1
|
Steele L, Furlong CE, Richter RJ, Marsillach J, Janulewicz PA, Krengel MH, Klimas NG, Sullivan K, Chao LL. PON1 Status in Relation to Gulf War Illness: Evidence of Gene-Exposure Interactions from a Multisite Case-Control Study of 1990-1991 Gulf War Veterans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:964. [PMID: 39200575 PMCID: PMC11353671 DOI: 10.3390/ijerph21080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 09/02/2024]
Abstract
BACKGROUND Deployment-related neurotoxicant exposures are implicated in the etiology of Gulf War illness (GWI), the multisymptom condition associated with military service in the 1990-1991 Gulf War (GW). A Q/R polymorphism at position 192 of the paraoxonase (PON)-1 enzyme produce PON1192 variants with different capacities for neutralizing specific chemicals, including certain acetylcholinesterase inhibitors. METHODS We evaluated PON1192 status and GW exposures in 295 GWI cases and 103 GW veteran controls. Multivariable logistic regression determined independent associations of GWI with GW exposures overall and in PON1192 subgroups. Exact logistic regression explored effects of exposure combinations in PON1192 subgroups. RESULTS Hearing chemical alarms (proxy for possible nerve agent exposure) was associated with GWI only among RR status veterans (OR = 8.60, p = 0.014). Deployment-related skin pesticide use was associated with GWI only among QQ (OR = 3.30, p = 0.010) and QR (OR = 4.22, p < 0.001) status veterans. Exploratory assessments indicated that chemical alarms were associated with GWI in the subgroup of RR status veterans who took pyridostigmine bromide (PB) (exact OR = 19.02, p = 0.009) but not RR veterans who did not take PB (exact OR = 0.97, p = 1.00). Similarly, skin pesticide use was associated with GWI among QQ status veterans who took PB (exact OR = 6.34, p = 0.001) but not QQ veterans who did not take PB (exact OR = 0.59, p = 0.782). CONCLUSION Study results suggest a complex pattern of PON1192 exposures and exposure-exposure interactions in the development of GWI.
Collapse
Affiliation(s)
- Lea Steele
- Veterans Health Research Program, Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Clement E. Furlong
- Department of Medicine (Division Medical Genetics), University of Washington, Seattle, WA 98195, USA; (C.E.F.); (R.J.R.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Rebecca J. Richter
- Department of Medicine (Division Medical Genetics), University of Washington, Seattle, WA 98195, USA; (C.E.F.); (R.J.R.)
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA;
| | - Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (P.A.J.); (K.S.)
| | - Maxine H. Krengel
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 22238, USA;
- Geriatric Research Education and Clinical Center, Miami Veterans Affaris Medical Center, Miami, FL 22125, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (P.A.J.); (K.S.)
| | - Linda L. Chao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94142, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94142, USA
- San Francisco Veterans Affairs Health Care System, 4150 Clement Street (114M), San Francisco, CA 94121, USA
| |
Collapse
|
2
|
Horn G, Demel T, Rothmiller S, Amend N, Worek F. The influence of the model pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases in HepaRG cells. Clin Toxicol (Phila) 2024; 62:288-295. [PMID: 38874383 DOI: 10.1080/15563650.2024.2361879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Intentional and unintentional organophosphorus pesticide exposure is a public health concern. Organothiophosphate compounds require metabolic bioactivation by the cytochrome P450 system to their corresponding oxon analogues to act as potent inhibitors of acetylcholinesterase. It is known that interactions between cytochrome P450 and pesticides include the inhibition of major xenobiotic metabolizing cytochrome P450 enzymes and changes on the genetic level. METHODS In this in vitro study, the influence of the pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases was investigated with a metabolically competent cell line (HepaRG cells). First, the viability of the cells after exposure to parathion and paraoxon was