1
|
Newton HP, Higgins DP, Casteriano A, Wright BR, Krockenberger MB, Miranda LHM. The CARD9 Gene in Koalas ( Phascolarctos cinereus): Does It Play a Role in the Cryptococcus-Koala Interaction? J Fungi (Basel) 2024; 10:409. [PMID: 38921395 PMCID: PMC11205041 DOI: 10.3390/jof10060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Cryptococcus is a genus of fungal pathogens that can infect and cause disease in a range of host species and is particularly prominent in koalas (Phascolarctos cinerus). Like other host species, koalas display a range of outcomes upon exposure to environmental Cryptococcus, from external nasal colonization to asymptomatic invasive infection and, in rare cases, severe clinical disease resulting in death. Host factors contributing to these varied outcomes are poorly understood. Due to their close relationship with eucalypt trees (a key environmental niche for Cryptococcus gattii) and suspected continual exposure to the pathogen, koalas provide a unique opportunity to examine host susceptibility in natural infections. Caspase recruitment domain-containing protein 9 (CARD9) is a key intracellular signaling protein in the fungal innate immune response. Humans with mutations in CARD9 succumb to several different severe and chronic fungal infections. This study is the first to sequence and explore CARD9 variation in multiple koalas using Sanger sequencing. Four CARD9 exons were successfully sequenced in 22 koalas from a New South Wales, Australia population. We found minimal variation between koalas across all four exons, an observation that was also made when CARD9 sequences were compared between koalas and six other species, including humans and mice. Ten single-nucleotide polymorphisms (SNP) were identified in this study and explored in the context of cryptococcal exposure outcomes. While we did not find any significant association with variation in cryptococcal outcomes, we found a high degree of conservation between species at several SNP loci that requires further investigation. The findings from this study lay the groundwork for further investigations of CARD9 and Cryptococcus both in koalas and other species, and highlight several considerations for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Luisa H. M. Miranda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (H.P.N.); (D.P.H.); (A.C.); (B.R.W.); (M.B.K.)
| |
Collapse
|
2
|
SEDGHI MASOUD N, IWAIDE S, KOBAYASHI N, NAKAGAWA D, ORITO M, IWAHASHI N, MURAKAMI T. A case report of cryptococcosis in a captive Cape hyrax (Procavia capensis). J Vet Med Sci 2024; 86:619-622. [PMID: 38631871 PMCID: PMC11187597 DOI: 10.1292/jvms.24-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Cryptococcosis, a globally distributed mycotic disease caused by Cryptococcus neoformans or C. gattii, has been extensively studied in various domestic animals and humans. However, non-domestic species have often been overlooked in the literature, with limited attention given to their susceptibility and contribution to the epidemiology of the disease. In this study, a captive two-year-old Cape hyrax in a Japanese zoo exhibited neurological symptoms and torticollis, ultimately succumbing to the infection. Necropsy and pathological analyses, including histopathological techniques and PCR, revealed the presence of C. neoformans in the lungs, cerebrum, and internal auditory canal. While cryptococcosis has been reported in various wild animals globally, this case represents the first documented cryptococcosis in Cape hyrax.
Collapse
Affiliation(s)
- Niki SEDGHI MASOUD
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| | - Susumu IWAIDE
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| | - Natsumi KOBAYASHI
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| | | | | | | | - Tomoaki MURAKAMI
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Bowater RO, Horwood PF, Picard J, Huisman I, Hayes L, Mackie T, Taylor JD. A novel alphaherpesvirus and concurrent respiratory cryptococcosis in a captive koala (
Phascolarctos cinereus
). Aust Vet J 2022; 100:329-335. [PMID: 35490398 PMCID: PMC9544133 DOI: 10.1111/avj.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
A novel alphaherpesvirus was detected in a captive adult, lactating, female koala (Phascolarctos cinereus) admitted to James Cook University Veterinary Emergency Teaching & Clinical Hospital in March 2019, showing signs of anorexia and severe respiratory disease. Postmortem examination revealed gross pathology indicative of pneumonia. Histopathology demonstrated a chronic interstitial pneumonia, multifocal necrotising adrenalitis and hepatitis. Intranuclear inclusion bodies were detected by light microscopy in the respiratory epithelium of the bronchi, bronchioles, alveoli, and hepatocytes, biliary epithelium and adrenal gland associated with foci of necrosis. Cryptococcus gattii was isolated from fresh lung on necropsy, positively identified by PCR, and detected histologically by light microscopy, only in the lung tissue. A universal viral family‐level PCR indicated that the virus was a member of the Herpesviruses. Sequence analysis in comparison to other known and published herpesviruses, indicated the virus was a novel alphaherpesvirus, with 97% nucleotide identity to macropodid alphaherpesvirus 1. We provisionally name the novel virus phascolarctid alphaherpesvirus 3 (PhaHV‐3). Further research is needed to determine the distribution of this novel alphaherpesvirus in koala populations and establish associations with disease in this host species.
Collapse
Affiliation(s)
- RO Bowater
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - PF Horwood
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - J Picard
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - I Huisman
- Melrose Veterinary Hospital Wodonga Victoria Australia
| | - L Hayes
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - T Mackie
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - JD Taylor
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| |
Collapse
|
4
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
5
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
6
|
REFERENCE INTERVALS FOR ACUTE PHASE PROTEINS FOR KOALAS ( PHASCOLARCTOS CINEREUS) AT THE SAN DIEGO ZOO. J Zoo Wildl Med 2021; 50:735-738. [PMID: 33517648 DOI: 10.1638/2018-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesis and circulating concentrations of acute phase proteins (APPs) are regulated in response to inflammation, infection, trauma, and neoplasia in many domestic and nondomestic species. The APP response is species specific; thus, assays must be validated, and reference intervals must be determined for each species. Koalas (Phascolarctos cinereus) are a vulnerable species, threatened by infectious and inflammatory diseases both under human care and in the wild. The ability to diagnose, treat, and provide prognosis for common koala health problems is challenged by the paucity of sensitive diagnostic tests. Assays for C-reactive protein, serum amyloid A, and haptoglobin were validated for use in koalas. Reference intervals were established using the robust method recommended by the American Society for Veterinary Clinical Pathology based on serum samples from 26 healthy koalas at the San Diego Zoo. The reference intervals are as follows: C-reactive protein, 3.2-24.1 mg/L; serum amyloid A, 0.10-0.45 mg/L; haptoglobin, 0.10-0.64 mg/ml.
Collapse
|
7
|
Stephenson T, Lee K, Griffith JE, McLelland DJ, Wilkes A, Bird PS, Trott DJ, Speight KN, Hemmatzadeh F, Woolford L. Pulmonary Actinomycosis in South Australian Koalas ( Phascolarctos cinereus). Vet Pathol 2021; 58:416-422. [PMID: 33461422 DOI: 10.1177/0300985820973459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pneumonia has been reported in both free-ranging and captive koalas and a number of causative agents have been described. Between 2016 and 2019, 16 free-ranging and 1 captive koala (Phascolarctos cinereus) from the Mount Lofty Ranges of South Australia were identified with pyogranulomatous lobar pneumonia, which involved the left caudal lobe in 14/17 (82%) cases. Within lesions, numerous gram-positive or gram-variable, non-acid-fast filamentous bacteria were observed in association with Splendore-Hoeppli phenomenon. Culture yielded growth of anaerobic bacteria, which were unidentifiable by MALDI-TOF-MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) analysis in 5/5 cases. Sequencing of the bacterial 16S rRNA gene identified a novel Actinomyces species in 4 samples, confirming a diagnosis of pulmonary actinomycosis. Concurrent examination of resin lung casts from healthy koalas suggested greater laminar flow of air to the left caudal lung lobe in koalas. Actinomyces spp. have been reported as commensals of the oral microbiome in other species, and an association with similar pulmonary lesions in other species. Considering the predilection for involvement of the left caudal lung lobe, aspiration is suggested as the likely cause in some cases of pulmonary actinomycosis in koalas. Pulmonary actinomycosis has not been previously described in koalas and further work needs to be undertaken in order to classify this organism within the Actinomyces genus.
