1
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Treyer A, Pujato M, Pechuan X, Müsch A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol Biol Cell 2016; 27:2259-71. [PMID: 27226480 PMCID: PMC4945143 DOI: 10.1091/mbc.e16-02-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 01/21/2023] Open
Abstract
A novel assay quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and the evolution of colocalization during their TGN-to-surface transport. Apical NTRp75 and basolateral VSVG in MDCK cells undergo continuous sorting between TGN exit and surface arrival. For several decades, the trans-Golgi network (TGN) was considered the most distal stop and hence the ultimate protein-sorting station for distinct apical and basolateral transport carriers that reach their respective surface domains in the direct trafficking pathway. However, recent reports of apical and basolateral cargoes traversing post-Golgi compartments accessible to endocytic ligands before their arrival at the cell surface and the post-TGN breakup of large pleomorphic membrane fragments that exit the Golgi region toward the surface raised the possibility that compartments distal to the TGN mediate or contribute to biosynthetic sorting. Here we describe the development of a novel assay that quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and by the evolution of colocalization during their TGN-to-surface transport. Keys to the high resolution of our approach are 1) conversion of perinuclear organelle clustering into a two-dimensional microsomal spread and 2) identification of TGN and post-TGN cargo without the need for a TGN marker that universally cosegregates with all cargo. Using our assay, we provide the first evidence that apical NTRp75 and basolateral VSVG in Madin–Darby canine kidney cells still undergo progressive sorting after they exit the TGN toward the cell surface.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mario Pujato
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ximo Pechuan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
3
|
Farr GA, Hull M, Stoops EH, Bateson R, Caplan MJ. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 2015; 26:4401-11. [PMID: 26424804 PMCID: PMC4666135 DOI: 10.1091/mbc.e14-09-1385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/24/2015] [Indexed: 11/14/2022] Open
Abstract
The trafficking of newly synthesized Na,K-ATPase and E-cadherin is observed in polarized epithelial cells. E-cadherin’s exit from the Golgi complex is not susceptible to 19°C temperature block. Furthermore, these proteins exit the Golgi and are delivered to the basolateral cell surface in separate vascular carriers. Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael Hull
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Emily H Stoops
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Rosalie Bateson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026 )
| |
Collapse
|
4
|
Farr GA, Hull M, Mellman I, Caplan MJ. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. ACTA ACUST UNITED AC 2009; 186:269-82. [PMID: 19620635 PMCID: PMC2717640 DOI: 10.1083/jcb.200901021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
5
|
|
6
|
Maier O, Hoekstra D, Baron W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 2008; 35:35-53. [DOI: 10.1007/s12031-007-9024-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/13/2007] [Indexed: 12/15/2022]
|
7
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
8
|
Ang AL, Taguchi T, Francis S, Fölsch H, Murrells LJ, Pypaert M, Warren G, Mellman I. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. ACTA ACUST UNITED AC 2004; 167:531-43. [PMID: 15534004 PMCID: PMC2172492 DOI: 10.1083/jcb.200408165] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B-dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B-dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.
Collapse
Affiliation(s)
- Agnes Lee Ang
- Department of Cell Biology, Ludwig Institute of Cancer Research, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Watanabe T, Watanabe S, Noda T, Fujii Y, Kawaoka Y. Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol 2003; 77:10575-83. [PMID: 12970442 PMCID: PMC228515 DOI: 10.1128/jvi.77.19.10575-10583.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
10
|
Chu JJH, Ng ML. Infection of polarized epithelial cells with flavivirus West Nile: polarized entry and egress of virus occur through the apical surface. J Gen Virol 2002; 83:2427-2435. [PMID: 12237424 DOI: 10.1099/0022-1317-83-10-2427] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both polarized epithelial Vero (C1008) and non-polarized Vero (control) cells were grown on permeable cell culture inserts and infected either apically or basolaterally with West Nile (WN) or Kunjin (KUN) virus. KUN virus (closely related to WN virus) was used as a comparison. Using indirect immunofluorescence and plaque assays of productive virus titres, entry of WN and KUN viruses was confined to the apical surface of polarized epithelial cells. For the first time, these results provided evidence on the distribution of flavivirus-specific receptor(s) in polarized epithelial cells; that is to say that receptor expression was shown to be predominant at the apical surface. In addition, the release of these viruses from polarized Vero C1008 epithelial cells was also examined. Egress of WN virus strain Sarafend (S) was observed to occur predominantly at the apical surface of Vero C1008 cells. In contrast, the release of KUN virus was bi-directional from polarized Vero C1008 cells. Furthermore, disruption of the cellular microtubule network was shown to inhibit the apical release of WN (S) virus but had no effect on the release of KUN virus. Hence, the difference in the release of these closely related viruses suggested the involvement of a microtubule-dependent, polarized sorting mechanism for WN virus proteins but not for KUN virus proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- J J H Chu
- Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597, Singapore1
| | - M L Ng
- Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597, Singapore1
| |
Collapse
|
11
|
Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 2002; 301:212-25. [PMID: 12359424 DOI: 10.1006/viro.2002.1595] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morphogenesis of influenza virus is a poorly understood process that produces two types of enveloped virion: approximately 100-nm spheres and similar diameter filaments that reach 20 microm in length. Spherical particles assemble at plasma membrane lipid rafts in a process independent of microfilaments. The budding site of filamentous virions is hitherto uncharacterised but their formation involves the actin cytoskeleton. We confirm microfilament involvement in filamentous budding and show that after disruption of cortical actin by jasplakinolide, HA, NP, and M1 redistributed around beta-actin clusters to form novel annular membrane structures. HA in filamentous virions and jasplakinolide-induced annuli was detergent insoluble at 4 degrees C. Furthermore, in both cases HA partitioned into low buoyant density detergent-insoluble glycolipid domains, indicating that filamentous virions and annuli contain reorganised lipid rafts. We propose that the actin cytoskeleton is required to maintain the correct organisation of lipid rafts for incorporation into budding viral filaments.