evaluated. The inhibitory effect of both pesticides on cytochrome P450 3A4, which is a pivotal enzyme in the metabolism of xenobiotics, was examined by determining the dose-response curve. Changes on the transcription level of 92 oxygenase associated genes, including those for important cytochrome P450 enzymes, were evaluated. RESULTS The exposure of HepaRG cells to parathion and paraoxon at concentrations up to 100 µM resulted in a viability of 100 per cent. After exposure for 24 hours, pronounced inhibition of cytochrome P450 3A4 enzyme activity was shown, indicating 50 per cent effective concentrations of 1.2 µM (parathion) and 2.1 µM (paraoxon). The results revealed that cytochrome P450 involved in parathion metabolism were significantly upregulated. DISCUSSION Relevant changes of the cytochrome P450 3A4 enzyme activity and significant alteration of genes associated with cytochrome P450 suggest an interference of pesticide exposure with numerous metabolic processes. The major limitations of the work involve the use of a single pesticide and the in vitro model as surrogate to human hepatocytes. CONCLUSION The data of this study might be of relevance after survival of acute, life-threatening intoxications with organophosphorus compounds, particularly for the co-administration of drugs, which are metabolized by the affected cytochrome P450.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Tobias Demel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
3
|
Chai L, Ji S, Zhang S, Yu H, Zhao M, Ji L. Biotransformation Mechanism of Pesticides by Cytochrome P450: A DFT Study on Dieldrin. Chem Res Toxicol 2020; 33:1442-1448. [DOI: 10.1021/acs.chemrestox.0c00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Chai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shubin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Kerr K, Morse G, Graves D, Zuo F, Lipowicz A, Carpenter DO. A Detoxification Intervention for Gulf War Illness: A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4143. [PMID: 31661809 PMCID: PMC6862571 DOI: 10.3390/ijerph16214143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
Approximately 30% of the 700,000 US veterans of the 1990-1991 Persian Gulf War developed multiple persistent symptoms called Gulf War illness. While the etiology is uncertain, several toxic exposures including pesticides and chemical warfare agents have shown associations. There is no effective medical treatment. An intervention to enhance detoxification developed by Hubbard has improved quality of life and/or reduced body burdens in other cohorts. We evaluated its feasibility and efficacy in ill Gulf War (GW) veterans in a randomized, waitlist-controlled, pilot study at a community-based rehabilitation facility in the United States. Eligible participants (n = 32) were randomly assigned to the intervention (n = 22) or a four-week waitlist control (n = 10). The daily 4-6 week intervention consisted of exercise, sauna-induced sweating, crystalline nicotinic acid and other supplements. Primary outcomes included recruitment, retention and safety; and efficacy was measured via Veteran's Short Form-36 (SF-36) quality of life, McGill pain, multidimensional fatigue inventory questionnaires and neuropsychological batteries. Scoring of outcomes was blinded. All 32 completed the trial and 21 completed 3-month follow-up. Mean SF-36 physical component summary score after the intervention was 6.9 (95% CI; -0.3, 14.2) points higher compared to waitlist control and 11 of 16 quality of life, pain and fatigue measures improved, with no serious adverse events. Most improvements were retained after 3 months. The Hubbard regimen was feasible, safe and might offer relief for symptoms of GW illness.
Collapse
Affiliation(s)
- Kathleen Kerr
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
| | - Gayle Morse
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| | - Donald Graves
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
| | - Fei Zuo
- Applied Health Research Centre, St. Michael's Hospital, Toronto, ON M5G 1B1, Canada.
| | - Alain Lipowicz
- Trillium Gift of Life Network, Ministry of Health and Long-Term Care, Toronto, ON M5G 2C9, Canada.
