, this article provides a detailed summary of NFCs for real-time engineering applications. It also provides insights into sustainability practices through NFCs.
Collapse
Affiliation(s)
- Santhosh Nagaraja
- Department of Mechanical Engineering, MVJ College of Engineering Bangalore 560067 Karnataka India
| | | | - Mohan Kumar K
- Department of Mechanical Engineering, MVJ College of Engineering Bangalore 560067 Karnataka India
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan Bandung 40153 West Java Indonesia
| |
Collapse
|
5
|
Azka MA, Sapuan SM, Abral H, Zainudin ES, Aziz FA. An examination of recent research of water absorption behavior of natural fiber reinforced polylactic acid (PLA) composites: A review. Int J Biol Macromol 2024; 268:131845. [PMID: 38677695 DOI: 10.1016/j.ijbiomac.2024.131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Researchers have begun focusing on developing biodegradable materials, such as natural fiber/polymer composites (NFPC), since the growing of environmental concerns related to waste management. One crucial aspect that must be established in the development of these composites is their water-absorption behavior. This paper examines the water absorption (WA) behavior of NFPC, with a specific emphasis on natural fiber/polylactic acid (PLA) composites. It discusses processes and numerous aspects related to this behavior, based on recent published research. This review analyzes the influence of several factors, such as the loading of natural fiber, the combination of different natural fibers, the methods used in manufacturing, and the temperature of the water, on the WA behavior of natural fiber/PLA composites. It also explores how WA affects the properties of these composites. In addition, this review also presented techniques for improving the WA resistance of the composites. This review paper provides researchers with insights into the WA behavior of the composites, aiming to facilitate the development of a versatile and eco-friendly material that may effectively address waste disposal challenges.
Collapse
Affiliation(s)
- Muhammad Adlan Azka
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - E S Zainudin
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Faieza Abdul Aziz
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Pantaleoni A, Sarasini F, Russo P, Passaro J, Giorgini L, Bavasso I, Santarelli ML, Petrucci E, Valentini F, Bracciale MP, Marrocchi A. Facile and Bioinspired Approach from Gallic Acid for the Synthesis of Biobased Flame Retardant Coatings of Basalt Fibers. ACS OMEGA 2024; 9:19099-19107. [PMID: 38708227 PMCID: PMC11064428 DOI: 10.1021/acsomega.3c10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
A sustainable, bioinspired approach to functionalize basalt fibers with an innovative gallic acid (GA)-iron phenyl phosphonate complex (BF-GA-FeP), for the purpose of improving the flame retardancy in composite materials, is developed. BFs were at first pretreated with O3, obtaining surface free hydroxyl groups that allowed the subsequent covalent immobilization of biosourced GA units on the fiber through ester linkages. Phenolic -OH groups of the GA units were then exploited for the complexation of iron phenyl phosphonate, resulting in the target-complex-coated BF fiber (BF-GA-FeP). Microwave plasma atomic emission spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analyses of BF-GA-FeP highlighted an increase in iron content, modification of fiber morphology, and occurrence of phosphorus, respectively. BFs, modified with a low amount of the developed complex, were used to reinforce a poly(lactic acid) (PLA) matrix in the production of a biocomposite (PLA/BF-FeP). PLA/BF-FeP showed a higher thermal stability than neat PLA and PLA reinforced with untreated BFs (PLA/BF), as confirmed by thermogravimetric analysis. The cone calorimeter test highlighted several advantages for PLA/BF-FeP, including a prolonged time to ignition, a reduced time to flame out, an 8% decrease in the peak heat release rate, and a 15% reduced fire propagating index compared to PLA/BF.
Collapse
Affiliation(s)
- Alessia Pantaleoni
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Fabrizio Sarasini
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Pietro Russo
- Institute
for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy
| | - Jessica Passaro
- Institute
for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Irene Bavasso
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Maria Laura Santarelli
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Elisabetta Petrucci
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Federica Valentini
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Maria Paola Bracciale
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Assunta Marrocchi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
7
|
Verma C, Singh V, AlFantazi A. Cellulose, cellulose derivatives and cellulose composites in sustainable corrosion protection: challenges and opportunities. Phys Chem Chem Phys 2024; 26:11217-11242. [PMID: 38587831 DOI: 10.1039/d3cp06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The use of cellulose-based compounds in coating and aqueous phase corrosion prevention is becoming more popular because they provide excellent protection and satisfy the requirements of green chemistry and sustainable development. Cellulose derivatives, primarily carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC), are widely employed in corrosion prevention. They function as efficient inhibitors by adhering to the metal's surface and creating a corrosion-inhibitive barrier by binding using their -OH groups. Their inhibition efficiency (%IE) depends upon various factors, including their concentration, temperature, chemical composition, the nature of the metal/electrolyte and availability of synergists (X-, Zn2+, surfactants and polymers). Cellulose derivatives also possess potential applications in anticorrosive coatings as they prevent corrosive species from penetrating and encourage adhesion and cohesion, guaranteeing the metal substrate underneath long-term protection. The current review article outlines the developments made in the past and present to prevent corrosion in both the coating phase and solution by using cellulose derivatives. Together with examining the difficulties of the present and the prospects for the future, the corrosion inhibition mechanism of cellulose derivatives in the solution and coating phases has also been investigated.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Vidusha Singh
- Department of Chemistry, Udai Pratap (U.P.) Autonomous College, Varanasi 221002, India
| | - Akram AlFantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Moghaddam MK, Gheshlagh FG, Moezzi M. Extraction and characterization of cellulose microfibers from cornhusk for application as reinforcing agent in biocomposite. Int J Biol Macromol 2024; 264:130669. [PMID: 38453110 DOI: 10.1016/j.ijbiomac.2024.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study aims to extract and characterize cellulose microfibers from cornhusk, an agricultural by-product. The extracted fibers will then be used as a reinforcing agent in a biocomposite made of thermoplastic corn starch. The process of extracting cellulose microfibers involved two treatments: sequential alkali treatment (using sodium hydroxide at 120 °C for 120 min) and peroxide bleach treatment (using hydrogen peroxide at 90 °C for 60 min). Various techniques such as Fourier transform infrared (FTIR), X-Ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were employed to characterize the extracted fibers. The properties of the composite were examined through tensile strength tests, contact angle measurements, and UV-Vis spectrophotometry. The study found that cellulose microfibers were successfully extracted from cornhusks, with a diameter of 7 to 30 μm and a crystallinity of 65 %. The treated fibers showed gradual degradation between 150 °C and 350 °C, indicating a lower amount of non-cellulosic substances compared to untreated cornhusks. Adding 10 % of the microfibers to the thermoplastic starch composite increased the tensile stress at breaking and the Young's modulus, but decreased the contact angle of water droplets and the film's transparency.