Collapse
Affiliation(s)
| | - Ken Lee
- University of Adelaide, Adelaide, South Australia, Australia
| | | | - David J McLelland
- University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Zoo, ZoosSA, Adelaide, South Australia, Australia
| | - Anthony Wilkes
- University of Adelaide, Adelaide, South Australia, Australia
| | - Philip S Bird
- The University of Queensland, Gatton, Queensland, Australia
| | - Darren J Trott
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Lucy Woolford
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Danesi P, Falcaro C, Schmertmann LJ, de Miranda LHM, Krockenberger M, Malik R. Cryptococcus in Wildlife and Free-Living Mammals. J Fungi (Basel) 2021; 7:jof7010029. [PMID: 33419125 PMCID: PMC7825559 DOI: 10.3390/jof7010029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cryptococcosis is typically a sporadic disease that affects a broad range of animal species globally. Disease is a consequence of infection with members of the Cryptococcus neoformans or Cryptococcus gattii species complexes. Although cryptococcosis in many domestic animals has been relatively well-characterized, free-living wildlife animal species are often neglected in the literature outside of occasional case reports. This review summarizes the clinical presentation, pathological findings and potential underlying causes of cryptococcosis in various other animals, including terrestrial wildlife species and marine mammals. The evaluation of the available literature supports the hypothesis that anatomy (particularly of the respiratory tract), behavior and environmental exposures of animals play vital roles in the outcome of host–pathogen–environment interactions resulting in different clinical scenarios. Key examples range from koalas, which exhibit primarily C. gattii species complex disease presumably due to their behavior and environmental exposure to eucalypts, to cetaceans, which show predominantly pulmonary lesions due to their unique respiratory anatomy. Understanding the factors at play in each clinical scenario is a powerful investigative tool, as wildlife species may act as disease sentinels.
Collapse
Affiliation(s)
- Patrizia Danesi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
- Correspondence:
| | - Christian Falcaro
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
| | - Laura J. Schmertmann
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Luisa Helena Monteiro de Miranda
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney 2006, Australia;
| |
Collapse
|
9
|
Martínez-Pérez PA, Fleming PA, Hyndman TH. Isolation of Cryptococcus neoformans var. grubii (serotype A) and C. magnus from the nasal lining of free-ranging quokkas (Setonix brachyurus). Aust Vet J 2020; 98:610-615. [PMID: 32935332 DOI: 10.1111/avj.13019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus species are environmental yeasts, with a worldwide distribution and remarkable environmental adaptation. Although many species do not cause disease, C. neoformans and C. gattii are causative agents of cryptococcosis, a life threatening infection and a significant public health problem worldwide. Infection especially affects immunocompromised animals and humans. In wildlife, cryptococcosis appears to be more prevalent in captive populations. The objective of this study was to assess whether apparently healthy quokkas (Setonix brachyurus) harbor Cryptococcus spp. Using cultural and molecular methods, we studied yeasts isolated from nasal swabs collected from 130 free-ranging quokkas on Rottnest Island (RI, n = 97) and the mainland (n = 33) of Western Australia. Unspeciated Cryptococcus spp. (from four quokkas), C. neoformans var. grubii (serotype A) (two quokkas) and C. magnus (one quokka) were isolated from the nasal lining of apparently healthy quokkas from RI. Cryptococcus neoformans var. grubii was isolated from animals captured in a human-populated area on RI. There was no significant effect of the presence of Cryptococcus on the results of haematology, blood chemistry, peripheral blood cell morphology or clinical examination. To the best of our knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) and C. magnus in a free-ranging macropod in Western Australia. The public health implications of this finding should be further explored.
Collapse
Affiliation(s)
- P A Martínez-Pérez
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - P A Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - T H Hyndman
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
10
|
Krockenberger MB, Marschner C, Martin P, Reppas G, Halliday C, Schmertmann LJ, Harvey AM, Malik R. Comparing immunochromatography with latex antigen agglutination testing for the diagnosis of cryptococcosis in cats, dogs and koalas. Med Mycol 2020; 58:39-46. [PMID: 31220311 DOI: 10.1093/mmy/myz010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Although the point-of-care cryptococcal antigen lateral flow assay (LFA) has revolutionized the diagnosis of cryptococcosis in human patients, to date there has been no large-scale examination of this test in animals. We therefore assessed the LFA in cats, dogs and koalas suspected of having cryptococcosis. In sum, 528 serum specimens (129 from cats, 108 from dogs, 291 from koalas) were tested using the LFA and one of two commercially available latex cryptococcal antigen agglutination test (LCAT) kits. The LCAT is a proven and well-accepted method in veterinary patients and therefore taken as the "gold standard" against which the LFA was compared. The LFA achieved a sensitivity of 92%, 100%, and 98% in cats, dogs, and koalas, respectively, with corresponding negative predictive values of 94%, 100%, and 98%. The specificity of the LFA was 81%, 84%, and 62% for cats, dogs, and koalas, respectively, with corresponding positive predictive values of 76%, 48%, and 69%. These findings suggest the most appropriate role for the LFA is as a screening test to rule out a diagnosis of cryptococcosis in cats, dogs, and koalas. Point-of-care accessibility makes it equally suited for use in the field and as a cage-side test in veterinary hospitals. The suboptimal specificity of the LFA makes it less suited to definitive confirmation of cryptococcosis in animals; therefore, all LFA-positive test results should be confirmed by LCAT testing. The discrepancy between these observations and the high specificity of the LFA in humans may reflect differences in the host-pathogen interactions amongst the species.