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| |
Collapse
|
5
|
Gawlik M, Trawiński J, Skibiński R. Simulation of phase I metabolism reactions of selected calcium channel blockers by human liver microsomes and photochemical methods with the use of Q-TOF LC/MS. J Pharm Biomed Anal 2019; 175:112776. [PMID: 31351248 DOI: 10.1016/j.jpba.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
The in vitro phase I metabolism of perhexiline and flunarizine, two calcium channel blockers was investigated during this study with the use of human liver microsomes (HLM) method compared with TiO2, WO3 and ZnO catalyzed photochemical reaction. In order to determine the structures of metabolites an quadrupole time-of-flight mass spectrometry combined with liquid chromatography (Q-TOF LC/MS) system was used. The obtained high resolution mass spectra enabled to identify thirteen products of metabolism of selected drugs including three not yet described metabolites of perhexiline and two new metabolites of flunarizine. The vast majority of metabolites were confirmed also with the participation of photocatalytic approach of the drug metabolism simulation. The comparison of all metabolic profiles made with the use of computational methods drew attention particularly to TiO2 and WO3 catalyzed photochemical reaction as similar to HLM incubation. Additionally, in silico toxicity assessment of the detected transformation products of the analyzed substances was also evaluated.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
6
|
Ferrero FF, Fadda M, De Carli L, Barbetta M, Sethi R, Pezzana A. Vive la Difference! The Effects of Natural and Conventional Wines on Blood Alcohol Concentrations: A Randomized, Triple-Blind, Controlled Study. Nutrients 2019; 11:E986. [PMID: 31052212 PMCID: PMC6567274 DOI: 10.3390/nu11050986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 12/23/2022] Open
Abstract
Different alcoholic beverages can have different effects on blood alcohol concentration (BAC) and neurotoxicity, even when equalized for alcohol content by volume. Anecdotal evidence suggested that natural wine is metabolized differently from conventional wines. This triple-blind study compared the BAC of 55 healthy male subjects after consuming the equivalent of 2 units of alcohol of a natural or conventional wine over 3 min in two separate sessions, one week apart. BAC was measured using a professional breathalyzer every 20 min after consumption for 2 h. The BAC curves in response to the two wines diverged significantly at twenty minutes (interval T20) and forty minutes (interval T40), and also at their maximum concentrations (peaks), with the natural wine inducing a lower BAC than the conventional wine [T20 = 0.40 versus 0.46 (p < 0.0002); T40 = 0.49 versus 0.53 (p < 0.0015); peak = 0.52 versus 0.56 (p < 0.0002)]. These differences are likely related to the development of different amino acids and antioxidants in the two wines during their production. This may in turn affect the kinetics of alcohol absorption and metabolism. Other contributing factors could include pesticide residues, differences in dry extract content, and the use of indigenous or selected yeasts. The study shows that with the same quantity and conditions of intake, natural wine has lower pharmacokinetic and metabolic effects than conventional wine, which can be assumed due to the different agronomic and oenological practices with which they are produced. It can therefore be hypothesized that the consumption of natural wine may have a different impact on human health from that of conventional wine.
Collapse
Affiliation(s)
| | - Maurizio Fadda
- Clinical Nutrition Unit, Città della Salute e della Scienza, 10126 Torino, Italy.
| | - Luca De Carli
- Clinical Nutrition Unit, ASL Città di Torino, 10128 Torino, Italy.
| | | | - Rajandrea Sethi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 10129 Torino, Italy.
| | - Andrea Pezzana
- Clinical Nutrition Unit, ASL Città di Torino, 10128 Torino, Italy.
| |
Collapse
|
7
|
KAUR GURPREET, JAIN AK, SINGH SANDEEP. CYP/PON genetic variations as determinant of organophosphate pesticides toxicity. J Genet 2017; 96:187-201. [DOI: 10.1007/s12041-017-0741-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Christensen CH, Barry KH, Andreotti G, Alavanja MCR, Cook MB, Kelly SP, Burdett LA, Yeager M, Beane Freeman LE, Berndt SI, Koutros S. Sex Steroid Hormone Single-Nucleotide Polymorphisms, Pesticide Use, and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study. Front Oncol 2016; 6:237. [PMID: 27917368 PMCID: PMC5116569 DOI: 10.3389/fonc.2016.00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation (N = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies (N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction = 4.0 × 10-5; q-value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk.