Collapse
Affiliation(s)
| | | | - Meysam Moezzi
- Textile Engineering Department, University of Bonab, Bonab 5551395133, Iran
| |
Collapse
|
9
|
Musa AA, Onwualu AP. Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction. Heliyon 2024; 10:e24683. [PMID: 38314269 PMCID: PMC10837508 DOI: 10.1016/j.heliyon.2024.e24683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
In recent years, there has been a notable surge in research focusing on the use of natural fiber-reinforced polymer composites (NFRPCs) in the automobile industry. These materials offer several advantages over their synthetic counterparts, including lightweight properties, renewability, cost-effectiveness, and environmental friendliness. This increasing research interest in NFRPCs within the automotive sector is primarily aimed at overcoming the challenges that have thus far limited their industrial applications when compared to conventional synthetic composites. This paper provides a comprehensive overview of the potential applications and sustainability of lignocellulosic-based NFRPCs in the automobile industry. It examines the current state of knowledge, identifies research needs and existing limitations, and provides insights into future perspectives. This review shows that, while lignocellulosic fibers hold great promise as sustainable, high-performance, and cost-effective alternatives to traditional reinforcing fibers, continuous research is needed to further address issues such as fiber-matrix compatibility, processing techniques, long-term durability concerns, and general property improvement. These advancements are essential to meet the increasing performance demand for eco-friendly, renewable, and energy-efficient materials in automotive design.
Collapse
Affiliation(s)
- Abdulrahman Adeiza Musa
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria-Nigeria
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
| |
Collapse
|
10
|
Techawinyutham L, Techawinyutham W, Rangappa SM, Siengchin S. Lignocellulose based biofiller reinforced biopolymer composites from fruit peel wastes as natural pigment. Int J Biol Macromol 2024; 257:128767. [PMID: 38091681 DOI: 10.1016/j.ijbiomac.2023.128767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
In this study, the utilization of mangosteen and durian peel wastes as bio-filler and natural pigment in biopolymer of polybutyrate adipate terephthalate (PBAT) were examined. The related research work of hybridization of both mangosteen and durian peels reinforced in biopolymer as cellulose-based bio fillers and natural pigment is rarely studied. The content variation of mangosteen powder and durian powder ranged from 0 to 30 wt% with an increment of 10. The influence of mangosteen and durian powders reinforced in PBAT on color change, morphological, chemical composition, mechanical, thermal, and rheological properties were determined. Mangosteen peel and durian peel provided dark appearance for the green composites without pre-burn of these fruit peels. It can be concluded that mangosteen peel and durian peel can be used as bio pigment and natural reinforcement material in biopolymer matrix which can reduce massive waste of mangosteen and durian peel and add value to these wastes. These black biopolymer composites can be used in applications of eco-friendly food packaging and medicine zipper packaging. The overall mechanical properties, thermal stability, and dark color of mangosteen/PBAT composites were greater than those of durian/PBAT composites. However, durian/PBAT composites presented greater thermal and rheological properties than mangosteen/PBAT composites.
Collapse
Affiliation(s)
- Laongdaw Techawinyutham
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand.
| | - Wiroj Techawinyutham
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
11
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Gholami A, Mazaheri Y, Riazi M, Kurniawan D, Arjmand M, Madkhali O, Aljabri MD, Rahman MM, Chiang WH. Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. CHEM REC 2024; 24:e202200266. [PMID: 36995072 DOI: 10.1002/tcr.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Indexed: 03/31/2023]
Abstract
The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Yousef Mazaheri
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, 71946-84334, Iran
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - O Madkhali
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mahmood D Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry & Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| |
Collapse
|
12
|
Sudhakar MP, Maurya R, Mehariya S, Karthikeyan OP, Dharani G, Arunkumar K, Pereda SV, Hernández-González MC, Buschmann AH, Pugazhendhi A. Feasibility of bioplastic production using micro- and macroalgae- A review. ENVIRONMENTAL RESEARCH 2024; 240:117465. [PMID: 37879387 DOI: 10.1016/j.envres.2023.117465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Plastic disposal and their degraded products in the environment are global concern due to its adverse effects and persistence in nature. To overcome plastic pollution and its impacts on environment, a sustainable bioplastic production using renewable feedstock's, such as algae, are envisioned. In this review, the production of polymer precursors such as polylactic acid, polyhydroxybutyrates, polyhydroxyalkanoates, agar, carrageenan and alginate from microalgae and macroalgae through direct conversion and fermentation routes are summarized and discussed. The direct conversion of algal biopolymers without any bioprocess (whole algal biomass used emphasizing zero waste discharge concept) favours economic feasibility. Whereas indirect method uses conversion of algal polymers to monomers after pretreatment followed by bioplastic precursor production by fermentation are emphasized. This review paper also outlines the current state of technological developments in the field of algae-based bioplastic, both in industry and in research, and highlights the creation of novel solutions for green bioplastic production employing algal polymers. Finally, the cost economics of the bioplastic production using algal biopolymers are clearly mentioned with future directions of next level bioplastic production. In this review study, the cost estimation was given at laboratory level bioplastic production using casting methods. Further development of bioplastics at pilot scale level may give clear economic feasibility of production at industry. Here, in this review, we emphasized the overview of algal biopolymers for different bioplastic product development and its economic value and also current industries involved in bioplastic production.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India; Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India.