Collapse
Affiliation(s)
- Martha Simpson-Holley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
As a pioneer molecular cell biologist, highly skilled in both morphological and biochemical approaches, David Sabatini was a key figure in laying the foundation for the field of intracellular protein trafficking with his seminal studies on cotranslational translocation of nascent polypeptides in the endoplasmic reticulum and the intracellular sorting of plasma membrane proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- Milton Adesnik
- Dept of Cell Biology, New York University School of Medicine, 550 First Ave, Room MSB 698B, New York, NY 10016, USA.
| |
Collapse
|
13
|
Waschke J, Drenckhahn D. Uniform apicobasal polarity of microtubules and apical location of gamma-tubulin in polarized intestinal epithelium in situ. Eur J Cell Biol 2000; 79:317-26. [PMID: 10887962 DOI: 10.1078/s0171-9335(04)70035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polarized differentiation of the intestinal epithelium has been previously shown to depend on an intact microtubular system that is essential for vectorial delivery of apical membrane proteins to the apical cell surfaces. Uniform alignment and polarization of microtubules have been suggested to provide the ultrastructural basis for vectorial transport between the Golgi apparatus and the apical cell surface. In the present study we applied the hook decoration technique to analyse the polarity of microtubules in the rat jejunal epithelium. By immunocytochemistry we studied the subcellular location of gamma-tubulin, an essential component of microtubule-organizing centers. Microtubules were found to be mainly aligned parallel to the apicobasal axis of the cells and to extend from the subterminal space underneath the apical terminal web down to the cellular basis. We found that 98% out of 1122 decorated microtubules displayed uniform apicobasal polarity with the growing ends (plus ends) pointing basally and the non-growing ends (minus ends) pointing towards the cellular apex. No differences were observed with respect to microtubular polarity between the apical, perinuclear and infranuclear cellular portions. Immunostaining specific for gamma-tubulin was restricted to the apical subterminal space underneath the rootlets of microvilli. These findings indicate that the apical subterminal space of enterocytes serves as the predominant if not exclusive microtubule-organizing compartment from which uniformly polarized microtubules grow out with their plus ends towards the cellular basis.
Collapse
Affiliation(s)
- J Waschke
- Institute of Anatomy, Julius-Maximilians University, Würzburg, Germany
| | | |
Collapse
|
14
|
Simon JP, Ivanov IE, Adesnik M, Sabatini DD. In vitro generation from the trans-Golgi network of coatomer-coated vesicles containing sialylated vesicular stomatitis virus-G protein. Methods 2000; 20:437-54. [PMID: 10720465 DOI: 10.1006/meth.2000.0957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe an in vitro system in which post-Golgi vesicles containing metabolically labeled, sialylated, vesicular stomatitis virus (VSV) G protein molecules (VSV-G) are produced from the trans-Golgi network (TGN) of an isolated Golgi membrane fraction. This fraction is prepared from VSV-infected Madin-Darby canine kidney (MDCK) cells in which the (35)S-labeled viral envelope glycoprotein was allowed to accumulate in the trans-Golgi network during a prolonged incubation at 20 degrees C. The vesicles produced in this system are separated from the remnant Golgi membranes by differential centrifugation or by velocity sedimentation in a sucrose gradient. Vesicle production, quantified as the percentage of labeled VSV-G released from the Golgi membranes, is optimal at 37 degrees C and does not occur below 20 degrees C. It requires GTP and the small GTP-binding protein Arf (ADP-ribosylation factor), as well as coat protein type I (COPI) coat components (coatomer) and vesicle scission factors-one of which corresponds to the phosphatidylinositol transfer protein (PITP). Formation of the vesicles does not require GTP hydrolysis which, however, is necessary for their uncoating. Thus, vesicles generated in the presence of the nonhydrolyzable GTP analogs, GTPgammaS or GMP-PNP, retain a coatomer coat visible in the electron microscope, sediment more rapidly in sucrose density gradients than those generated with ATP or GTP, and can be captured with anticoatomerantibodies. The process of coatomer-coated vesicle formation from the TGN can be dissected into two distinct sequential phases, corresponding to coat assembly/bud formation and vesicle scission. The first phase is completed when Golgi fractions are incubated with cytosolic proteins and nonhydrolyzable GTP analogs at 20 degrees C. The scission phase, which leads to vesicle release, takes place when coated Golgi membranes, recovered after phase I, are incubated at higher temperatures in the presence of cytosolic proteins. The scission phase does not take place if protein kinase C inhibitors are added during the first phase, even though these inhibitors do not prevent membrane coating and bud formation. The phosphorylating activity of a protein kinase C, however, plays no role in vesicle formation, since this process does not require ATP.
Collapse
Affiliation(s)
- J P Simon
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Production of an infectious herpes simplex virus (HSV) particle requires sequential progression of maturing virions through a series of complex assembly events. Capsids must be constructed in the nucleus, packaged with the viral genome, and transported to the nuclear periphery. They then bud into the nuclear membrane to acquire an envelope, traffic through the cytoplasm, and are released from the cell. Most of these phenomena are very poorly defined, and no suitable model system has previously been available to facilitate molecular analyses of genomic DNA packaging, capsid envelopment, and intracellular virion trafficking. We report the development of such an assay system for HSV type 1 (HSV-1). Using a reversible temperature-sensitive mutation in capsid assembly, we have developed conditions in which an accumulated population of immature capsids can be rapidly, efficiently, and synchronously chased to maturity. By assaying synchronized scaffold cleavage, DNA packaging, and acquisition of infectivity, we have demonstrated the kinetics with which these events occur. Kinetic and morphological features of intranuclear and extranuclear virion trafficking have similarly been examined by indirect immunofluorescence microscopy and electron microscopy. This system should prove a generally useful tool for the molecular dissection of many late events in HSV-1 biogenesis.
Collapse
Affiliation(s)
- G A Church
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | |
Collapse
|
16
|
Marzolo MP, Bull P, González A. Apical sorting of hepatitis B surface antigen (HBsAg) is independent of N-glycosylation and glycosylphosphatidylinositol-anchored protein segregation. Proc Natl Acad Sci U S A 1997; 94:1834-9. [PMID: 9050865 PMCID: PMC20003 DOI: 10.1073/pnas.94.5.1834] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used the hepatitis B surface antigen (HBsAg) as a tool to explore mechanisms by which polarized epithelial cells address specific proteins to their apical domain. It recently has been proposed that N-glycans can serve as apical signals recognized by lectin-like sorting receptors in the trans-Golgi network. We found, however, conclusive evidence that the HBsAg follows an apical pathway not mediated by N-glycan signaling. Neither tunicamycin treatment nor replacement of its single glycosylated residue, Asn-146, altered its predominant (>85%) apical secretion from transfected Madin-Darby canine kidney cells (MDCK). Although HBsAg is known to be secreted as a lipoprotein particle, our results suggest that the exocytic machinery involved in its N-glycan-independent pathway overlaps, at least partially, with that of other apically targeted proteins, including the endogenous gp80, as judged by the effects of brefeldin A. We also tested whether its sorting behavior could be ascribed to association with glycosylphosphatidylinositol (GPI)-anchored proteins, which, together with glycosphingolipids, primarily are targeted to the apical domain of MDCK cells. HBsAg was preferentially secreted from the apices of transfected Fisher rat thyroid cells, which, in contrast to MDCK cells, address GPI-proteins and glycosphingolipids to their basal domain. Moreover, complete inhibition of GPI biogenesis by mannosamine treatment did not impair the HBsAg apical secretion, discarding the possibility that HBsAg could be "hitchhiking" with a newly synthesized GPI-protein. Thus, the HBsAg provides a unique model system to search for yet-unknown apical sorting mechanisms that could depend on proteinaceous targeting signals interacting with cognate trans-Golgi network receptors that are at present unidentified.