Collapse
Affiliation(s)
- Carol H Christensen
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Document Control Center , Silver Spring, MD , USA
| | - Kathryn Hughes Barry
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael C R Alavanja
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael B Cook
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Scott P Kelly
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Laurie A Burdett
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
9
|
Ji YJ, Liu HN, Kong XF, Blachier F, Geng MM, Liu YY, Yin YL. Use of insect powder as a source of dietary protein in early-weaned piglets1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9555] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y. J. Ji
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - H. N. Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - X. F. Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - F. Blachier
- INRA, CNRH-IdF, AgroParisTech, UMR 914 Nutrition Physiology and Ingestive Behavior, 16 rue Claude Bernard, Paris 75005, France
| | - M. M. Geng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Y. Y. Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Y. L. Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
10
|
Kerr KJ. Gulf War illness: an overview of events, most prevalent health outcomes, exposures, and clues as to pathogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:273-286. [PMID: 26598939 DOI: 10.1515/reveh-2015-0032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION During or very soon after the 1990-1991 Persian Gulf War, veterans of the conflict began to report symptoms of illness. Common complaints included combinations of cognitive difficulties, fatigue, myalgia, rashes, dyspnea, insomnia, gastrointestinal symptoms and sensitivity to odors. Gradually in the USA, and later in the UK, France, Canada, Denmark and Australia, governments implemented medical assessment programs and epidemiologic studies to determine the scope of what was popularly referred to as "the Gulf War syndrome". Attention was drawn to numerous potentially toxic deployment-related exposures that appeared to vary by country of deployment, by location within the theater, by unit, and by personal job types. Identifying a single toxicant cause was considered unlikely and it was recognized that outcomes were influenced by genetic variability in xenobiotic metabolism. METHODS Derived from primary papers and key reports by the Research Advisory Committee on Gulf War Veterans' Illnesses and the Institute of Medicine, a brief overview is presented of war related events, symptoms and diagnostic criteria for Gulf War illness (GWV), some international differences, the various war-related exposures and key epidemiologic studies. Possible exposure interactions and pathophysiologic mechanisms are discussed. RESULTS Exposures to pyridostigmine bromide, pesticides, sarin and mustard gas or combinations thereof were most associated with GWI, especially in some genotype subgroups. The resultant oxidant stress and background exposome must be assumed to have played a role. CONCLUSION Gulf War (GW) exposures and their potential toxic effects should be considered in the context of the human genome, the human exposome and resultant oxidant stress to better characterize this unique environmentally-linked illness and, ultimately, provide a rationale for more effective interventions and future prevention efforts.
Collapse
|
11
|
Yusa V, Ye X, Calafat AM. Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends Analyt Chem 2012; 38:129-142. [PMID: 26705372 PMCID: PMC4687402 DOI: 10.1016/j.trac.2012.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Biomonitoring is a very useful tool for assessing human exposure to environmental pollutants. This review discusses recent methods for the quantitative measurement of biomarkers of exposure to different classes of chemicals used in personal-care products (e.g., musk fragrances, preservatives, UV filters, and insect repellents) and consumer products (e.g., organophosphate flame retardants, phthalate esters, perfluorinated compounds, and industrial phenols). The measurements are mainly taken in urine, blood, and breast milk. We also discuss the different procedures commonly used for sample-pretreatment, extraction, and clean up, and chromatographic techniques currently used to determine these compounds. Finally, we present data on the main biomarkers occurring in different human specimens.
Collapse
Affiliation(s)
- Vicent Yusa
- Public Health Research Center of Valencia (CSISP), Av. Catalunya, 21, 46020, Valencia, Spain
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
Abu-Qare AW, Abou-Donia MB. In vitro metabolism and interactions of pyridostigmine bromide, N,N-diethyl-m-toluamide, and permethrin in human plasma and liver microsomal enzymes. Xenobiotica 2008; 38:294-313. [PMID: 18274958 DOI: 10.1080/00498250701813230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.
Collapse
Affiliation(s)
- A W Abu-Qare
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
13
|
Enzyme Induction and Cytotoxicity in Human Hepatocytes by Chlorpyrifos and N,N-Diethyl-m-toluamide (DEET). ACTA ACUST UNITED AC 2008; 23:237-60. [DOI: 10.1515/dmdi.2008.23.3-4.237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Taly V, Urban P, Truan G, Pompon D. A combinatorial approach to substrate discrimination in the P450 CYP1A subfamily. Biochim Biophys Acta Gen Subj 2007; 1770:446-57. [PMID: 16996693 DOI: 10.1016/j.bbagen.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/22/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
A comparison of all known mammalian CYP1A sequences identifies nineteen sequence regions that are conserved within all 1A1s or within all 1A2s but at the same time systematically differ between any 1A1 and any 1A2. The purpose of this study was to explore links between these specific CYP1A sequence signatures and substrate specificity shift through the kinetic analysis of combinatorial variants of increasing complexity. The less complex variants correspond to multiple mutations within a short segment of their sequence. The more complex variants correspond to mosaic P450s recombining 1A1 and 1A2 sequences (up to 5 crossovers per sequence). Fifty-eight such functional CYP1A variants and parental wild-type enzymes were expressed in yeast and assayed with 7-alkoxyresorufins and ethoxyflurorescein ethyl ester as substrates. Observed kinetic data were analyzed by multivariate statistical analyses and hierarchical clustering in order to highlight correlations and identify potential sequence-activity relationships within the three-dimensional function space investigated. Several variants are outliers in these representations and show a redistribution of their substrate specificity compared to wild-type CYP1As. Some combinations of sequence elements were identified that significantly discriminate between 1A1 and 1A2 for these three substrates. The comparison of this combinatorial approach with previous results of site-directed mutagenesis is discussed.