Collapse
Affiliation(s)
- Mark B Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, McMaster Building, B14, University of Sydney NSW Australia 2006
| | - Caroline Marschner
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, McMaster Building, B14, University of Sydney NSW Australia 2006
| | - Patricia Martin
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, McMaster Building, B14, University of Sydney NSW Australia 2006
| | - George Reppas
- Vetnostics, 60 Waterloo Rd, North Ryde, NSW Australia 2113
| | - Catriona Halliday
- Clinical Mycology Reference Laboratory, CIDMLS - NSW Health Pathology, Level 3, ICPMR, Westmead Hospital, Westmead, NSW Australia
| | - Laura J Schmertmann
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, McMaster Building, B14, University of Sydney NSW Australia 2006
| | | | - Richard Malik
- Centre for Veterinary Education, Veterinary Science Conference Centre, B22, University of Sydney NSW Australia 2006; Adjunct Professor Charles Sturt University
| |
Collapse
|
11
|
Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. Activation of Meiotic Genes Mediates Ploidy Reduction during Cryptococcal Infection. Curr Biol 2020; 30:1387-1396.e5. [PMID: 32109388 DOI: 10.1016/j.cub.2020.01.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yina Wang
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Srijana Upadhyay
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Chaoyang Xue
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Schmertmann LJ, Kan A, Mella VSA, Fernandez CM, Crowther MS, Madani G, Malik R, Meyer W, Krockenberger MB. Prevalence of cryptococcal antigenemia and nasal colonization in a free-ranging koala population. Med Mycol 2020; 57:848-857. [PMID: 30649397 DOI: 10.1093/mmy/myy144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis, caused by environmental fungi in the Cryptococcus neoformans and Cryptococcus gattii species complexes, affects a variety of hosts, including koalas (Phascolarctos cinereus). Cryptococcal antigenemia and nasal colonization are well characterized in captive koalas, but free-ranging populations have not been studied systematically. Free-ranging koalas (181) from the Liverpool Plains region of New South Wales, Australia, were tested for cryptococcal antigenemia (lateral flow immunoassay) and nasal colonization (bird seed agar culture). Results were related to environmental and individual koala characteristics. Eucalypt trees (14) were also randomly tested for the presence of Cryptococcus spp. by bird seed agar culture. In sum, 5.5% (10/181) and 6.6% (12/181) of koalas were positive for antigenemia and nasal colonization, respectively, on at least one occasion. And 64.3% (9/14) of eucalypts were culture-positive for Cryptococcus spp. URA5 restriction fragment length polymorphism analysis identified most isolates as C. gattii VGI, while C. neoformans VNI was only found in one koala and one tree. Colonized koalas were significantly more likely to test positive for antigenemia. No associations between antigenemia or colonization, and external environmental characteristics (the relative abundance of Eucalyptus camaldulensis and season), or individual koala characteristics (body condition, sex, and age), could be established, suggesting that antigenemia and colonization are random outcomes of host-pathogen-environment interactions. The relationship between positive antigenemia status and a relatively high abundance of E. camaldulensis requires further investigation. This study characterizes cryptococcosis in a free-ranging koala population, expands the ecological niche of the C. gattii/C. neoformans species complexes and highlights free-ranging koalas as important sentinels for this disease.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Alex Kan
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Valentina S A Mella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Cristina M Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Mathew S Crowther
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - George Madani
- PO Box 3113, Hilltop, New South Wales 2575, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| |
Collapse
|
13
|
Schmertmann LJ, Irinyi L, Malik R, Powell JR, Meyer W, Krockenberger MB. The mycobiome of Australian tree hollows in relation to the Cryptococcus gattii and C. neoformans species complexes. Ecol Evol 2019; 9:9684-9700. [PMID: 31534685 PMCID: PMC6745847 DOI: 10.1002/ece3.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022] Open
Abstract
Cryptococcosis is a fungal infection caused by members of the Cryptococcus gattii and C. neoformans species complexes. The C. gattii species complex has a strong environmental association with eucalypt hollows (particularly Eucalyptus camaldulensis), which may present a source of infection. It remains unclear whether a specific mycobiome is required to support its environmental survival and growth. Conventional detection of environmental Cryptococcus spp. involves culture on differential media, such as Guizotia abyssinica seed agar. Next-generation sequencing (NGS)-based culture-independent identification aids in contextualising these species in the environmental mycobiome. Samples from 23 Australian tree hollows were subjected to both culture- and amplicon-based metagenomic analysis to characterize the mycobiome and assess relationships between Cryptococcus spp. and other fungal taxa. The most abundant genera detected were Coniochaeta, Aspergillus, and Penicillium, all being commonly isolated from decaying wood. There was no correlation between the presence of Cryptococcus spp. in a tree hollow and the presence of any other fungal genus. Some differences in the abundance of numerous taxa were noted in a differential heat tree comparing samples with or without Cryptococcus-NGS reads. The study expanded the known environmental niche of the C. gattii and C. neoformans species complexes in Australia with detections from a further five tree species. Discrepancies between the detection of Cryptococcus spp. using culture or NGS suggest that neither is superior per se and that, rather, these methodologies are complementary. The inherent biases of amplicon-based metagenomics require cautious interpretation of data through consideration of its biological relevance.
Collapse
Affiliation(s)
- Laura J. Schmertmann
- Sydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical SchoolThe University of SydneySydneyNSWAustralia
- The Westmead Institute for Medical ResearchWestmeadNSWAustralia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical SchoolThe University of SydneySydneyNSWAustralia
- The Westmead Institute for Medical ResearchWestmeadNSWAustralia
- Marie Bashir Institute for Infectious Diseases and BiosecurityThe University of SydneySydneyNSWAustralia
| | - Richard Malik
- Centre for Veterinary Education, Sydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Jeff R. Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical SchoolThe University of SydneySydneyNSWAustralia
- The Westmead Institute for Medical ResearchWestmeadNSWAustralia
- Marie Bashir Institute for Infectious Diseases and BiosecurityThe University of SydneySydneyNSWAustralia
| | - Mark B. Krockenberger
- Sydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
- Marie Bashir Institute for Infectious Diseases and BiosecurityThe University of SydneySydneyNSWAustralia
| |
Collapse
|
14
|
Abstract
Cryptococcus gattii molecular type VGII is one of the etiologic agents of cryptococcosis, a systemic mycosis affecting a wide range of host species. Koalas (Phascolarctos cinereus) exhibit a comparatively high prevalence of cryptococcosis (clinical and subclinical) and nasal colonization, particularly in captivity. In Australia, disease associated with C. gattii VGII is typically confined to Western Australia and the Northern Territory (with sporadic cases reported in eastern Australia), occupying an enigmatic ecologic niche. A cluster of cryptococcosis in captive koalas in eastern Australia (five confirmed cases, a further two suspected), caused predominantly by C. gattii VGII, was investigated by surveying for subclinical disease, culturing koala nasal swabs and environmental samples, and genotyping cryptococcal isolates. URA5 restriction fragment length polymorphism analysis, multilocus sequence typing (MLST), and whole-genome sequencing (WGS) provided supportive evidence that the transfer of koalas from Western Australia and subsequently between several facilities in Queensland spread VGII into uncontaminated environments and environments in which C. gattii VGI was endemic. MLST identified VGII isolates as predominantly sequence type 7, while WGS further confirmed a limited genomic diversity and revealed a basal relationship with isolates from Western Australia. We hypothesize that this represents a founder effect following the introduction of a koala from Western Australia. Our findings suggest a possible competitive advantage for C. gattii VGII over VGI in the context of this captive koala environment. The ability of koalas to seed C. gattii VGII into new environments has implications for the management of captive populations and movements of koalas between zoos.IMPORTANCE Cryptococcus gattii molecular type VGII is one of the causes of cryptococcosis, a severe fungal disease that is acquired from the environment and affects many host species (including humans and koalas). In Australia, disease caused by C. gattii VGII is largely confined to western and central northern parts of the country, with sporadic cases reported in eastern Australia. We investigated an unusual case cluster of cryptococcosis, caused predominantly by C. gattii VGII, in a group of captive koalas in eastern Australia. This research identified that the movements of koalas between wildlife parks, including an initial transfer of a koala from Western Australia, introduced and subsequently spread C. gattii VGII in this captive environment. The spread of this pathogen by koalas could also impact other species, and these findings are significant in the implications they have for the management of koala transfers and captive environments.