Collapse
Affiliation(s)
- M P Marzolo
- Departamento de Immunologia Clínica y Reumatología, Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago
| | | | | |
Collapse
|
17
|
Simon JP, Ivanov IE, Adesnik M, Sabatini DD. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J Cell Biol 1996; 135:355-70. [PMID: 8896594 PMCID: PMC2121038 DOI: 10.1083/jcb.135.2.355] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently described a system that recreates in vitro the generation of post-Golgi vesicles from purified Golgi fractions obtained from virus-infected MDCK cells in which the vesicular stomatitis virus-G envelope glycoprotein had been allowed to accumulate in vivo in the TGN. Vesicle formation, monitored by the release of the viral glycoprotein, was shown to require the activation of a GTP-binding ADP ribosylation factor (ARF) protein that promotes the assembly of a vesicle coat in the TGN, and to be regulated by a Golgi-associated protein kinase C (PKC)-like activity. We have now been able to dissect the process of post-Golgi vesicle generation into two sequential stages, one of coat assembly and bud formation, and another of vesicle scission, neither of which requires an ATP supply. The first stage can occur at 20 degrees C, and includes the GTP-dependent activation of the ARF protein, which can be effected by the nonhydrolyzable nucleotide analogue GTP gamma S, whereas the second stage is nucleotide independent and can only occur at a higher temperature of incubation. Cytosolic proteins are required for the vesicle scission step and they cannot be replaced by palmitoyl CoA, which is known to promote, by itself, scission of the coatomer-coated vesicles that mediate intra-Golgi transport. We have found that PKC inhibitors prevented vesicle generation, even when this was sustained by GTP gamma S and ATP levels reduced far below the K(m) of PKC. The inhibitors suppressed vesicle scission without preventing coat assembly, yet to exert their effect, they had to be added before coat assembly took place. This indicates that a target of the putative PKC is activated during the bud assembly stage of vesicle formation, but only acts during the phase of vesicle release. The behavior of the PKC target during vesicle formation resembles that of phospholipase D (PLD), a Golgi-associated enzyme that has been shown to be activated by PKC, even in the absence of the latter's phosphorylating activity. We therefore propose that during coat assembly, PKC activates a PLD that, during the incubation at 37 degrees C, promotes vesicle scission by remodeling the phospholipid bilayer and severing connections between the vesicles and the donor membrane.
Collapse
Affiliation(s)
- J P Simon
- Department of Cell Biology, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
18
|
Mayer A, Ivanov IE, Gravotta D, Adesnik M, Sabatini DD. Cell-free reconstitution of the transport of viral glycoproteins from the TGN to the basolateral plasma membrane of MDCK cells. J Cell Sci 1996; 109 ( Pt 7):1667-76. [PMID: 8832389 DOI: 10.1242/jcs.109.7.1667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An in vitro system to study the transport of plasma membrane proteins from the TGN to the basolateral plasma membrane of polarized MDCK cells has been developed in which purified cell fractions are combined and transport between them is studied under controlled conditions. In this system, a donor Golgi fraction derived from VSV or influenza virus-infected MDCK cells, in which 35S-labeled viral glycoproteins were allowed to accumulate in the TGN during a low temperature block, is incubated with purified immobilized basolateral plasma membranes that have their cytoplasmic face exposed and are obtained by shearing-lysis of MDCK monolayers grown on cytodex beads. Approximately 15–30% of the labeled glycoprotein molecules are transferred from the Golgi fraction to the acceptor plasma membranes and are recovered with the sedimentable (1 g) beads. Transport is temperature, energy and cytosol dependent, and is abolished by alkylation of SH groups and inhibited by the presence of GTP-gamma-S, which implicates GTP-binding proteins and the requirement for GTP hydrolysis in one or more stages of the transport process. Endo H-resistant glycoprotein molecules that had traversed the medial region of the Golgi apparatus are preferentially transported and their luminal domains become accessible to proteases, indicating that membrane fusion with the plasma membrane takes place in the in vitro system. Mild proteolysis of the donor or acceptor membranes abolishes transport, suggesting that protein molecules exposed on the surface of these membranes are involved in the formation and consumption of transport intermediates, possibly as addressing and docking proteins, respectively. Surprisingly, both VSV-G and influenza HA were transported with equal efficiencies to the basolateral acceptor membranes. However, low concentrations of a microtubular protein fraction preferentially inhibited the transport of HA, although this effect was not abolished by microtubule depolymerizing agents. This system shows great promise for elucidating the mechanisms that effect the proper sorting of plasma membrane proteins in the TGN and their subsequent targeting to the appropriate acceptor membrane.
Collapse
Affiliation(s)
- A Mayer
- Department of Cell Biology, New York University School of Medicine, NY 10016, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- D Einfeld
- Genvec Inc., Rockville, MD 20852, USA
| |
Collapse
|
20
|
Nauwynck HJ, Pensaert MB. Effect of specific antibodies on the cell-associated spread of pseudorabies virus in monolayers of different cell types. Arch Virol 1995; 140:1137-46. [PMID: 7611884 DOI: 10.1007/bf01315422] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of specific pseudorabies virus (PRV) antibodies on the enlargement of plaques produced by PRV were studied in monolayers of different cell types. The plaque size was used as parameter for the efficacy of the cell-associated spread (CAS) of PRV. First, the effect of anti-PRV hyperimmune serum on the plaque growth was examined in monolayers of the continuous cell lines ST, SK-6 and MDCK and monolayers of the primary cultures of porcine fibroblasts, endothelial cells and endometrial cells. A tenfold increase in the serum concentration did reduce the plaque size with 50% in both SK-cells and fibroblasts and with 40, 28 and 16% in MDCK, endothelial and endometrial cells, respectively. In ST cells, no change in size was observed with increasing antibody concentrations. Secondly, the effects of monoclonal antibodies (mAbs) directed against PRV glycoproteins gB, gC, gD and gE and polyclonal antibodies against gC were evaluated in SK-6 cells. MAbs against gB, gD and gE were able to reduce the CAS with a cumulative effect between mAbs against gD and either mAbs against gB or mAbs against gE. Monoclonal and polyclonal antibodies against gC did not change the plaque size.