| | - Rahulkumar Maurya
- Coastal Algae Cultivation, Microbial Biofuels & Biochemicals, Advanced Biofuels Division, The Energy and Resources Institute, Navi Mumbai, 400 708, India
| | | | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India
| | - Kulanthiyesu Arunkumar
- Microalgae Group-Phycoscience Laboratory, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India
| | - Sandra V Pereda
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - María C Hernández-González
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Alejandro H Buschmann
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
13
|
Asadzadeh N, Ghorbanpour M, Sayyah A. Effects of filler type and content on mechanical, thermal, and physical properties of carrageenan biocomposite films. Int J Biol Macromol 2023; 253:127551. [PMID: 37865375 DOI: 10.1016/j.ijbiomac.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study investigates the influence of various fillers on the properties of carrageenan, a natural polymer derived from red seaweed. Despite its potential for enhanced biocomposite film development, carrageenan faces challenges related to strength. The incorporation of nanoclay into the carrageenan film resulted in a significant increase in film thickness from 0.026 to 0.068 mm. The UV light transmission value for the carrageenan film alone was measured at 30.9 %, whereas films containing 5 wt% of Tetraethyl orthosilicate (TEOS), 3-Aminopropyltriethoxysilane (APTES), and nanoclay exhibited reduced transmission values of 23 %, 18 %, and 1 %, respectively. Notably, the tensile strength of the unfilled carrageenan film was 38.4 MPa, which increased to 38.6, 57, and 60 MPa upon the addition of 3 wt% of nanoclay, APTES, and TEOS fillers, respectively. All fillers contributed to improved tensile strength, with TEOS demonstrating the highest enhancement. The optimal filler content was determined to be 3 wt%. Regarding thermal properties, films containing TEOS displayed higher thermal stability compared to those with APTES, while films incorporating nanoclay exhibited the lowest stability. Findings provide insights into the effects of different fillers on the mechanical, physical and thermal properties of carrageenan films, supporting the development of improved biocomposite materials suitable for application in food packaging.
Collapse
Affiliation(s)
- Naser Asadzadeh
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Mohammad Ghorbanpour
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Ali Sayyah
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| |
Collapse
|
14
|
Lackner M, Mukherjee A, Koller M. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers (Basel) 2023; 15:4695. [PMID: 38139947 PMCID: PMC10747977 DOI: 10.3390/polym15244695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end up in the environment, most of this pollution can be attributed to a lack of infrastructure for appropriately collecting and recycling plastic waste, mainly due to mismanagement. Because of the huge production volumes of plastics, their merits of being cheap to produce and process and their recalcitrance have turned into a huge disadvantage, since plastic waste has become the end point of our linear economic usage model, and massive amounts have started to accumulate in the environment, leading to microplastics pollution and other detrimental effects. A possible solution to this is offered by "bioplastics", which are materials that are either (partly) biobased and/or degradable under defined conditions. With the rise of bioplastics in the marketplace, several standards and test protocols have been developed to assess, certify, and advertise their properties in this respect. This article summarizes and critically discusses different views on bioplastics, mainly related to the properties of biodegradability and biobased carbon content; this shall allow us to find a common ground for clearly addressing and categorizing bioplastic materials, which could become an essential building block in a circular economy. Today, bioplastics account for only 1-2% of all plastics, while technically, they could replace up to 90% of all fossil-based plastics, particularly in short-lived goods and packaging, the single most important area of use for conventional plastics. Their replacement potential not only applies to thermoplastics but also to thermosets and elastomers. Bioplastics can be recycled through different means, and they can be made from renewable sources, with (bio)degradability being an option for the mismanaged fraction and special applications with an intended end of life in nature (such as in seed coatings and bite protection for trees). Bioplastics can be used in composites and differ in their properties, similarly to conventional plastics. Clear definitions for "biobased" and "biodegradable" are needed to allow stakeholders of (bio)plastics to make fact-based decisions regarding material selection, application, and end-of-life options; the same level of clarity is needed for terms like "renewable carbon" and "bio-attributed" carbon, definitions of which are summarized and discussed in this paper.
Collapse
Affiliation(s)
- Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
- CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Anindya Mukherjee
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
| |
Collapse
|
15
|
Zhuikova YV, Zhuikov VA, Makhina TK, Efremov YM, Aksenova NA, Timashev PS, Bonartseva GA, Varlamov VP. Preparation and characterization of poly(3-hydroxybutyrate)/chitosan composite films using acetic acid as a solvent. Int J Biol Macromol 2023; 248:125970. [PMID: 37494998 DOI: 10.1016/j.ijbiomac.2023.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Poly(3-hydroxybutyrate) and chitosan are among the most widely used polymers for biomedical applications due to their biocompatibility, renewability and low toxicity. The creation of composite materials based on biopolymers belonging to different classes makes it possible to overcome the disadvantages of each of the components and to obtain a material with specific properties. Solving this problem is associated with difficulties in the selection of conditions and solvents for obtaining the composite material. In our study, acetic acid was used as a common solvent for hydrophobic poly(3-hydroxybutyrate) and chitosan. Mechanical, thermal, physicochemical and surface properties of the composites and homopolymers were investigated. The composite films had less crystallinity and hydrophobicity than poly(3-hydroxybutyrate), and the addition of chitosan caused an increase in moisture absorption, a decrease in contact angle and changes in mechanical properties of the poly(3-hydroxybutyrate). The inclusion of varying amounts of chitosan controlled the properties of the composite, which will be important in the future for its specific biomedical applications.