Collapse
|
15
|
Sykes JM, Wilson C, McAloose D. Husbandry, morbidity, and mortality of slender‐tailed cloud rats (
Phleomys pallidus
). Zoo Biol 2019; 38:360-370. [DOI: 10.1002/zoo.21491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 02/14/2019] [Accepted: 04/22/2019] [Indexed: 01/13/2023]
Affiliation(s)
- John M. Sykes
- Wildlife Conservation SocietyZoological Health ProgramBronx New York
| | - Claudia Wilson
- Wildlife Conservation SocietyDepartment of MammologyBronx New York
| | - Denise McAloose
- Wildlife Conservation SocietyZoological Health ProgramBronx New York
| |
Collapse
|
16
|
Schmertmann LJ, Stalder K, Hudson D, Martin P, Makara M, Meyer W, Malik R, Krockenberger MB. Cryptococcosis in the koala (Phascolarctos cinereus): pathogenesis and treatment in the context of two atypical cases. Med Mycol 2019. [PMID: 29529308 DOI: 10.1093/mmy/myx146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disseminated cryptococcosis caused by Cryptococcus gattii (molecular type VGI) was diagnosed in an adult free-ranging female koala (Phascolarctos cinereus). Subclinical cryptococcosis was later diagnosed in this koala's joey. In the adult koala, a pathological fracture of the tibia was associated with the bone lysis of marked focal cryptococcal osteomyelitis. Limb-sparing orthopedic intervention, in the setting of disseminated cryptococcosis, was judged to have a poor prognosis, and the adult koala was euthanized. The joey was removed and hand-reared. Serological testing revealed persistent and increasing cryptococcal capsular antigenemia in the absence of clinical signs of disease and it was subsequently treated with oral fluconazole for approximately 16 months, rehabilitated and released into the wild. It was sighted 3 months post-release in a good state of health and again at 18 months post-release but was not recaptured on either occasion. This is the first published report of cryptococcal appendicular osteomyelitis in a koala. It is also the first report of concurrent disease in a dependent juvenile and the successful treatment of subclinical cryptococcosis to full resolution of the cryptococcal antigenemia in a free-ranging koala. This paper provides a discussion of cryptococcal osteomyelitis in animals, host-pathogen-environment interactions and treatment and monitoring protocols for cryptococcosis in koalas. Published reports describing the treatment of cryptococcosis in koalas are also collated and summarised.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kathryn Stalder
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Donald Hudson
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Patricia Martin
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Mariano Makara
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Acheson ES, Galanis E, Bartlett K, Mak S, Klinkenberg B. Searching for clues for eighteen years: Deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol 2018; 56:129-144. [PMID: 28525610 DOI: 10.1093/mmy/myx037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| | - Eleni Galanis
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4.,School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Karen Bartlett
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4
| | - Brian Klinkenberg
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| |
Collapse
|
18
|
Danesi P, Ravagnan S, Johnson LR, Furlanello T, Milani A, Martin P, Boyd S, Best M, Galgut B, Irwin P, Canfield PJ, Krockenberger MB, Halliday C, Meyer W, Malik R. Molecular diagnosis of Pneumocystis pneumonia in dogs. Med Mycol 2018; 55:828-842. [PMID: 28339756 DOI: 10.1093/mmy/myx007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/20/2017] [Indexed: 11/12/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is a life-threatening fungal disease that can occur in dogs. The aim of this study was to provide a preliminary genetic characterisation of Pneumocystis carinii f.sp.'canis' (P. canis) in dogs and thereby develop a reliable molecular protocol to definitively diagnose canine PCP. We investigated P. canis in a variety of lung specimens from dogs with confirmed or strongly suspected PCP (Group 1, n = 16), dogs with non-PCP lower respiratory tract problems (Group 2, n = 65) and dogs not suspected of having PCP or other lower respiratory diseases (Group 3, n = 11). Presence of Pneumocystis DNA was determined by nested PCR of the large and small mitochondrial subunit rRNA loci and by a real-time quantitative polymerase chain reaction (qPCR) assay developed using a new set of primers. Molecular results were correlated with the presence of Pneumocystis morphotypes detected in cytological/histological preparations. Pneumocystis DNA was amplified from 13/16 PCP-suspected dogs (Group 1) and from 4/76 dogs of control Groups 2 and 3 (combined). The latter four dogs were thought to have been colonized by P. canis. Comparison of CT values in 'infected' versus 'colonized' dogs was consistent with this notion, with a distinct difference in molecular burden between groups (CT ≤ 26 versus CT range (26 <CT < 35), respectively). Phylogenetic analyses showed that P. canis is specifically 'canine' associated, being separated from other mammalian Pneumocystis species, thereby confirming the accuracy of qPCR amplicon for Pneumocystis in dogs. Using qPCR, Pneumocystis DNA can be detected in specimens from the respiratory tract and a CT value can be interpreted to distinguish infection versus colonization.
Collapse
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Lynelle R Johnson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | | | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Patricia Martin
- Veterinary Pathology Diagnostic Services, Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Susan Boyd
- QML Vetnostics, Riverview Place, Metroplex on Gateway, Murrarie, QLD Australia
| | - Matthew Best
- Brisbane Veterinary Specialist Centre, Corner Keong & Old Northern Roads, Albany Creek, QLD Australia
| | - Bradley Galgut
- Australian Specialised Animal Pathology (ASAP) Laboratories, Victoria, Australia
| | - Peter Irwin
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Paul J Canfield
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Richard Malik
- Centre for Veterinary Education, B22, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Guess TE, Rosen JA, McClelland EE. An Overview of Sex Bias in C. neoformans Infections. J Fungi (Basel) 2018; 4:E49. [PMID: 29670032 PMCID: PMC6023476 DOI: 10.3390/jof4020049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
Cryptococcosis, a fungal disease arising from the etiologic agent Cryptococcus neoformans, sickens a quarter of a million people annually, resulting in over 180,000 deaths. Interestingly, males are affected by cryptococcosis more frequently than females, a phenomenon observed for more than a half century. This disparity is seen in both HIV− (~3M:1F) and HIV⁺ (~8M:2F) populations of cryptococcal patients. In humans, male sex is considered a pre-disposing risk factor for cryptococcosis and males suffering from the disease have more severe symptoms and poorer outcomes. There are numerous observational, clinical and epidemiological studies documenting the male disadvantage in C. neoformans but with no further explanation of cause or mechanism. Despite being commonly acknowledged, little primary research has been conducted elucidating the reasons for these differences. The research that has been conducted, however, suggests sex hormones are a likely cause. Given that the sex difference is both prevalent and accepted by many researchers in the field, it is surprising that more is not known. This review highlights the data regarding differences in sexual dimorphism in C. neoformans infections and suggests future directions to close the research gap in this area.
Collapse
Affiliation(s)
- Tiffany E Guess
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Joseph A Rosen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
20
|
TREATMENT OF MYCOTIC RHINOSINUSITIS IN A BENNETT'S WALLABY ( MACROPUS RUFOGRISEUS) USING TOPICAL VORICONAZOLE SUSPENDED IN A REVERSE THERMODYNAMIC PLURONIC GEL. J Zoo Wildl Med 2018. [PMID: 29517429 DOI: 10.1638/2017-0190r.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An approximately 4-yr-old female Bennett's wallaby ( Macropus rufogriseus) was evaluated for chronic left-sided facial swelling and nasal discharge. Computed tomography, endoscopy, biopsy, mycologic culture, and panfungal polymerase chain reaction were consistent with destructive mycotic rhinosinusitis. The patient's infection was treated with a long-term injectable antibiotic, oral antifungal therapy, and multiple intranasal infusions of voriconazole suspended in a reverse thermodynamic pluronic gel. This case represents the first documented case of mycotic rhinosinusitis in a macropod and underlines the importance of advanced cross-sectional imaging in the diagnosis, monitoring, and management of nasal cavity disease in zoo animals.
Collapse
|
21
|
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species. Microorganisms 2017; 5:microorganisms5040065. [PMID: 28974017 PMCID: PMC5748574 DOI: 10.3390/microorganisms5040065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans.
Collapse
|
22
|
ATYPICAL PRESENTATION OF CRYPTOCOCCUS NEOFORMANS IN A KOALA (PHASCOLARCTOS CINEREUS): A MAGNETIC RESONANCE IMAGING AND COMPUTED TOMOGRAPHY STUDY. J Zoo Wildl Med 2017; 48:250-254. [PMID: 28363053 DOI: 10.1638/2016-0089.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cryptococcosis is a worldwide and potentially fatal mycosis documented in wild and captive koalas ( Phascolarctos cinereus ) caused by Cryptococcus neoformans . Though mainly a subclinical disease, when the nasal cavity is affected, epistaxis, mucopurulent nasal discharge, dyspnea, and facial distortion may occur. This report describes a case of cryptococcosis in a koala where unilateral exophthalmos was the only evident clinical sign and magnetic resonance imaging and computed tomography findings are described. Both advanced imaging techniques should be considered as standard and complementary techniques for nasal cavity evaluation in koalas.