Collapse
Affiliation(s)
- H J Nauwynck
- Laboratory of Veterinary Virology, Faculty of Veterinary Medicine, University of Gent, Belgium
| | | |
Collapse
|
21
|
Monlauzeur L, Rajasekaran A, Chao M, Rodriguez-Boulan E, Le Bivic A. A cytoplasmic tyrosine is essential for the basolateral localization of mutants of the human nerve growth factor receptor in Madin-Darby canine kidney cells. J Biol Chem 1995; 270:12219-25. [PMID: 7744872 DOI: 10.1074/jbc.270.20.12219] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deletion of 58 internal amino acids from the C-terminal cytoplasmic domain of p75 human nerve growth factor receptor (hNGFR) changes its localization from apical to basolateral in transfected Madin-Darby Canine Kidney (MDCK) cells (Le Bivic, A., Sambuy, Y., Patzak, A., Patil, N., Chao, M., and Rodriguez-Boulan, E. (1991) J. Cell Biol. 115, 607-618). The mutant protein, PS-NGFR, also shows a dramatic increase in its ability to endocytose NGF and to recycle through basolateral endosomes. We report here the site-directed mutagenesis analysis of PS-NGFR to localize and characterize its basolateral and endocytic sorting signals. Both signals reside in the proximal part of the PS cytoplasmic tail, between positions 306 and 314. Transferring the cytoplasmic tail (19 residues) and transmembrane domain of a truncated PS mutant to the ectodomain of the placental alkaline phosphatase, an apical glypiated ectoenzyme, redirected it to the basolateral membrane and the endocytic compartments. A tyrosine at position 308, present in this short cytoplasmic segment, was mutated into phenylalanine or alanine. The resulting mutants were expressed predominantly on the apical membrane of MDCK cells. Their ability to endocytose NGF was reduced with the alanine mutant showing the stronger diminution. The PS mutant contains a short cytoplasmic sequence necessary both for basolateral targeting and endocytosis, and the requirement for tyrosine at position 308 is crucial for basolateral targeting.
Collapse
Affiliation(s)
- L Monlauzeur
- Laboratoire de Génétique et Physiologie du Développement, Unité Mixte de Recherche 9943, Faculté des Sciences de Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
22
|
Kuliawat R, Lisanti MP, Arvan P. Polarized distribution and delivery of plasma membrane proteins in thyroid follicular epithelial cells. J Biol Chem 1995; 270:2478-82. [PMID: 7852309 DOI: 10.1074/jbc.270.6.2478] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Thyroid follicular cells coordinate several oppositely located surface enzyme activities. Recent studies have raised questions about the basic mechanisms used to achieve thyroid surface polarity. We investigated these mechanisms in primary thyroid epithelial monolayers cultured on porous filters. In the steady state, most Na+/K(+)-ATpase and aminopeptidase N were available for surface biotinylation, and these proteins exhibited physiological distributions (basolateral and apical, respectively). Glycosylphosphatidylinositol-anchored proteins were also apically distributed. By pulse-chase, newly synthesized transmembrane proteins exhibited polarized surface delivery that was oriented similarly to that observed at steady state. Little time elapsed between acquisition of Golgi-specific processing and cell surface arrival. Interestingly, when either newly synthesized or steady state-labeled thyroid peroxidase was similarly analyzed, only approximately 30% of the enzyme was ever detected at the cell surface. Of this, the majority was localized apically. The data suggest that most thyroid peroxidase remains intracellular in these monolayers, consistent with the possibility of intracellular iodination activity in addition to apical extracellular iodination. Nevertheless, in filter-polarized thyrocytes, most newly synthesized plasma membrane proteins appear to be sorted in the Golgi complex for direct delivery to apical and basolateral domains.
Collapse
Affiliation(s)
- R Kuliawat
- Division of Endocrinology, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
23
|
Wagner M, Rajasekaran AK, Hanzel DK, Mayor S, Rodriguez-Boulan E. Brefeldin A causes structural and functional alterations of the trans-Golgi network of MDCK cells. J Cell Sci 1994; 107 ( Pt 4):933-43. [PMID: 8056847 DOI: 10.1242/jcs.107.4.933] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans-Golgi network (TGN) of MDCK cells is exquisitely sensitive to the fungal metabolite brefeldin A (BFA), in contrast to the refractory Golgi stack of these cells. At a concentration of 1 microgram/ml, BFA promoted extensive tubulation of the TGN while the medical Golgi marker alpha-mannosidase II was not affected. Tubules emerging minutes after addition of the drug contained both the apical marker influenza hemagglutinin (HA), previously accumulated at 20 degrees C, and the fusion protein interleukin receptor/TGN38 (TGG), a TGN marker that recycles basolaterally, indicating that, in contrast to TGN vesicles, TGN-derived tubules cannot sort apical and basolateral proteins. After 60 minutes treatment with BFA, HA and TGG tubules formed extensive networks widely spread throughout the cell, different from the focused centrosomal localization previously described in non-polarized cells. The TGG network partially codistributed with an early endosomal tubular network loaded with transferrin, suggesting that the TGG and endosomal networks had fused or that TGG had entered the endosomal network via surface recycling and endocytosis. The extensive structural alterations of the TGN were accompanied by functional disruptions, such as the extensive mis-sorting of influenza HA, and by the release of the TGN marker gamma-adaptin. Our results suggest the involvement of BFA-sensitive adaptor proteins in TGN-->surface transport.
Collapse
Affiliation(s)
- M Wagner
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | | | |
Collapse
|
24
|
Transport, function, and sorting of lactase-phlorizin hydrolase in Madin-Darby canine kidney cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42002-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Zurzolo C, Lisanti MP, Caras IW, Nitsch L, Rodriguez-Boulan E. Glycosylphosphatidylinositol-anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells. J Cell Biol 1993; 121:1031-9. [PMID: 7684737 PMCID: PMC2119695 DOI: 10.1083/jcb.121.5.1031] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) acts as an apical targeting signal in MDCK cells and other kidney and intestinal cell lines. In striking contrast with these model polarized cell lines, we show here that Fischer rat thyroid (FRT) epithelial cells do not display a preferential apical distribution of GPI-anchored proteins. Six out of nine detectable endogenous GPI-anchored proteins were localized on the basolateral surface, whereas two others were apical and one was not polarized. Transfection of several model GPI proteins, previously shown to be apically targeted in MDCK cells, also led to unexpected results. While the ectodomain of decay accelerating factor (DAF) was apically secreted, 50% of the native, GPI-anchored form, of this protein was basolateral. Addition of a GPI anchor to the ectodomain of Herpes simplex gD-1, secreted without polarity, led to basolateral localization of the fusion protein, gD1-DAF. Targeting experiments demonstrated that gD1-DAF was delivered vectorially from the Golgi apparatus to the basolateral surface. These results indicate that FRT cells have fundamental differences with MDCK cells with regard to the mechanisms for sorting GPI-anchored proteins: GPI is not an apical signal but, rather, it behaves as a basolateral signal. The "mutant" behavior of FRT cells may provide clues to the nature of the mechanisms that sort GPI-anchored proteins in epithelial cells.