Collapse
Affiliation(s)
- Yulia V Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana K Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nadezhda A Aksenova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare" Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Valery P Varlamov
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Qiu L, Luo Q, Bai C, Xiong G, Jin S, Li H, Liao T. Preparation and Characterization of a Biodegradable Film Using Irradiated Chitosan Incorporated with Lysozyme and Carrageenan and Its Application in Crayfish Preservation. Foods 2023; 12:2642. [PMID: 37509734 PMCID: PMC10378868 DOI: 10.3390/foods12142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a composite film was prepared using irradiated chitosan, lysozyme, and carrageenan for crayfish preservation. First, the chitosan was degraded by gamma rays, with the best antimicrobial properties being found at 100 KGy. By using the response surface method, the components of the composite film were irradiated chitosan (CS) at 0.016 g/mL, lysozyme (LM) at 0.0015 g/mL, and carrageenan (CA) at 0.002 g/mL. When compared to the natural chitosan film, the Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the chemical properties of the composite film did not change with the addition of LM and CA, while the physical and antibacterial properties increased, including tensile strength (16.87 → 20.28 N), hydrophobicity (67.9 → 86.3°), and oxygen permeability (31.66 → 24.31 m3·um/m2·day·kPa). Moreover, the antibacterial activity of the films increased with the addition of LM and CA, especially for Shewanella putrefaciens: the zone of inhibition (mm) of CS, CS/LM, and CS/LM/CA was 9.97 ± 0.29, 14.32 ± 0.31, and 14.78 ± 0.21, respectively. Finally, the CS/LM/CA film could preserve crayfish for 10 days at 4 °C, whereas the polyethylene (PE) film could only preserve them for 6 days. Moreover, the composite film was excellent at inhibiting oxidative deterioration (TBARS value: 2.12 mg/kg, day10) and keeping the texture of crayfish muscle. Overall, our results suggested that the CS/LM/CA composite film produced can be applied as a biodegradable film in aquatic product packaging.
Collapse
Affiliation(s)
- Liang Qiu
- Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Qinghua Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chan Bai
- Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Guangquan Xiong
- Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hailan Li
- Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Tao Liao
- Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| |
Collapse
|
17
|
Wolff S, Rüppel A, Rida HA, Heim HP. Emission and Mechanical Properties of Glass and Cellulose Fiber Reinforced Bio-Polyamide Composites. Polymers (Basel) 2023; 15:2603. [PMID: 37376249 DOI: 10.3390/polym15122603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Climate change, access, and monopolies to raw material sources as well as politically motivated trade barriers are among the factors responsible for a shortage of raw materials. In the plastics industry, resource conservation can be achieved by substituting commercially available petrochemical-based plastics with components made from renewable raw materials. Innovation potentials are often not used due to a lack of information on the use of bio-based materials, efficient processing methods, and product technologies or because the costs for new developments are too high. In this context, the use of renewable resources such as fiber-reinforced polymeric composites based on plants has become an important criterion for the development and production of components and products in all industrial sectors. Bio-based engineering thermoplastics with cellulose fibers can be used as substitutes because of their higher strength and heat resistance, but the processing of this composite is still challenging. In this study, composites were prepared and investigated using bio-based polyamide (PA) as a polymer matrix in combination with a cellulosic fiber and, for comparison purposes, a glass fiber. A co-rotating twin-screw extruder was used to produce the composites with different fiber contents. For the mechanical properties, tensile tests and charpy impact tests were performed. Compared to glass fiber, reinforced PA 6.10 and PA 10.10, a significantly higher elongation at break with regenerated cellulose fibers, can be achieved. PA 6.10 and PA 10.10 achieve significantly higher impact strengths with the regenerated cellulose fibers than the composites with glass fibers. In the future, bio-based products will also be used in indoor applications. For characterization, the VOC emission GC-MS analysis and odor evaluation methods were used. The VOC emissions (quantitative) were at a low level but the results of the odor tests of selected samples showed values mostly above the required limit values.
Collapse
Affiliation(s)
- Susanne Wolff
- Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
| | - Annette Rüppel
- Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
| | - Hassan Ali Rida
- Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
| | - Hans-Peter Heim
- Institute of Material Engineering, Polymer Engineering, University of Kassel, 34125 Kassel, Germany
| |
Collapse
|
18
|
Arrieta AA, Nuñez de la Rosa Y, Palencia M. Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte-Starch/Cardol. Polymers (Basel) 2023; 15:polym15091994. [PMID: 37177142 PMCID: PMC10181454 DOI: 10.3390/polym15091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation-reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.
Collapse
Affiliation(s)
- Alvaro A Arrieta
- Department of Biology and Chemistry, Universidad de Sucre (University of Sucre), Sincelejo 700001, Colombia
| | - Yamid Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 110231, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Sciences, University of Valle, Cali 760042, Colombia
| |
Collapse
|
19
|
Sasikanth V, Meganathan B, Rathinavel T, Seshachalam S, Nallappa H, Gopi B. General overview of biopolymers: structure and properties. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
Biopolymers are synthesized from a biological origin under natural phenomenon especially during their growth cycle, in the form of polymeric substances that portrays excellent properties such as flexibility, tensile strength, steadiness, reusability, and so on. The amalgamated form of two or more biopolymers leads to the formation of “biocomposites” with novel applications. Several mechanisms were identified for the effective production of biopolymers from diverse life forms such as microbial origin plant and animal origin. Based on their origin, biopolymer differs in their structure and functions. Biopolymers are preferred over chemically synthesized polymers due to their biodegradability and their impact on the environment. Biopolymers play a pivotal role in pharmaceutical industries. The biopolymers could be employed for, the administration of medicine as well as regenerative medicine to reach minimal immunogenicity and maximum pharmacological expressivity in a treated individual. Based on their properties biopolymers were exclusively used in medical devices, cosmaceuticals, and confectionaries, it is also used as additives in food industries, bio-sensors, textile industries, and wastewater treatment plants. Ecological support is of utmost concern nowadays due to the ever-expanding ramification over the planet by usage of plastic as packaging material, turning up scientists and researchers to focus on biodegradable biopolymer utilization. The miscibility-structural-property relation between every biopolymer must be focused on to improve the better environment. Specific biopolymers are designed for the betterment of agrarian and commoners of society. Advanced structural modifications, properties of biopolymers, and applications of biopolymers to achieve a greener environment were discussed in this chapter.