Collapse
|
23
|
Maccolini ÉO, Dufresne PJ, Aschenbroich SA, McHale B, Fairbrother JH, Bédard C, Hébert JA. A DisseminatedCryptococcus gattiiVGIIa Infection in a Citron-Crested Cockatoo (Cacatua sulphurea citrinocristata) in Québec, Canada. J Avian Med Surg 2017. [DOI: 10.1647/2016-193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Gharibi S, Kimble B, Vogelnest L, Barnes J, Stadler CK, Govendir M. Pharmacokinetics of posaconazole in koalas (Phascolarctos cinereus) after intravenous and oral administration. J Vet Pharmacol Ther 2017; 40:675-681. [DOI: 10.1111/jvp.12407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Affiliation(s)
- S. Gharibi
- Sydney School of Veterinary Science; The University of Sydney; Camperdown NSW Australia
| | - B. Kimble
- Sydney School of Veterinary Science; The University of Sydney; Camperdown NSW Australia
| | | | - J. Barnes
- Santa Barbara Zoo; Santa Barbara CA USA
| | | | - M. Govendir
- Sydney School of Veterinary Science; The University of Sydney; Camperdown NSW Australia
| |
Collapse
|
25
|
Cogliati M, D'Amicis R, Zani A, Montagna MT, Caggiano G, De Giglio O, Balbino S, De Donno A, Serio F, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Oliveri S, Trovato L, Dipineto L, Rickerts V, McCormick-Smith I, Akcaglar S, Tore O, Mlinaric-Missoni E, Bertout S, Mallié M, Martins MDL, Vencà ACF, Vieira ML, Sampaio AC, Pereira C, Criseo G, Romeo O, Ranque S, Al-Yasiri MHY, Kaya M, Cerikcioglu N, Marchese A, Vezzulli L, Ilkit M, Desnos-Ollivier M, Pasquale V, Korem M, Polacheck I, Scopa A, Meyer W, Ferreira-Paim K, Hagen F, Theelen B, Boekhout T, Lockhart SR, Tintelnot K, Tortorano AM, Dromer F, Varma A, Kwon-Chung KJ, Inácio J, Alonso B, Colom MF. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res 2016; 16:fow045. [PMID: 27188887 DOI: 10.1093/femsyr/fow045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 11/15/2022] Open
Abstract
In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Roberta D'Amicis
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Alberto Zani
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Maria Teresa Montagna
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Caggiano
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Osvalda De Giglio
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella Balbino
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella De Donno
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Serio
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Serdar Susever
- Dept. of Nutrition and Dietetics, Cyprus Near East University, Near East Boulevard, 99138 Nicosia, Cyprus
| | - Cagri Ergin
- Medical School, Pamukkale University, Kliniki Kampusu, 20160 Denizli, Turkey
| | - Aristea Velegraki
- Medical School National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Mohamed S Ellabib
- Medical College, University of Tripoli, Tripoli University Road, Tripoli, Libya
| | - Simona Nardoni
- Dip. Scienze Veterinarie, Università di Pisa, Via delle Piagge 2, 56124 Pisa, Italy
| | - Cristina Macci
- Istituto per lo Studio degli Ecosistemi (ISE), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Salvatore Oliveri
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Laura Trovato
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Ludovico Dipineto
- Dip. di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, C.so Umberto I 40, 80138 Napoli, Italy
| | - Volker Rickerts
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | | | - Sevim Akcaglar
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | - Okan Tore
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | | | - Sebastien Bertout
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Michele Mallié
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Maria da Luz Martins
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C F Vencà
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Maria L Vieira
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C Sampaio
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Cheila Pereira
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Stéphane Ranque
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Mohammed H Y Al-Yasiri
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Meltem Kaya
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Nilgun Cerikcioglu
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS San Martino IST Genova, Largo Benzi 10, 16132 Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, C.so europa 26, 16132 Genova, Italy
| | - Macit Ilkit
- Dept. of Microbiology, University of Çukurova Sariçam, Çukurova Üniversitesi Rektörlüğü, 01330 Adana, Turkey
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincenzo Pasquale
- Dip. di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Via Amm. F. Acton 38, 80133 Napoli, Italy
| | - Maya Korem
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Itzhack Polacheck
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Antonio Scopa
- Facoltà di Scienze Agrarie, Forestali e Ambientali, Università degli Studi della Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Ferry Hagen
- Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333 Atlanta, USA
| | - Kathrin Tintelnot
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | - Anna Maria Tortorano
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ashok Varma
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Kyung J Kwon-Chung
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Maria F Colom
- Medical School, Universidad Miguel Hernández, Avenida de la Universidad, 03202 Alicante, Spain
| |
Collapse
|
26
|
Hernández-Sánchez J, Brumm J, Timms P, Beagley KW. Vaccination of koalas with a prototype chlamydial vaccine is safe, does not increase the incidence of lymphoma-related disease and maybe associated with increased lifespan in captive koalas. Vaccine 2015. [PMID: 26207589 DOI: 10.1016/j.vaccine.2015.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To assess the impact of Chlamydia vaccination on survival of captive koalas, and to compare the incidence of lymphomas and neoplasias between vaccinated and unvaccinated koalas. METHODS Survival analysis using Cox and Weibull regressions on 54 vaccinated and 52 matched unvaccinated koalas, and chi-square contingency table for incidence of lymphomas/neoplasias. RESULTS Vaccination was found to have a significant positive effect on koala lifespan (P=0.03), with vaccinated koalas having a median lifespan of 12.25 years compared to 8.8 years for unvaccinated ones. The effect of sex on lifespan was not significant (P=0.31). The risk ratio of unvaccinated over vaccinated koalas was 2.2 with both Cox and Weibull regressions. There was no association between the incidence of lymphoma/neoplasias and vaccination status (P=0.33). CONCLUSIONS Koalas vaccinated with a prototype Chlamydia vaccine may live longer than unvaccinated ones. There was no known Chlamydia infection among koalas, so our interpretation is that vaccination may have boosted the innate and adaptive immune systems to protect against a wide spectrum of bacteria, fungi and parasites. Vaccinated koalas did not show negative physiological effects of the vaccine, for example, the frequency of deaths due to lymphomas/neoplasias was the same in both vaccinated and unvaccinated animals.
Collapse
Affiliation(s)
| | - Jacqui Brumm
- Lone Pine Koala Sanctuary, 708 Jesmond Road, Fig Tree Pocket, QLD 4069, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
27
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
28
|
Computed tomography and magnetic resonance for the advanced imaging of the normal nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus). J Zoo Wildl Med 2015; 45:766-74. [PMID: 25632661 DOI: 10.1638/2013-0290.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study is to describe computed tomography (CT) and magnetic resonance (MR) for the cross-sectional imaging of the normal anatomy of the nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus), to provide reference figures for gross anatomy with corresponding CT and MR images and to compare the features of the nasal cavity and paranasal sinuses of the normal koala with that reported in other domestic species. Advanced imaging can be used to aid in diagnosis, to plan surgical intervention, and to monitor therapeutic responses to diseases of the nasal passages in koalas. One clinically normal koala was anesthetized twice for the separate acquisition of dorsal CT scan images and transverse, dorsal, and sagittal MR images of its nasal cavity and paranasal sinuses. Sagittal and transverse CT planes were reformatted. Three fresh koala skulls were also transected in one of each transverse, sagittal, and dorsal planes and photographed. The CT and MR images obtained were matched with corresponding gross anatomic images and the normal bone, tissues and airway passages were identified. All anatomic structures were readily identifiable on CT, magnetic resonance imaging (MRI), and gross images. CT and MRI are both valuable diagnostic tools for imaging the nasal cavities and paranasal sinuses of koalas. Images obtained from this project can be used as baseline references for future comparison with diseased koalas to help with diagnosis, surgical intervention, and response to therapy.