Collapse
Affiliation(s)
- C Zurzolo
- Department of Cell Biology, Cornell University Medical College, New York 10021
| | | | | | | | | |
Collapse
|
26
|
González A, Nicovani S, Juica F. Apical secretion of hepatitis B surface antigen from transfected Madin-Darby canine kidney cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53301-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53695-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Gottlieb TA, Ivanov IE, Adesnik M, Sabatini DD. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120:695-710. [PMID: 8381123 PMCID: PMC2119548 DOI: 10.1083/jcb.120.3.695] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.
Collapse
Affiliation(s)
- T A Gottlieb
- Department of Cell Biology, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
29
|
Nabi IR, Mathews AP, Cohen-Gould L, Gundersen D, Rodriguez-Boulan E. Immortalization of polarized rat retinal pigment epithelium. J Cell Sci 1993; 104 ( Pt 1):37-49. [PMID: 8383696 DOI: 10.1242/jcs.104.1.37] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rat retinal pigment epithelial (RPE) cells were immortalized by infection with a temperature-sensitive tsA SV40 virus and following cloning and selection for epithelial properties the polarized RPE-J cell line was obtained. At the permissive temperature of 33 degrees C, RPE-J cells behave as an immortalized cell line. When RPE-J cells are grown on nitrocellulose filters coated with a thin layer of Matrigel in the presence of 10(−8) M retinoic acid for 6 days at 33 degrees C and then switched for 33–36 hours to the non-permissive temperature of 40 degrees C, they acquire a differentiated polarized RPE phenotype. Under these growth conditions, RPE-J cells exhibit circumferential staining for the tight-junction protein ZO-1 and acquire a transepithelial resistance of 350 ohms cm2. Morphologically, RPE-J cells exhibit a characteristic RPE morphology with extensive apical microvilli as well as numerous dense bodies including premelanosomes and varied multilamellar structures. Ruthenium red labeling revealed the frequent basal localization of the tight junction. The cells were identified to be of rat RPE origin by their expression of the rat RPE marker RET-PE2 and their ability to phagocytose latex beads. While RPE-J cells are capable of sorting influenza and vesicular stomatitis virus to the apical and basal surfaces, respectively, the Na,K-ATPase is not polarized and the neural cell adhesion molecule, N-CAM, is localized exclusively to the lateral surface. In vivo the apical surface of RPE interacts with the adjacent neural retina and the Na,K-ATPase and N-CAM are both apical; the altered polarity of these two proteins in RPE-J cells may be a consequence of the absence of apical interaction with the neural retina in culture. Previous studies of RPE have been restricted to the use of primary cultures and the RPE-J cell line should prove an excellent model system for the study of the mechanisms determining the characteristic polarity and functions of the retinal pigment epithelium.
Collapse
Affiliation(s)
- I R Nabi
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | | | | | | | |
Collapse
|
30
|
Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 1992; 118:1003-14. [PMID: 1512286 PMCID: PMC2289580 DOI: 10.1083/jcb.118.5.1003] [Citation(s) in RCA: 444] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In simple epithelial cells, apical and basolateral proteins are sorted into separate vesicular carriers before delivery to the appropriate plasma membrane domains. To dissect the putative sorting machinery, we have solubilized Golgi-derived transport vesicles with the detergent CHAPS and shown that an apical marker, influenza haemagglutinin (HA), formed a large complex together with several integral membrane proteins. Remarkably, a similar set of CHAPS-insoluble proteins was found after solubilization of a total cellular membrane fraction. This allowed the cloning of a cDNA encoding one protein of this complex, VIP21 (Vesicular Integral-membrane Protein of 21 kD). The transiently expressed protein appeared on the Golgi-apparatus, the plasma membrane and vesicular structures. We propose that VIP21 is a component of the molecular machinery of vesicular transport.
Collapse
Affiliation(s)
- T V Kurzchalia
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Low SH, Tang BL, Wong SH, Hong W. Selective inhibition of protein targeting to the apical domain of MDCK cells by brefeldin A. J Cell Biol 1992; 118:51-62. [PMID: 1352300 PMCID: PMC2289512 DOI: 10.1083/jcb.118.1.51] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is mainly vectorially targeted to the apical surface in MDCK cells. BFA was found to abolish the apical targeting of DPPIV. This BFA effect could be achieved under conditions where the ER to Golgi transport and the total surface expression of DPPIV were essentially unaffected. BFA executed its effect during the transport from the trans-Golgi network (TGN) to the surface. The inhibition of apical targeting resulted in enhanced mis-targeting to the basolateral surface. The mistargeted DPPIV was transcytosed back to the apical domain only after BFA withdrawal. In contrast, the basolateral targeting of uvomorulin was unaffected by BFA. These results established that the apical targeting of DPPIV was selectively abolished by BFA.
Collapse
Affiliation(s)
- S H Low
- Membrane Biology Laboratory, National University of Singapore
| | | | | | | |
Collapse
|
32
|
Nabi IR, Le Bivic A, Fambrough D, Rodriguez-Boulan E. An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J Cell Biol 1991; 115:1573-84. [PMID: 1757463 PMCID: PMC2289220 DOI: 10.1083/jcb.115.6.1573] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using surface immunoprecipitation at 37 degrees C to "catch" the transient apical or basolateral appearance of an endogenous MDCK lysosomal membrane glycoprotein, the AC17 antigen, we demonstrate that the bulk of newly synthesized AC17 antigen is polarly targeted from the Golgi apparatus to the basolateral plasma membrane or early endosomes and is then transported to lysosomes via the endocytic pathway. The AC17 antigen exhibits very similar properties to members of the family of lysosomal-associated membrane glycoproteins (LAMPs). Parallel studies of an avian LAMP, LEP100, transfected into MDCK cells revealed colocalization of the two proteins to lysosomes, identical biosynthetic and degradation rates, and similar low levels of steady-state expression on both the apical (0.8%) and basolateral (2.1%) membranes. After treatment of the cells with chloroquine, newly synthesized AC17 antigen, while still initially targeted basolaterally, appears stably in both the apical and basolateral domains, consistent with the depletion of the AC17 antigen from lysosomes and its recycling in a nonpolar fashion to the cell surface.