Collapse
Affiliation(s)
- Vasuki Sasikanth
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | | | | | - Sindhu Seshachalam
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Harini Nallappa
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Brindha Gopi
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| |
Collapse
|
20
|
Pulikkalparambil H, Babu A, Thilak A, Vighnesh N, Mavinkere Rangappa S, Siengchin S. A review on sliding wear properties of sustainable biocomposites: Classifications, fabrication and discussions. Heliyon 2023; 9:e14381. [PMID: 36942256 PMCID: PMC10023965 DOI: 10.1016/j.heliyon.2023.e14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Biocomposites have gained huge attention in the field of manufacturing. They are widely accepted over conventional petroleum-based composites due to less environmental footprint and safer living habitats, abundance, availability, recyclability, reusability, and end-life disposals. The potential applications of biocomposites are now widely accepted in key engineering areas such as automotive, construction, consumer products, and aerospace industries. Concurrently, tribological properties for biopolymer composites are an appealing research direction. In this review article, a comprehensive literature survey of recent progress made in sliding wear properties of biocomposites are discussed in detail. It summarizes natural and synthetic ways to attain tribological performances in biocomposites such as biopolymers with bio-fillers, biopolymers with synthetic/inorganic fillers, and non-biopolymers with bio-fillers. The study gives a deeper understanding of the crucial informations regarding sliding wear properties of biocomposites and thereby aid in the future research in the design and preparation of similar composites.
Collapse
Affiliation(s)
- Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Ajish Babu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Patna-801106, India
| | - Anusree Thilak
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - N.P. Vighnesh
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
- Corresponding author.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
21
|
Dalwadi S, Goel A, Kapetanakis C, Salas-de la Cruz D, Hu X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. Int J Mol Sci 2023; 24:3975. [PMID: 36835387 PMCID: PMC9960122 DOI: 10.3390/ijms24043975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Biopolymers are an emerging class of novel materials with diverse applications and properties such as superior sustainability and tunability. Here, applications of biopolymers are described in the context of energy storage devices, namely lithium-based batteries, zinc-based batteries, and capacitors. Current demand for energy storage technologies calls for improved energy density, preserved performance overtime, and more sustainable end-of-life behavior. Lithium-based and zinc-based batteries often face anode corrosion from processes such as dendrite formation. Capacitors typically struggle with achieving functional energy density caused by an inability to efficiently charge and discharge. Both classes of energy storage need to be packaged with sustainable materials due to their potential leakages of toxic metals. In this review paper, recent progress in energy applications is described for biocompatible polymers such as silk, keratin, collagen, chitosan, cellulose, and agarose. Fabrication techniques are described for various components of the battery/capacitors including the electrode, electrolyte, and separators with biopolymers. Of these methods, incorporating the porosity found within various biopolymers is commonly used to maximize ion transport in the electrolyte and prevent dendrite formations in lithium-based, zinc-based batteries, and capacitors. Overall, integrating biopolymers in energy storage solutions poses a promising alternative that can theoretically match traditional energy sources while eliminating harmful consequences to the environment.
Collapse
Affiliation(s)
- Shrey Dalwadi
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | | | - David Salas-de la Cruz
- Department of Chemistry, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
22
|
Polycaprolactone with Glass Beads for 3D Printing Filaments. Processes (Basel) 2023. [DOI: 10.3390/pr11020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
At present, 3D printing is experiencing a great boom. The demand for new materials for 3D printing is also related to its expansion. This paper deals with manufacturing innovative polymer composite filaments suitable for the Fused Filament Fabrication method in 3D printing. As a filler, common and uncostly glass beads were used and mixed with biocompatible and biodegradable poly (ε-caprolactone), as a polymer matrix. This material was characterized via several physical-chemical methods. The Youngs modulus was increasing by about 30% with 20% loading of glass beads, and simultaneously, brittleness and elongations were decreased. The glass beads do not affect the shore hardness of filaments. The rheological measurement confirmed the material stability in a range of temperatures 75–120 °C. The presented work aimed to prepare lightweight biocompatible, cheap material with appropriate mechanical properties, lower printing temperature, and good printing processing. We can assess that the goal was fully met, and these filaments could be used for a wide range of applications.
Collapse
|
23
|
Selected Biopolymers' Processing and Their Applications: A Review. Polymers (Basel) 2023; 15:polym15030641. [PMID: 36771942 PMCID: PMC9919854 DOI: 10.3390/polym15030641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.
Collapse
|
24
|
Both AK, Choudhry D, Cheung CL. Valorization of hemp fibers into biocomposites via one‐step pectin‐based green fabrication process. J Appl Polym Sci 2023. [DOI: 10.1002/app.53586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Deepa Choudhry
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Chin Li Cheung
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| |
Collapse
|
25
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
26
|
Motloung MP, Mofokeng TG, Ray SS. Effects of urea loading on soil biodegradation properties of melt‐processed polycaprolactone‐based composites for potential application in agriculture. J Appl Polym Sci 2022. [DOI: 10.1002/app.53505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
27
|
Nanocellulose: A Fundamental Material for Science and Technology Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228032. [PMID: 36432134 PMCID: PMC9694617 DOI: 10.3390/molecules27228032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Recently, considerable interest has been focused on developing greener and biodegradable materials due to growing environmental concerns. Owing to their low cost, biodegradability, and good mechanical properties, plant fibers have substituted synthetic fibers in the preparation of composites. However, the poor interfacial adhesion due to the hydrophilic nature and high-water absorption limits the use of plant fibers as a reinforcing agent in polymer matrices. The hydrophilic nature of the plant fibers can be overcome by chemical treatments. Cellulose the most abundant natural polymer obtained from sources such as plants, wood, and bacteria has gained wider attention these days. Different methods, such as mechanical, chemical, and chemical treatments in combination with mechanical treatments, have been adopted by researchers for the extraction of cellulose from plants, bacteria, algae, etc. Cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and microcrystalline cellulose (MCC) have been extracted and used for different applications such as food packaging, water purification, drug delivery, and in composites. In this review, updated information on the methods of isolation of nanocellulose, classification, characterization, and application of nanocellulose has been highlighted. The characteristics and the current status of cellulose-based fiber-reinforced polymer composites in the industry have also been discussed in detail.