Collapse
|
29
|
Mischnik A, Stockklausner J, Hohneder N, Jensen HE, Zimmermann S, Reuss DE, Rickerts V, Tintelnot K, Stockklausner C. First case of disseminated cryptococcosis in aGorilla gorilla. Mycoses 2014; 57:664-71. [DOI: 10.1111/myc.12215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/21/2014] [Accepted: 06/01/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Alexander Mischnik
- Department of Infectious Diseases, Medical Microbiology and Hygiene; Heidelberg University Hospital; Heidelberg Germany
| | | | | | - Henrik E. Jensen
- Department of Veterinary Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen Denmark
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene; Heidelberg University Hospital; Heidelberg Germany
| | - David E. Reuss
- Department of Neuropathology; Institute of Pathology; Heidelberg University Hospital and German Cancer Consortium (DKTK); Clinical Cooperation Unit Neuropathology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | | | | | - Clemens Stockklausner
- Department of Pediatric Oncology and Hematology; Heidelberg University Hospital; Heidelberg Germany
| |
Collapse
|
30
|
Hemsley S, Palmer H, Canfield RB, Stewart MEB, Krockenberger MB, Malik R. Computed tomographic anatomy of the nasal cavity, paranasal sinuses and tympanic cavity of the koala. Aust Vet J 2014; 91:353-65. [PMID: 23980827 DOI: 10.1111/avj.12098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. METHODS Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. RESULTS The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. CONCLUSIONS The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species.
Collapse
Affiliation(s)
- S Hemsley
- Faculty Veterinary Science B01, University of Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
McMullan BJ, Sorrell TC, Chen SCA. Cryptococcus gattii infections: contemporary aspects of epidemiology, clinical manifestations and management of infection. Future Microbiol 2013; 8:1613-31. [DOI: 10.2217/fmb.13.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus gattii is an important primary and opportunistic pathogen, predominantly causing meningoencephalitis and pulmonary disease with substantial mortality. Initially considered geographically restricted to immune-competent, highly exposed individuals in the tropics, an apparent epidemic in North America has led to new perspectives on its ecology, epidemiology and clinical associations, which are distinct from its sibling species Cryptococcus neoformans. The role of C. gattii molecular genotypes/subtypes in different settings is under investigation. Diagnostic and treatment strategies are similar to those for C. neoformans in immunocompetent hosts, although data indicate that more prolonged induction, as well as total duration of therapy, is required. Exclusion of CNS involvement is mandatory. Brain cryptococcomas are characteristic of C. gattii infection, and raised intracranial pressure is common, for which surgery is often required. Immune reconstitution syndrome may occur. Ongoing C. gattii research and greater awareness and availability of specific diagnostic tests are required to improve patient outcomes.
Collapse
Affiliation(s)
- Brendan Joseph McMullan
- Department of Immunology & Infectious Diseases, Sydney Children‘s Hospital, Randwick, New South Wales, Australia
- School of Women‘s & Children‘s Health, University of New South Wales, Kensington, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
| | - Tania Christine Sorrell
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney Emerging Infections Biosecurity Institute, University of Sydney, New South Wales, Australia
| | - Sharon Chih-Ann Chen
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
32
|
Pharmacokinetics of fluconazole following intravenous and oral administration to koalas (Phascolarctos cinereus
). J Vet Pharmacol Ther 2013; 37:90-8. [DOI: 10.1111/jvp.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/05/2013] [Indexed: 11/26/2022]
|
33
|
Kaocharoen S, Ngamskulrungroj P, Firacative C, Trilles L, Piyabongkarn D, Banlunara W, Poonwan N, Chaiprasert A, Meyer W, Chindamporn A. Molecular epidemiology reveals genetic diversity amongst isolates of the Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis 2013; 7:e2297. [PMID: 23861989 PMCID: PMC3701708 DOI: 10.1371/journal.pntd.0002297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022] Open
Abstract
To gain a more detailed picture of cryptococcosis in Thailand, a retrospective study of 498 C. neoformans and C. gattii isolates has been conducted. Among these, 386, 83 and 29 strains were from clinical, environmental and veterinary sources, respectively. A total of 485 C. neoformans and 13 C. gattii strains were studied. The majority of the strains (68.9%) were isolated from males (mean age of 37.97 years), 88.5% of C. neoformans and only 37.5% of C. gattii strains were from HIV patients. URA5-RFLP and/or M13 PCR-fingerprinting analysis revealed that the majority of the isolates were C. neoformans molecular type VNI regardless of their sources (94.8%; 94.6% of the clinical, 98.8% of the environmental and 86.2% of the veterinary isolates). In addition, the molecular types VNII (2.4%; 66.7% of the clinical and 33.3% of the veterinary isolates), VNIV (0.2%; 100% environmental isolate), VGI (0.2%; 100% clinical isolate) and VGII (2.4%; 100% clinical isolates) were found less frequently. Multilocus Sequence Type (MLST) analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex identified a total of 20 sequence types (ST) in Thailand combining current and previous data. The Thai isolates are an integrated part of the global cryptococcal population genetic structure, with ST30 for C. gattii and ST82, ST83, ST137, ST141, ST172 and ST173 for C. neoformans being unique to Thailand. Most of the C. gattii isolates were ST7 = VGIIb, which is identical to the less virulent minor Vancouver island outbreak genotype, indicating Thailand as a stepping stone in the global spread of this outbreak strain. The current study revealed a greater genetic diversity and a wider range of major molecular types being present amongst Thai cryptococcal isolates than previously reported.
Collapse
Affiliation(s)
- Sirada Kaocharoen
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Popchai Ngamskulrungroj
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luciana Trilles
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Laboratório de Micologia, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Dumrongdej Piyabongkarn
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natteewan Poonwan
- Mycology Laboratory, National Institute of Health, Nonthaburi, Thailand
| | - Angkana Chaiprasert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Ariya Chindamporn
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
34
|
Preshipment testing success: resolution of a nasal sinus granuloma in a captive koala (Phascolarctos cinereus) caused by Cryptococcus gattii. J Zoo Wildl Med 2013; 43:939-42. [PMID: 23272367 DOI: 10.1638/2012-0045r.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 3-yr-old female koala (Phascolarctos cinereus) was diagnosed with a nasal sinus granuloma caused by Cryptococcus gattii after a pre-shipment examination revealed a latex cryptococcal agglutination titer of 1:512. Successful medical and surgical treatment of the granuloma was monitored using serial latex cryptococcal agglutination titers, serum levels of antifungal drugs, and advanced imaging.
Collapse
|
35
|
Abstract
Nasal masses in the koala (Phascolarctos cinereus) are not uncommon and can be challenging to diagnose and treat. Differential diagnoses for nasal masses in the koala are cryptococcal granulomas, nasal polyps, nasal adenocarcinoma, and osteochondromatosis. This report describes successful surgical approaches for two adult koalas with nasal masses and includes photodocumentation and description of the anatomy of the koala nasal passages from the postmortem transverse sectioning of a normal koala head. Surgical removal of the nasal masses in these koalas resulted in a rapid resolution of clinical signs.