Collapse
Affiliation(s)
- I R Nabi
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | |
Collapse
|
33
|
Proulx P. Structure-function relationships in intestinal brush border membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:255-71. [PMID: 1958689 DOI: 10.1016/0304-4157(91)90016-p] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P Proulx
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
34
|
Simpson DA, Lamb RA. Influenza virus ts61S hemagglutinin is significantly defective in polypeptide folding and intracellular transport at the permissive temperature. Virology 1991; 185:477-83. [PMID: 1926789 DOI: 10.1016/0042-6822(91)90803-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The influenza virus hemagglutinin (HA) temperature-sensitive (ts) mutant, ts61S, contains a nucleotide change in RNA segment 4 which leads to an amino acid change at HA1 residue 110 of serine to proline. When ts61S HA is synthesized and maintained at the nonpermissive temperature (39.5 degrees), the HA is defective in transport in the exocytic pathway and is retained in the endoplasmic reticulum (S. Nakajima, D. J. Brown, M., Ueda, K., Nakajima, A. Suguira, A. K. Pattnaik, and D. P. Nayak, 1986, Virology 154, 279-285). In a comparison of the biochemical properties of ts61S HA and A/WSN/33 HA (wt) expressed at the permissive temperature (33 degrees), we have found that ts61S HA is extensively debilitated. A large proportion of ts61S HA fails to gain reactivity with conformation-specific monoclonal antibodies and does not become resistant to protease digestion. In turn, a large population of the molecules are not transported from the ER to the Golgi apparatus or cell surface with the same kinetics or efficiency as wt HA. These data suggest that the serine to proline change at HA1 residue 110 leads to partial impairment of folding at the permissive temperature with complete impairment at the nonpermissive temperature.
Collapse
Affiliation(s)
- D A Simpson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
35
|
Neutral endopeptidase, a major brush border protein of the kidney proximal nephron, is directly targeted to the apical domain when expressed in Madin-Darby canine kidney cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55066-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Involvement of both vectorial and transcytotic pathways in the preferential apical cell surface localization of rat dipeptidyl peptidase IV in transfected LLC-PK1 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55050-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Hunziker W, Harter C, Matter K, Mellman I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 1991; 66:907-20. [PMID: 1909606 DOI: 10.1016/0092-8674(91)90437-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In MDCK cells, Golgi to basolateral transport of several membrane proteins has been found to involve a cytoplasmic domain determinant. In some cases (Fc receptor, lysosomal glycoprotein Igp120), the determinant appears similar to that required for endocytosis via clathrin-coated pits; for Igp120, elimination of a single cytoplasmic domain tyrosine both blocks internalization and results in apical transport. In other cases (LDL receptor), the determinant does not involve the cytoplasmic domain tyrosine required for endocytosis. Thus, contrary to current models, basolateral transport in MCDK cells occurs not by default but depends on one or more cytoplasmic domain determinants, the precise nature of which is unknown. For some proteins, it is closely related to coated pit determinants. The fact that many membrane proteins can reach the apical surface in the absence of this determinant suggests that signals for apical transport are widely distributed.
Collapse
Affiliation(s)
- W Hunziker
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
38
|
Apical cell surface expression of rat dipeptidyl peptidase IV in transfected Madin-Darby canine kidney cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98852-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Gilbert T, Le Bivic A, Quaroni A, Rodriguez-Boulan E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J Cell Biol 1991; 113:275-88. [PMID: 1672691 PMCID: PMC2288937 DOI: 10.1083/jcb.113.2.275] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We characterized the three-dimensional organization of microtubules in the human intestinal epithelial cell line Caco-2 by laser scanning confocal microscopy. Microtubules formed a dense network approximately 4-microns thick parallel to the cell surface in the apical pole and a loose network 1-micron thick in the basal pole. Between the apical and the basal bundles, microtubules run parallel to the major cell axis, concentrated in the vicinity of the lateral membrane. Colchicine treatment for 4 h depolymerized 99.4% of microtubular tubulin. Metabolic pulse chase, in combination with domain-selective biotinylation, immune and streptavidin precipitation was used to study the role of microtubules in the sorting and targeting of four apical and one basolateral markers. Apical proteins have been recently shown to use both direct and transcytotic (via the basolateral membrane) routes to the apical surface of Caco-2 cells. Colchicine treatment slowed down the transport to the cell surface of apical and basolateral proteins, but the effect on the apical proteins was much more drastic and affected both direct and indirect pathways. The final effect of microtubular disruption on the distribution of apical proteins depended on the degree of steady-state polarization of the individual markers in control cells. Aminopeptidase N (APN) and sucrase-isomaltase (SI), which normally reach a highly polarized distribution (110 and 75 times higher on the apical than on the basolateral side) were still relatively polarized (9 times) after colchicine treatment. The decrease in the polarity of APN and SI was mostly due to an increase in the residual basolateral expression (10% of control total surface expression) since 80% of the newly synthesized APN was still transported, although at a slower rate, to the apical surface in the absence of microtubules. Alkaline phosphatase and dipeptidylpeptidase IV, which normally reach only low levels of apical polarity (four times and six times after 20 h chase, nine times and eight times at steady state) did not polarize at all in the presence of colchicine due to slower delivery to the apical surface and increased residence time in the basolateral surface. Colchicine-treated cells displayed an ectopic localization of microvilli or other apical markers in the basolateral surface and large intracellular vacuoles. Polarized secretion into apical and basolateral media was also affected by microtubular disruption. Thus, an intact microtubular network facilitates apical protein transport to the cell surface of Caco-2 cells via direct and indirect routes; this role appears to be crucial for the final polarity of some apical plasma membrane proteins but only an enhancement factor for others.
Collapse
Affiliation(s)
- T Gilbert
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | |
Collapse
|
40
|
Grünberg J, Kruppa A, Paschen P, Kruppa J. Intracellular formation of two soluble glycoproteins in BHK cells infected with vesicular stomatitis virus serotype New Jersey. Virology 1991; 180:678-86. [PMID: 1846493 DOI: 10.1016/0042-6822(91)90081-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of BHK 21 cells with VSV serotype New Jersey gave rise to three intracellular viral glycoproteins: the membrane-integrated G protein and the two soluble glycoproteins Gs and Gss which lacked the cytoplasmic and transmembrane domains as was deduced from limited chemical cleavage of the glycoproteins by hydroxylamine. Both soluble glycoproteins were completely protected by the microsomal membrane against proteolytic digestion. The soluble glycoproteins were formed in the endoplasmic reticulum because both were fully endo H sensitive after a 5-min pulse with [35S]methionine. Protease inhibitors and lysosomorphic agents had no effect on the yield of Gs and Gss. Tunicamycin treatment of VSV-infected cells reduced extensively viral particle maturation without affecting significantly the release of Gs and Gss. Two other glycosylation inhibitors, swainsonine and deoxynojirimycin did not decrease virus particle formation and secretion of both soluble glycoproteins. Since the glycosylation inhibitors showed a differential effect on the processing and transport of the glycoproteins a precursor-product relationship between G protein and soluble glycoproteins is highly unlikely. Both soluble glycoproteins were also synthesized in vitro in a reticulocyte lysate without microsomal membranes when primed with RNA extracted from VSV-infected cells or with newly transcribed mRNA from nucleocapsids in a coupled transcription system. Thus, proteases localized in the lumen of the ER seemed to be not essential for the generation of both soluble glycoproteins.