Collapse
|
28
|
Double-interpenetrating nanostructured networks of marine polysaccharides possessing properties comparable to synthetic polymers. Proc Natl Acad Sci U S A 2022; 119:e2204073119. [PMID: 36215498 PMCID: PMC9586260 DOI: 10.1073/pnas.2204073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.
Collapse
|
29
|
Motloung MP, Mofokeng TG, Mokhena TC, Ray SS. Recent advances on melt-spun fibers from biodegradable polymers and their composites. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biodegradable polymers have become important in different fields of application, where biodegradability and biocompatibility are required. Herein, the melt spinning of biodegradable polymers including poly(lactic acid), poly(butylene succinate), polyhydroxyalkanoate (PHA), poly(ɛ-caprolactone) and their biocomposites is critically reviewed. Biodegradable polymer fibers with added functionalities are in high demand for various applications, including biomedical, textiles, and others. Melt spinning is a suitable technique for the development of biodegradable polymer fibers in a large-scale quantity, and fibers with a high surface area can be obtained with this technique. The processing variables during spinning have a considerable impact on the resulting properties of the fibers. Therefore, in this review, the processing-property relationship in biodegradable polymers, blends, and their composites is provided. The morphological characteristics, load-bearing properties, and the potential application of melt-spun biodegradable fibers in various sectors are also provided.
Collapse
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
- Department of Chemical Sciences , University of Johannesburg , Doornfontein 2028 , Johannesburg , South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
| | - Teboho Clement Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division , Mintek , Randburg 2125 , South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
- Department of Chemical Sciences , University of Johannesburg , Doornfontein 2028 , Johannesburg , South Africa
| |
Collapse
|
30
|
Boey JY, Lee CK, Tay GS. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers (Basel) 2022; 14:polym14183737. [PMID: 36145883 PMCID: PMC9505779 DOI: 10.3390/polym14183737] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/12/2023] Open
Abstract
The short life cycle and recalcitrant nature of petroleum-based plastics have been associated with plastic waste accumulation due to their composition rather than worldwide overproduction. The drive to replace single-use products has sparked a considerable amount of research work to discover sustainable options for petroleum-based plastics. Bioplastics open up a new horizon in plastics manufacturing operations and industrial sectors because of their low environmental impact, superior biodegradability, and contribution to sustainable goals. Their mechanical properties regarding tensile, flexural, hardness, and impact strength vary substantially. Various attempts have been made to augment their mechanical characteristics and capacities by incorporating reinforcement materials, such as inorganic and lignocellulosic fibres. This review summarizes the research on the properties of bioplastics modified by fibre reinforcement, with a focus on mechanical performance. The mechanical properties of reinforced bioplastics are significantly driven by parameters such as filler type, filler percentage, and aspect ratio. Fibre treatment aims to promote fibre–matrix adhesion by changing their physical, chemical, thermal, and mechanical properties. A general overview of how different filler treatments affect the mechanical properties of the composite is also presented. Lastly, the application of natural fibre-reinforced bioplastics in the automobile, construction, and packaging industries is discussed.
Collapse
Affiliation(s)
- Jet Yin Boey
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: ; Tel.: +60-4-6532201
| |
Collapse
|
31
|
Aaliya B, Sunooj KV, Navaf M, Akhila PP, Sudheesh C, Sabu S, Sasidharan A, Sinha SK, George J. Influence of plasma-activated water on the morphological, functional, and digestibility characteristics of hydrothermally modified non-conventional talipot starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Amenorfe LP, Agorku ES, Sarpong F, Voegborlo RB. Innovative exploration of additive incorporated biopolymer-based composites. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Sciancalepore C, Togliatti E, Marozzi M, Rizzi FMA, Pugliese D, Cavazza A, Pitirollo O, Grimaldi M, Milanese D. Flexible PBAT-Based Composite Filaments for Tunable FDM 3D Printing. ACS APPLIED BIO MATERIALS 2022; 5:3219-3229. [PMID: 35729847 PMCID: PMC9297287 DOI: 10.1021/acsabm.2c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Biobased composites
with peculiar properties offer an attractive
route for producing environmentally friendly materials. The reinforcement
for poly(butylene adipate-co-terephthalate) (PBAT),
based on zein-titanium dioxide (TiO2) complex (ZTC) microparticles,
is presented and used to produce composite filaments, successfully
3-dimensionally (3D) printed by fused deposition modeling (FDM). The
outcome of ZTC addition, ranging from 5 to 40 wt %, on the thermo-mechanical
properties of composite materials was analyzed. Results reveal that
storage modulus increased with increasing the ZTC content, leading
to a slight increase in the glass transition temperature. The creep
compliance varies with the ZTC concentration, denoting a better resistance
to deformation under constant stress conditions for composites with
higher complex content. Scanning electron microscopy was used to assess
the quality of interphase adhesion between PBAT and ZTC, showing good
dispersion and distribution of complex microparticles in the polymer
matrix. Infrared spectroscopy confirmed the formation of a valid interface
due to the formation of hydrogen bonds between filler and polymer
matrix. Preliminary tests on the biocompatibility of these materials
were also performed, showing no cytotoxic effects on cell viability.
Finally, the 3D printability of biobased composites was demonstrated
by realizing complex structures with a commercial FDM printer.