Collapse
|
36
|
Byrnes EJ, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect 2011; 13:895-907. [PMID: 21684347 PMCID: PMC3318971 DOI: 10.1016/j.micinf.2011.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023]
Abstract
Infectious fungi are among a broad group of microbial pathogens that has and continues to emerge concomitantly due to the global AIDS pandemic as well as an overall increase of patients with compromised immune systems. In addition, many pathogens have been emerging and re-emerging, causing disease in both individuals who have an identifiable immune defect and those who do not. The fungal pathogen Cryptococcus gattii can infect individuals with and without an identifiable immune defect, with a broad geographic range including both endemic areas and emerging outbreak regions. Infections in patients and animals can be severe and often fatal if untreated. We review the molecular epidemiology, population structure, clinical manifestations, and ecological niche of this emerging pathogen.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Karen H. Bartlett
- School of Environmental Health, University of British Columbia, Vancouver, BC, Canada
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
Kido N, Makimura K, Kamegaya C, Shindo I, Shibata E, Omiya T, Yamamoto Y. Long-term surveillance and treatment of subclinical cryptococcosis and nasal colonization by Cryptococcus neoformans and C. gattii species complex in captive koalas (Phascolarctes cinereus). Med Mycol 2011; 50:291-8. [PMID: 21859391 DOI: 10.3109/13693786.2011.594967] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptococcosis is an important systemic mycosis caused by members of the Cryptococcus neoformans species complex. This disease is potentially fatal in various animals, including koalas. We describe the long-term surveillance and treatment of subclinical cryptococcosis and nasal colonization of koalas by Cryptococcus neoformans and C. gattii. Of the 15 animals investigated through the use of samples obtained by nasal swabs, antigen titer measurements, and pathologic examination, C. neoformans was found associated with nine koalas and C. gattii with one animal. Nine koalas showed subclinical disease and one clinical infections and antigenemia. Treatment with fluconazole, itraconazole and amphotericin B upon detection of C. neoformans or C. gattii was not effective. The results of the present study showed that C. neoformans was the predominant species isolated from the nasal swab samples and the fungus might have naturally become associated with the koalas' nasal cavities at Kanazawa Zoological Gardens. The unclear treatment effectiveness might have been caused by a shorter treatment period that is routinely used and unstable itraconazole absorption. This investigation also underscores the need for identifying effective treatment regimens for subclinical cryptococcosis and efficient measures for eradicating C. neoformans and C. gattii in koalas.
Collapse
Affiliation(s)
- Nobuhide Kido
- Nogeyama Zoological Gardens, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Diagnostic Cytology in Veterinary Medicine: A Comparative and Evidence-Based Approach. Clin Lab Med 2011; 31:1-19. [DOI: 10.1016/j.cll.2010.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Barnett JA. A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans. Yeast 2011; 27:875-904. [PMID: 20641025 DOI: 10.1002/yea.1786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
40
|
Jobbins SE, Hill CJ, D'Souza-Basseal JM, Padula MP, Herbert BR, Krockenberger MB. Immunoproteomic approach to elucidating the pathogenesis of cryptococcosis caused by Cryptococcus gattii. J Proteome Res 2010; 9:3832-41. [PMID: 20545298 DOI: 10.1021/pr100028t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptococcosis caused by Cryptococcus gattii is a devastating disease of immunocompetent hosts with an incompletely understood pathogenesis. Utilizing an immunoproteomic approach in a naturally occurring koala model of disease, a number of key proteins and pathways are identified in the early and late pathogenesis of cryptococcosis for the first time. In particular, the thioredoxin system appears important in the pathogenesis of cryptococcosis caused by C. gattii VGII.
Collapse
Affiliation(s)
- Sarah E Jobbins
- The Faculty of Veterinary Science, the University of Sydney, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Krockenberger MB, Malik R, Ngamskulrungroj P, Trilles L, Escandon P, Dowd S, Allen C, Himmelreich U, Canfield PJ, Sorrell TC, Meyer W. Pathogenesis of pulmonary Cryptococcus gattii infection: a rat model. Mycopathologia 2010; 170:315-30. [PMID: 20552280 DOI: 10.1007/s11046-010-9328-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 05/25/2010] [Indexed: 01/31/2023]
Abstract
A model of pulmonary cryptococcosis in immunocompetent rats was developed to better understand the virulence of Cryptococcus gattii. Six isolates were studied, representing four molecular genotypes (VGI-MATα, VGIIa-MATα, VGIIa-MAT a, VGIIb-MATα), obtained from Australia, Vancouver (Canada) and Colombia. These originated from human patients, a cat and the environment and were administered intratracheally (i.t.) or transthoracically into Fischer 344 or Wistar-Furth rats in doses varying from 10(4) to 10(7) colony-forming units (CFU) in 0.1 ml of saline. With the exception of animals given the VGIIa-MAT a isolate, rats consistently became ill or died of progressive cryptococcal pneumonia following i.t. doses exceeding 10(7) CFU. Affected lungs increased in weight up to tenfold and contained numerous circumscribed, gelatinous lesions. These became larger and more extensive, progressing from limited hilar and/or tracheal lesions, to virtually confluent gelatinous masses. Disease was localized to the lungs for at least 3-4 weeks, with dissemination to the brain occurring in some animals after day 29. The dose-response relationship was steep for two VGI isolates studied (human WM179, environmental WM276); doses up to 10(6) CFU i.t. did not produce lesions, while 10(7) or more yeast cells produced progressive pneumonia. Intratracheal inoculation of rats with C. gattii provides an excellent model of human pulmonary cryptococcosis in healthy hosts, mimicking natural infections. Disease produced by C. gattii in rats is distinct from that caused by C. neoformans in that infections are progressive and ultimately fatal.
Collapse
Affiliation(s)
- Mark B Krockenberger
- Faculty of Veterinary Science, Building B14, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McGill S, Malik R, Saul N, Beetson S, Secombe C, Robertson I, Irwin P. Cryptococcosis in domestic animals in Western Australia: a retrospective study from 1995-2006. Med Mycol 2010; 47:625-39. [PMID: 19306217 DOI: 10.1080/13693780802512519] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A retrospective study of cryptococcosis in domestic animals residing in Western Australia was conducted over an 11-year-period (from 1995 to 2006) by searching the data base of Murdoch University Veterinary Teaching hospital and the largest private clinical pathology laboratory in Perth. Cryptococcosis was identified in 155 animals: 72 cats, 57 dogs, 20 horses, three alpacas, two ferrets and a sheep. There was no seasonal trend apparent from the dates of diagnosis. Taking into account the commonness of accessions to Murdoch University, cats were five to six times more likely to develop this disease than dogs, and three times more likely than horses, while horses were almost twice as likely as dogs to become infected. Amongst the feline cohort, Ragdoll and Birman breeds were over-represented, while in dogs several pedigree breeds were similarly overrepresented. Dogs and horses tended to develop disease at an early age (one to five years), while cats were presented over a much wider range of ages. In cats and dogs the upper respiratory tract was the most common primary site of infection, while horses and alpacas tended to have lower respiratory involvement. The most striking finding of the study was the high frequency with which C. gattii was identified, with infections attributable to this species comprising 5/9 cats, 11/22 dogs, 9/9 horses and 1/1 alpaca, where appropriate testing was conducted. Preliminary molecular genotyping suggested that most of the C. gattii infections in domestic animals (9/9 cases) were of the VGII genotype. This contrasts the situation on the eastern seaboard of Australia, where disease attributable to C. gattii is less common and mainly due to the VGI genotype. C. gattii therefore appears to be an important cause of cryptococcosis in Western Australia.
Collapse
Affiliation(s)
- S McGill
- School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This pathogen likely has wider distribution than is currently recognized. Cryptococcus gattii and C. neoformans cause pulmonary and systemic cryptococcosis. Recently, C. gattii was recognized as a distinct pathogen of humans and animals. We analyzed information from 400 publications (1948–2008) to examine whether the fungus occurs globally. Known distribution of C. gattii is possibly limited because specialized reagents for differentiation from C. neoformans are not readily available and not always used, and environmental surveys are patchy. However, autochthonous reports of C. gattii cryptococcosis have now been recognized from tropical and temperate regions. An ongoing outbreak in western Canada strengthens the case that the range of the pathogen has expanded. A few studies have highlighted differences in cryptococcosis between C. gattii and C. neoformans. More than 50 tree species have yielded C. gattii especially from decayed hollows suggesting a possible ecologic niche. This pathogen merits more attention so its environmental occurrence and role in cryptococcosis can be accurately determined.