Collapse
Affiliation(s)
- J Grünberg
- Institut für Physiologische Chemie, Abt. Molekularbiologie, Universität Hamburg, Germany
| | | | | | | |
Collapse
|
41
|
Gravotta D, Adesnik M, Sabatini DD. Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral plasma membranes: energy dependence and involvement of GTP-binding proteins. J Cell Biol 1990; 111:2893-908. [PMID: 2125301 PMCID: PMC2116360 DOI: 10.1083/jcb.111.6.2893] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.
Collapse
Affiliation(s)
- D Gravotta
- Department of Cell Biology, New York University Medical Center 10016
| | | | | |
Collapse
|
42
|
Wessels HP, Hansen GH, Fuhrer C, Look AT, Sjöström H, Norén O, Spiess M. Aminopeptidase N is directly sorted to the apical domain in MDCK cells. J Cell Biol 1990; 111:2923-30. [PMID: 1980123 PMCID: PMC2116386 DOI: 10.1083/jcb.111.6.2923] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In different epithelial cell types, integral membrane proteins appear to follow different sorting pathways to the apical surface. In hepatocytes, several apical proteins were shown to be transported there indirectly via the basolateral membrane, whereas in MDCK cells a direct sorting pathway from the trans-Golgi-network to the apical membrane has been demonstrated. However, different proteins had been studied in these cells. To compare the sorting of a single protein in both systems, we have expressed aminopeptidase N, which already had been shown to be sorted indirectly in hepatocytes, in transfected MDCK cells. As expected, it was predominantly localized to the apical domain of the plasma membrane. By monitoring the appearance of newly synthesized aminopeptidase N at the apical and basolateral surface, it was found to be directly sorted to the apical domain in MDCK cells, indicating that the sorting pathways are indeed cell type-specific.
Collapse
Affiliation(s)
- H P Wessels
- Department of Biochemistry, University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Ronco P, Antoine M, Baudouin B, Geniteau-Legendre M, Lelongt B, Chatelet F, Verroust P, Vandewalle A. Polarized membrane expression of brush-border hydrolases in primary cultures of kidney proximal tubular cells depends on cell differentiation and is induced by dexamethasone. J Cell Physiol 1990; 145:222-37. [PMID: 1978836 DOI: 10.1002/jcp.1041450206] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To analyze the influence of cell differentiation and the effects of hormones on the subcellular distribution of apical antigens in polarized epithelial cells, we have compared the localization of three brush border (BB) hydrolases [neutral endopeptidase (ENDO), aminopeptidase N (APN), and dipeptidylpeptidase IV (DPPIV)] in primary cultures of renal proximal tubule cells grown in various culture media. The degree of cell differentiation modulated by medium composition was estimated by measuring proximal functions, including glucose transport, specific enzymatic activities, and PTH responsiveness. In the dedifferentiated state observed in cells grown in 1% fetal calf serum (FCS)-supplemented medium, the three hydrolases are abnormally concentrated in a cytoplasmic vesicle compartment with weak expression on both membrane domains. By contrast, in serum-free hormonally defined medium (DM: insulin, 5 microgram/ml; dexamethasone, 5 x 10(-8) M), which markedly enhances morphological and functional cell differentiation, the distribution of hydrolases parallels that observed in the normal tubule. When added to the DM devoid of hormones, insulin has little polarizing effect, whereas dexamethasone dramatically increases the apical expression of the hydrolases, which then almost disappear from the basolateral membrane and cytoplasmic vesicular compartments. This glucocorticoid hormone augments the amount of immunoreactive antigen detectable on the apical domain in paraformaldehyde-fixed cells but does not change the total enzymatic activity. This suggests the presence in tubular cells of a dexamethasone-dependent polarizing machinery that requires de novo RNA and protein synthesis, and probably acts mainly by targeting a storage cytoplasmic pool of enzyme to the apical domain.
Collapse
Affiliation(s)
- P Ronco
- Unité INSERM U.64 Hôpital Tenon, Paris France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Le Bivic A, Quaroni A, Nichols B, Rodriguez-Boulan E. Biogenetic pathways of plasma membrane proteins in Caco-2, a human intestinal epithelial cell line. J Cell Biol 1990; 111:1351-61. [PMID: 1976637 PMCID: PMC2116246 DOI: 10.1083/jcb.111.4.1351] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We studied the sorting and surface delivery of three apical and three basolateral proteins in the polarized epithelial cell line Caco-2, using pulse-chase radiolabeling and surface domain-selective biotinylation (Le Bivic, A., F. X. Real, and E. Rodriguez-Boulan. 1989. Proc. Natl. Acad. Sci. USA. 86:9313-9317). While the basolateral proteins (antigen 525, HLA-I, and transferrin receptor) were targeted directly and efficiently to the basolateral membrane, the apical markers (sucrase-isomaltase [SI], aminopeptidase N [APN], and alkaline phosphatase [ALP]) reached the apical membrane by different routes. The large majority (80%) of newly synthesized ALP was directly targeted to the apical surface and the missorted basolateral pool was very inefficiently transcytosed. SI was more efficiently targeted to the apical membrane (greater than 90%) but, in contrast to ALP, the missorted basolateral pool was rapidly transcytosed. Surprisingly, a distinct peak of APN was detected on the basolateral domain before its accumulation in the apical membrane; this transient basolateral pool (at least 60-70% of the enzyme reaching the apical surface, as measured by continuous basal addition of antibodies) was efficiently transcytosed. In contrast with their transient basolateral expression, apical proteins were more stably localized on the apical surface, apparently because of their low endocytic capability in this membrane. Thus, compared with two other well-characterized epithelial models, MDCK cells and the hepatocyte, Caco-2 cells have an intermediate sorting phenotype, with apical proteins using both direct and indirect pathways, and basolateral proteins using only direct pathways, during biogenesis.