Collapse
Affiliation(s)
- Valérie Taly
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, UPR2167, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
15
|
Hodgson E, Rose RL. The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals. Pharmacol Ther 2007; 113:420-8. [PMID: 17157385 DOI: 10.1016/j.pharmthera.2006.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome P450 (CYP) 2B6 (CYP2B6) is a human CYP isoform found in variable amounts in the liver and other organs. It is known to be inducible and polymorphic and has a wide range of xenobiotic substrates. Studies of CYP2B6 to date have concentrated heavily on clinical drugs. In the present communication, however, we concentrate on its role in the metabolism of environmental xenobiotics. The term environment is used, in its broadest sense, to include natural ecosystems and agroecosystems as well as the industrial and indoor domestic environments. In essence, this excludes only clinical drugs and drugs of abuse. Many of these chemicals, including agrochemicals and industrial chemicals, can serve as substrates, inhibitors and/or inducers of CYP2B6, these activities being often modified by the existence of polymorphic variants. Metabolism-based interactions between environmental chemicals are discussed, as well as the emerging possibility of metabolic interactions between environmental chemicals and clinical drugs.
Collapse
Affiliation(s)
- Ernest Hodgson
- Department of Environmental and Molecular Toxicology, North Carolina State University, NC 27695-7633, USA.
| | | |
Collapse
|
16
|
Dorne JLCM, Ragas AMJ, Frampton GK, Spurgeon DS, Lewis DF. Trends in human risk assessment of pharmaceuticals. Anal Bioanal Chem 2007; 387:1167-72. [PMID: 17205262 DOI: 10.1007/s00216-006-0961-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, School of Medicine, Biomedical Sciences Building, Bassett Crescent East, Southampton, UK.
| | | | | | | | | |
Collapse
|
17
|
McDougal JN, Garrett CM, Amato CM, Berberich SJ. Effects of brief cutaneous JP-8 jet fuel exposures on time course of gene expression in the epidermis. Toxicol Sci 2006; 95:495-510. [PMID: 17085751 DOI: 10.1093/toxsci/kfl154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jet fuel jet propulsion fuel 8 (JP-8) has been shown to cause an inflammatory response in the skin, which is characterized histologically by erythema, edema, and hyperplasia. Studies in laboratory animal skin and cultured keratinocytes have identified a variety of changes in protein levels related to inflammation, oxidative damage, apoptosis, and cellular growth. Most of these studies have focused on prolonged exposures and subsequent effects. In an attempt to understand the earliest responses of the skin to JP-8, we have investigated changes in gene expression in the epidermis for up to 8 h after a 1-h cutaneous exposure in rats. After exposure, we separated the epidermis from the rest of the skin with a cryotome and isolated total mRNA. Gene expression was studied with microarray techniques, and changes from sham treatments were analyzed and characterized. We found consistent twofold increases in gene expression of 27 transcripts at 1, 4, and 8 h after the beginning of the 1-h exposure that were related primarily to structural proteins, cell signaling, inflammatory mediators, growth factors, and enzymes. Analysis of pathways changed showed that several signaling pathways were increased at 1 h and that the most significant changes at 8 h were in metabolic pathways, many of which were downregulated. These results confirm and expand many of the previous molecular studies with JP-8. Based on the 1-h changes in gene expression, we hypothesize that the trigger of the JP-8-induced, epidermal stress response is a physical disruption of osmotic, oxidative, and membrane stability which activates gene expression in the signaling pathways and results in the inflammatory, apoptotic, and growth responses that have been previously identified.
Collapse
Affiliation(s)
- James N McDougal
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | |
Collapse
|