Collapse
|
44
|
Cryptococcus gattii: An Emerging Cause of Fungal Disease in North America. Interdiscip Perspect Infect Dis 2009; 2009:840452. [PMID: 19503836 PMCID: PMC2686104 DOI: 10.1155/2009/840452] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/18/2009] [Indexed: 01/03/2023] Open
Abstract
During the latter half of the twentieth century, fungal pathogens such as
Cryptococcus neoformans were increasingly recognized as a significant threat to the
health of immune compromised populations throughout the world. Until recently, the closely related
species C. gattii was considered to be a low-level endemic pathogen that was confined to
tropical regions such as Australia. Since 1999, C. gattii has emerged in the Pacific Northwest
region of North America and has been responsible for a large disease epidemic among generally
healthy individuals. The changing epidemiology of C. gattii infection is likely to be a consequence of alterations in fungal ecology and biology and illustrates its potential to cause serious human disease.
This review summarizes selected biological and clinical aspects of C. gattii that are
particularly relevant to the recent North American outbreak and compares these to the Australian and South
American experience.
Collapse
|
45
|
Histopathological examination of the pancreas of the Koala (Phascolarctos cinereus). J Comp Pathol 2009; 140:217-24. [PMID: 19303079 DOI: 10.1016/j.jcpa.2008.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 07/18/2008] [Indexed: 11/21/2022]
Abstract
This retrospective study, which was based on koala pancreatic specimens taken 2, 24, 48 and 72h after death, showed that the degree of autolysis did not necessarily exclude histopathological examination. Disorders not previously reported in the pancreas of koalas included the following: inflammation and necrosis; atrophy and fibrosis of exocrine pancreatic tissue; lymphosarcoma; pancreatic heterotopy; and ductal adenocarcinoma.
Collapse
|
46
|
Ngamskulrungroj P, Sorrell TC, Chindamporn A, Chaiprasert A, Poonwan N, Meyer W. Association between fertility and molecular sub-type of global isolates of Cryptococcus gattii molecular type VGII. Med Mycol 2008; 46:665-73. [PMID: 18651305 DOI: 10.1080/13693780802210734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The basidiomycetous yeast Cryptococcus gattii, is a primary pathogen which causes disease in apparently healthy humans and a wide range of animals. Recently, an outbreak of cryptococcosis caused by a previously uncommon genotype of C. gattii, VGII, emerged on Vancouver Island, British Columbia, Canada. Two pathogenic sub-types of VGII (designated VGIIa and VGIIb) were identified among these isolates. All of the isolates proved to be mating type alpha and had exceptionally high sporulation capacity. The common subtype, VGIIa, was more virulent than VGIIb in mice, suggesting a linkage between subtype and fertility/virulence. To test this hypothesis, we compared the fertility of 91 isolates from the Vancouver Island outbreak with that of 72 VGII isolates selected globally. Of all isolates, 69.94% were found to be fertile and exhibited clamp connections and basidiospores. The Vancouver isolates showed a high fertility rate of 84.2% as compared to only 29% of the 21 Australian isolates investigated. Mating type alpha strains were more fertile (72.79%) than mating type a (43.75%) (p<0.022). Amongst the two subtypes of VGII a much higher proportion of VGIIa (91.7%) than VGIIb (33.3%) was fertile (p<0.001). These results suggest that there is a clear correlation between the VGII subtypes of C. gattii and their mating/fertility. Further in vitro and in vivo investigations of more strains and congenic pairs are warranted.
Collapse
Affiliation(s)
- Popchai Ngamskulrungroj
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Since the fall of 1999, a new endemic focus of Cryptococcus gattii serotype B infection has emerged on Vancouver Island (Victoria, British Columbia), with infections occurring in both animals and humans. In the human cases, symptoms have manifested as pulmonary nodules, meningitis or both. This organism has added a new nonmalignant cause of pulmonary nodules to the literature, resulting in a change in the management of these nodules by health care professionals. METHODS A search of the number of cases recorded and treated in hospitals of the Vancouver Island Health Authority, along with a review of the literature regarding this emerging organism, was undertaken. The pathology, epidemiology and clinical course of this previously uncommon fungus was determined, and representative cases were chosen for illustration. RESULTS More than 130 cases were recorded in the six-year period from late 1999 to mid-July 2006. The number of cases increased steadily over this period, but appears to be levelling off. Representative cases with medical imaging, along with photos of the pathology, are included. Recommendations for diagnosis, treatment and follow-up are outlined. CONCLUSIONS The emergence of cryptococcal lung and central nervous system lesions on Vancouver Island have made it important to include travel to or residence of the island as part of the history in patients with pulmonary nodules. A registry of patients from Vancouver Island has been established, and it may be of value to include nonisland patients who are found to be infected with this organism.
Collapse
|
48
|
Abstract
Two cases of fatal cryptococcosis are described, one of Cryptococcus neoformans infection in a Gilbert's potoroo (Potorous gilbertii) and one of Cryptococcus gattii infection in a long-nosed potoroo (Potorous tridactylus). The diagnoses were confirmed by culture and specific immunohistochemistry, respectively. The long-nosed potoroo tested positive using the latex cryptococcal antigen test (LCAT), whereas the Gilbert's potoroo had a negative LCAT result despite having advanced disease of some duration. In both cases, the clinical presentation was a progressive neurologic disease associated with a central nervous system infection. Pulmonary infection was also observed in the long-nosed potoroo. Specific treatment with antifungal agents was unsuccessful in the long-nosed potoroo.
Collapse
|
49
|
Thomson P, Miranda G, Silva V. [Canine lymphadenitis caused by Cryptococcus neoformans. First case in Chile]. Rev Iberoam Micol 2007; 23:238-40. [PMID: 17388650 DOI: 10.1016/s1130-1406(06)70052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We report the first case of canine lymphoadenomegalia caused by Cryptococcus neoformans in Chile. Physical examination of a Rottweiler dog patient showed a generalized lymphoadenomegalia that affected the submandibular, superficial cervical and popliteus lymphatic nodules. Cryptococcus neoformans was isolated and identified from biopsies of the right submandibular nodule. After antifungal susceptibility, oral ketoconazole treatment was established for a period of six months showing clinical improvement. Two years post-treatment the patient showed no signs of the infection.
Collapse
Affiliation(s)
- Pamela Thomson
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | |
Collapse
|
50
|
Okabayashi K, Hasegawa A, Watanabe T. Microreview: capsule-associated genes of Cryptococcus neoformans. Mycopathologia 2007; 163:1-8. [PMID: 17216326 DOI: 10.1007/s11046-006-0083-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
Cryptococcosis, caused by Cryptococcus neoformans is a common systemic mycosis in man and animals, particularly immunocompromised patients. This pathogenic fungus produces a thick extracellular polysaccharide capsule. Four capsule-associated genes (CAP10, CAP59, CAP60, CAP64) were cloned and sequenced, and proved to be essential for capsule synthesis. However biochemical functions of CAP gene products have not been clarified yet. Recently, the relatedness of the polysaccharide capsule and four capsule-associated genes has partly been elucidated. Nucleotide sequence of four CAP gene fragments was analyzed for phylogenetic relationships, and they were in agreement with the conventional classification of varieties and serotypes within C. neoformans. Expression of four CAP genes and capsule size were examined using two media containing different amount of glucose, and the results indicated that CAP genes might play important roles in elaboration of extracellular polysaccharide capsule. Furthermore, analyses of CAP genes in various clinical samples would give the useful information to diagnose cryptococcosis in human and animals.
Collapse
Affiliation(s)
- Ken Okabayashi
- Department of Veterinary Biochemistry, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan.
| | | | | |
Collapse
|