Collapse
Affiliation(s)
- A Le Bivic
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | |
Collapse
|
45
|
Wandinger-Ness A, Bennett MK, Antony C, Simons K. Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J Cell Biol 1990; 111:987-1000. [PMID: 2202740 PMCID: PMC2116280 DOI: 10.1083/jcb.111.3.987] [Citation(s) in RCA: 232] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immunoisolation techniques have led to the purification of apical and basolateral transport vesicles that mediate the delivery of proteins from the trans-Golgi network to the two plasma membrane domains of MDCK cells. We showed previously that these transport vesicles can be formed and released in the presence of ATP from mechanically perforated cells (Bennett, M. K., A. Wandinger-Ness, and K. Simons, 1988. EMBO (Euro. Mol. Biol. Organ.) J. 7:4075-4085). Using virally infected cells, we have monitored the purification of the trans-Golgi derived vesicles by following influenza hemagglutinin or vesicular stomatitis virus (VSV) G protein as apical and basolateral markers, respectively. Equilibrium density gradient centrifugation revealed that hemagglutinin containing vesicles had a slightly lower density than those containing VSV-G protein, indicating that the two fractions were distinct. Antibodies directed against the cytoplasmically exposed domains of the viral spike glycoproteins permitted the resolution of apical and basolateral vesicle fractions. The immunoisolated vesicles contained a subset of the proteins present in the starting fraction. Many of the proteins were sialylated as expected for proteins existing the trans-Golgi network. The two populations of vesicles contained a number of proteins in common, as well as components which were enriched up to 38-fold in one fraction relative to the other. Among the unique components, a number of transmembrane proteins could be identified using Triton X-114 phase partitioning. This work provides evidence that two distinct classes of vesicles are responsible for apical and basolateral protein delivery. Common protein components are suggested to be involved in vesicle budding and fusion steps, while unique components may be required for specific recognition events such as those involved in protein sorting and vesicle targeting.
Collapse
Affiliation(s)
- A Wandinger-Ness
- Cell Biology Program, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
46
|
Le Bivic A, Sambuy Y, Mostov K, Rodriguez-Boulan E. Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J Biophys Biochem Cytol 1990; 110:1533-9. [PMID: 2335561 PMCID: PMC2200188 DOI: 10.1083/jcb.110.5.1533] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the cell-surface delivery pathways of newly synthesized membrane glycoproteins in MDCK cells and for this purpose we characterized an endogenous apical integral membrane glycoprotein. By combining a pulse-chase protocol with domain-selective cell-surface biotinylation, immune precipitation, and streptavidin-agarose precipitation (Le Bivic et al. 1989. Proc. Natl. Acad. Sci USA. 86:9313-9317), we followed the appearance at the cell surface of a major apical sialoglycoprotein, gp114, a basolateral protein, uvomorulin, and a transcytosing protein, the polyimmunoglobulin receptor (pIg-R). We determined that both gp114 and uvomorulin appeared to be delivered directly to their respective surface, with mistargeting levels of 8 and 2%, respectively. Using the same technique, the pIg-R was first detected on the basolateral domain and then on the apical domain, to be finally released into the apical medium, as described (Mostov, K. E., and D. L. Deitcher. 1986. Cell. 46:613-621). To directly determine whether the gp114 pool present on the basolateral surface was a precursor of the apical gp114, we compared it with the equivalent pIg-R pool, by labeling with sulfo-NHS-SS-biotin, a cleavable, tight junction-impermeable probe, and by following the fraction of this probe that became resistant to basal glutathione and accessible to apical glutathione during incubation at 37 degrees C. We found that, contrary to pIg-R, basolateral gp114 was poorly endocytosed and was not transcytosed to the apical side. These results demonstrate that an endogenous apical integral membrane glycoprotein of Madin-Darby canine kidney cells is sorted intracellularly and is vectorially targeted to the apical surface.
Collapse
Affiliation(s)
- A Le Bivic
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021
| | | | | | | |
Collapse
|
47
|
Ojakian GK, Schwimmer R, Herz RE. Polarized insertion of an intracellular glycoprotein pool into the apical membrane of MDCK cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C390-8. [PMID: 2316630 DOI: 10.1152/ajpcell.1990.258.3.c390] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A monoclonal antibody that recognizes a 135-kDa glycoprotein (GP135) on the apical membrane of Madin-Darby canine kidney (MDCK) cells was used to identify and characterize an intracellular pool of GP135. Mild trypsin treatment at 4 degrees C removed approximately 95% of the GP135, and after warming to 37 degrees C, the reappearance of GP135 on the apical membrane was monitored by radioimmunoassay. Incorporation of GP135 into the apical cell surface after trypsin treatment consisted of two components, a rapidly inserted, cycloheximide-insensitive portion (defined as the GP135 pool), which leveled off within 1 h, followed by a slower insertion of newly synthesized GP135. Immunogold electron microscopy demonstrated that the GP135 pool was targeted in a polarized manner and was only detected on the apical membrane. Temperature shift and retrypsinization experiments provided evidence that the GP135 pool consisted of intracellular vesicles that could fuse with the plasma membrane. This was confirmed by immunofluorescence microscopy demonstrating that GP135 was localized within large cytoplasmic vesicles residing at varying distances from the apical cell surface. These data provide evidence for the presence of a regulated pathway in MDCK cells and support the possibility that the GP135 pool functions as an intracellular reserve which can exhibit polarized insertion into the plasma membranes similar to that described for other epithelial cells.
Collapse
Affiliation(s)
- G K Ojakian
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Brooklyn 11203
| | | | | |
Collapse
|
48
|
Matter K, Brauchbar M, Bucher K, Hauri HP. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell 1990; 60:429-37. [PMID: 2302734 DOI: 10.1016/0092-8674(90)90594-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied the postsynthetic sorting of endogenous plasma membrane proteins in a polarized epithelial cell line, Caco-2. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the arrival of three apical and one basolateral protein at the apical and basolateral cell surface. Apical proteins were inserted simultaneously into both membrane domains. The fraction targeted to the basolateral domain was different for the three apical proteins and was subsequently sorted to the apical domain by transcytosis at different rates. In contrast, a basolateral protein was found in the basolateral membrane only. Thus, sorting of plasma membrane proteins occurred from two sites: the Golgi apparatus and the basolateral membrane. These data explain apparently conflicting results of earlier studies.
Collapse
Affiliation(s)
- K Matter
- Department of Pharmacology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
49
|
Matter K, Stieger B, Klumperman J, Ginsel L, Hauri HP. Endocytosis, recycling, and lysosomal delivery of brush border hydrolases in cultured human intestinal epithelial cells (Caco-2). J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39797-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Molitoris BA, Nelson WJ. Alterations in the establishment and maintenance of epithelial cell polarity as a basis for disease processes. J Clin Invest 1990; 85:3-9. [PMID: 2404027 PMCID: PMC296379 DOI: 10.1172/jci114427] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- B A Molitoris
- Department of Medicine, Veterans Administration Medical Center, Denver 80220
| | | |
Collapse
|