Collapse
Affiliation(s)
- Corrado Sciancalepore
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italia.,INSTM, Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italia
| | - Elena Togliatti
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italia.,INSTM, Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italia
| | - Marina Marozzi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39/E, 43126 Parma, Italia
| | | | - Diego Pugliese
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italia.,INSTM, Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italia
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italia
| | - Olimpia Pitirollo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italia
| | - Maria Grimaldi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italia
| | - Daniel Milanese
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italia.,INSTM, Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italia
| |
Collapse
|
34
|
Amin MN, Ahmad W, Khan K, Ahmad A. A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4362. [PMID: 35744418 PMCID: PMC9227278 DOI: 10.3390/ma15124362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022]
Abstract
Sustainable development involves the usage of alternative sustainable materials in order to sustain the excessive depletion of natural resources. Plant fibers, as a "green" material, are progressively gaining the attention of various researchers in the field of construction for their potential use in composites for stepping towards sustainable development. This study aims to provide a scientometric review of the summarized background of plant fibers and their applications as construction and building materials. Studies from the past two decades are summarized. Quantitative assessment of research progress is made by using connections and maps between bibliometric data that are compiled for the analysis of plant fibers using Scopus. Data refinement techniques are also used. Plant fibers are potentially used to enhance the mechanical properties of a composite. It is revealed from the literature that plant-fiber-reinforced composites have comparable properties in comparison to composites reinforced with artificial/steel fibers for civil engineering applications, such as construction materials, bridge piers, canal linings, soil reinforcement, pavements, acoustic treatment, insulation materials, etc. However, the biodegradable nature of plant fibers is still a hindrance to their application as a structural material. For this purpose, different surface and chemical treatment methods have been proposed in past studies to improve their durability. It can be surmised from the gathered data that the compressive and flexural strengths of plant-fiber-reinforced cementitious composites are increased by up to 43% and 67%, respectively, with respect to a reference composite. In the literature, alkaline treatment has been reported as an effective and economical method for treating plant fibers. Environmental degradation due to excessive consumption of natural resources and fossil fuels for the construction industry, along with the burning of waste plant fibers, can be reduced by incorporating said fibers in cementitious composites to reduce landfill pollution and, ultimately, achieve sustainable development.
Collapse
Affiliation(s)
- Muhammad Nasir Amin
- Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Waqas Ahmad
- Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Kaffayatullah Khan
- Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ayaz Ahmad
- MaREI Centre, Ryan Institute and School of Engineering, College of Science and Engineering, National University of Ireland Galway, H91 HX31 Galway, Ireland;
| |
Collapse
|
35
|
Ezquerro CS, Aznar JMG, Laspalas M. Prediction of the structure and mechanical properties of polycaprolactone-silica nanocomposites and the interphase region by molecular dynamics simulations: the effect of PEGylation. SOFT MATTER 2022; 18:2800-2813. [PMID: 35319045 DOI: 10.1039/d1sm01794b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer/silica (PS) nanocomposites are, among numerous combinations of inorganic/organic nanocomposites, one of the most important materials reported in the literature and have been employed in a wide variety of applications. Due to this great interest in the scientific and industry community, knowledge about their physiochemistry allows for a better understanding of their development and improvement. One area of interest found in biopolymers is silica, where silica nanoparticles can be used to increase their mechanical properties and give them higher opportunities to replace synthetic plastics. With this aim in mind, molecular dynamics (MD) simulations were used to predict the structure and mechanical properties of the interphase region and nanocomposite systems of polycaprolactone (PCL), a common poly(hydroxy acid) type biopolymer, reinforced with silica nanoparticles. Two types of nanoparticles were studied to assess the effect of PEGylation: hydroxyl (ungrafted) and polyethylene glycol (PEG) (grafted or PEGylated) functionalized silica. The interaction energy between the nanoparticle and the polymeric matrix was determined, showing an increase of the affinity between each component due to the PEGylation of the nanoparticle. Through the analysis of polymer density profiles, the structure and thickness of the interphase region were determined, and it was observed that PEGylation increased the interphase thickness from 10.80 Å to 13.04 Å while it decreased the peak and average polymer density of the interphase region. Using compressed and expanded molecular models of the neat PCL polymer, the mechanical properties of the interphase region were related to its density through an interpolation model, and mechanical property profiles were obtained, from which the average values of the Young's modulus, Poisson's ratio and shear modulus of the interphase region were calculated. Finally, the mechanical properties of the nanocomposites were determined by molecular mechanics simulations, showing that the silica nanoparticles increased the stiffness of the composite system to about 7-8% with respect to that of the neat polymer, having a 2.09% weight of bare silica or 2.82% weight of PEGylated silica. PEGylation did not show an additional effect on the overall mechanical properties. A mean field micromechanics model (Mori-Tanaka) corroborated the properties calculated for the interphase region using MD simulations. It was concluded that the PEGylation of the nanoparticle improved the affinity, and thus the dispersion, of the silica nanoparticles towards the PCL matrix, but with no further increase in the mechanical properties of the composite.
Collapse
Affiliation(s)
| | | | - Manuel Laspalas
- Aragon Institute of Technology ITAINNOVA, María de Luna 7-8, Zaragoza 50018, Spain.
| |
Collapse
|
36
|
Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites. Polymers (Basel) 2022; 14:polym14071445. [PMID: 35406319 PMCID: PMC9002853 DOI: 10.3390/polym14071445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful synthetic materials. Jute, one of the natural fibers, plays a vital role in developing composite materials that showed potential in a variety of applications such as household, automotive and medical appliances. This paper first reviews the characterization and performance of jute fibers. Subsequently, the main focus is shifted towards research advancements in enhancing physical, mechanical, thermal and tribological properties of the polymeric materials (i.e., synthetic or biobased and thermoplastic or thermoset plastic) reinforced with jute fibers in a variety of forms such as particle, short fiber or woven fabric. It is understood that the physio-mechanical properties of jute-polymer composites largely vary based on the fiber processing and treatment, fiber shape and/or size, fabrication processes, fiber volume fraction, layering sequence within the matrix, interaction of the fiber with the matrix and the matrix materials used. Furthermore, the emerging research on jute fiber, such as nanomaterials from jute, bioplastic packaging, heavy metal absorption, electronics, energy device or medical applications and development of jute fiber composites with 3D printing, is explored. Finally, the key challenges for jute and its derivative products in gaining commercial successes have been highlighted and potential future directions are discussed.
Collapse
|
37
|
Sciancalepore C, Togliatti E, Giubilini A, Pugliese D, Moroni F, Messori M, Milanese D. Preparation and characterization of innovative poly(butylene adipate terephthalate)‐based biocomposites for agri‐food packaging application. J Appl Polym Sci 2022. [DOI: 10.1002/app.52370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Corrado Sciancalepore
- Dipartimento di Ingegneria e Architettura Università di Parma Parma
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
| | - Elena Togliatti
- Dipartimento di Ingegneria e Architettura Università di Parma Parma
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
| | - Alberto Giubilini
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
- Dipartimento di Scienza Applicata e Tecnologia Politecnico di Torino Torino Italy
| | - Diego Pugliese
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
- Dipartimento di Scienza Applicata e Tecnologia Politecnico di Torino Torino Italy
| | - Fabrizio Moroni
- Dipartimento di Ingegneria e Architettura Università di Parma Parma
| | - Massimo Messori
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
- Dipartimento di Scienza Applicata e Tecnologia Politecnico di Torino Torino Italy
| | - Daniel Milanese
- Dipartimento di Ingegneria e Architettura Università di Parma Parma
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Firenze
| |
Collapse
|
38
|
Zhang H, Zhao C, Na H. PAEs Derivatives' Design for Insulation: Integrated In-Silico Methods, Functional Assessment and Environmentally Friendly Molecular Modification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063232. [PMID: 35328919 PMCID: PMC8949259 DOI: 10.3390/ijerph19063232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
As a common substance in production and life, phthalic acid esters (PAEs), the main component of plastics, have brought more and more serious problems to the environment. This study normalized the insulation, toxicity, and bioconcentration data of 13 PAEs to eliminate the dimensional coefficients of each index, and then used the comprehensive index method to calculate the comprehensive effect value of PAEs with three properties. The comprehensive effect value was used as the data source to construct the 3D-QSAR model of PAE molecular comprehensive effect. The DAP was selected as the target molecule, the distribution of each force field in the three-dimensional equipotential map was analyzed, and 30 molecular modification schemes were created. The constructed single-effect models of insulation, toxicity, and bioconcentration of PAEs and the scoring function module of DS software were used to evaluate the stability and environmental friendliness of PAE derivative molecules. Four PAE derivatives were screened for increased comprehensive effects, enhanced insulation, and reduced toxicity and bioconcentration. By calculating the binding energy of the target molecule and the derivative molecule with the degrading enzyme under different applied electric fields, it was found that the binding energy of DAP-1-NO2-2-CH2C6H5 decreases more than DAP does when there is an applied electric field, indicating that the degradation ability of degrading enzymes on PAE derivative molecules is reduced, which indirectly proves that the insulation is enhanced. The innovation of this paper lies in the insulation, toxicity, and bioenrichment data of PAEs being processed by mathematical method for the first time, and PAEs with high insulation, low toxicity, and low bioconcentration were designed by building a comprehensive model.
Collapse
|
39
|
Awasthi MK, Kumar V, Yadav V, Sarsaiya S, Awasthi SK, Sindhu R, Binod P, Kumar V, Pandey A, Zhang Z. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. CHEMOSPHERE 2022; 290:133310. [PMID: 34919909 DOI: 10.1016/j.chemosphere.2021.133310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
40
|
A Review on Natural Fibre-Reinforced Biopolymer Composites: Properties and Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/7820731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In ongoing decades, material researchers and scientists are giving more consideration towards the improvement of biobased polymer composites as various employments of items arranged by natural fibres and petrochemical polymers prompt natural awkwardness. The goal of this review paper is to provide an intensive review and applications of the foremost appropriate commonly used biodegradable polymer composites. It is imperative to build up the completely/incompletely biodegradable polymer composites without bargaining the mechanical, physical, and thermal properties which are required for the end-use applications. This reality roused to create biocomposite with better execution alongside the least natural effect. The utilization of natural fibre-reinforced polymer composites is concerned with the mechanical properties that are highly dependent on the morphology, hydrophilic tendency, aspect ratio, and dimensional stability of the natural fibre. With this in-depth consideration of eco-friendly biocomposites, structural application materials in the infrastructure, automotive industry, and consumer applications of the following decade are attainable within the near future.
Collapse
|
41
|
Recent advances in applications of hybrid natural polymers as adsorbent for perfluorinated compounds removal – review paper. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
|
43
|
Aaliya B, Sunooj KV, Rajkumar CBS, Navaf M, Akhila PP, Sudheesh C, George J, Lackner M. Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. Polymers (Basel) 2021; 13:3855. [PMID: 34771410 PMCID: PMC8587339 DOI: 10.3390/polym13213855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P-O-C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.
Collapse
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Kappat Valiyapeediyekkal Sunooj
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Chillapalli Babu Sri Rajkumar
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Plachikkattu Parambil Akhila
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India;
| | - Maximilian Lackner
- Department Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
44
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
45
|
Fuentes Molina N, Fragozo Brito Y, Polo Benavides JM. Recycling of Residual Polymers Reinforced with Natural Fibers as a Sustainable Alternative: A Review. Polymers (Basel) 2021; 13:polym13213612. [PMID: 34771169 PMCID: PMC8587329 DOI: 10.3390/polym13213612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The latest advances in green alternatives are being addressed with bio-based solutions, with uses and applications in new areas due to their wide potential, low cost, lightness, renewability, biodegradability, impact toughness, fatigue resistance, and other specific properties. Natural fibers are sustainable materials that have led researchers to test their viability as alternative reinforcements in residual polymers to meet required engineering specifications; therefore, it is essential to continue making progress in replacing conventional materials. This review is expected to provide an overview of the current scopes and future prospects of biocomposites from polymers reinforced with natural fibers with a focus on the following: i. recycling of residual polymers; ii. available natural fibers and their components in the context of engineering applications; iii. the behavior of the structural modifications of the natural fibers with the physical and chemical treatments in the matrix interaction as reinforcements of the residual polymers; and iv. applications for the development of innovative, efficient, and sustainable solutions for successful, environmentally responsible products.
Collapse
|