1
|
Sakai K, Kondo Y, Goto Y, Aoki K. Cytoplasmic fluidization contributes to breaking spore dormancy in fission yeast. Proc Natl Acad Sci U S A 2024; 121:e2405553121. [PMID: 38889144 PMCID: PMC11214080 DOI: 10.1073/pnas.2405553121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| |
Collapse
|
2
|
Raczyłło E, Gołowicz D, Skóra T, Kazimierczuk K, Kondrat S. Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds. NANO LETTERS 2024; 24. [PMID: 38607288 PMCID: PMC11057039 DOI: 10.1021/acs.nanolett.3c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Metabolites play crucial roles in cellular processes, yet their diffusion in the densely packed interiors of cells remains poorly understood, compounded by conflicting reports in existing studies. Here, we employ pulsed-gradient stimulated-echo NMR and Brownian/Stokesian dynamics simulations to elucidate the behavior of nano- and subnanometer-sized tracers in crowded environments. Using Ficoll as a crowder, we observe a linear decrease in tracer diffusivity with increasing occupied volume fraction, persisting─somewhat surprisingly─up to volume fractions of 30-40%. While simulations suggest a linear correlation between diffusivity slowdown and particle size, experimental findings hint at a more intricate relationship, possibly influenced by Ficoll's porosity. Simulations and numerical calculations of tracer diffusivity in the E. coli cytoplasm show a nonlinear yet monotonic diffusion slowdown with particle size. We discuss our results in the context of nanoviscosity and discrepancies with existing studies.
Collapse
Affiliation(s)
- Edyta Raczyłło
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University in Lublin, 20-031 Lublin, Poland
| | - Dariusz Gołowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tomasz Skóra
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific
Computing and Imaging Institute, University
of Utah, Salt Lake City, Utah 84112, United States
| | | | - Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
4
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
5
|
Chen R, Qiu K, Han G, Kundu BK, Ding G, Sun Y, Diao J. Quantifying cell viability through organelle ratiometric probing. Chem Sci 2023; 14:10236-10248. [PMID: 37772119 PMCID: PMC10530868 DOI: 10.1039/d3sc01537h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati OH 45267 USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Guodong Ding
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati OH 45267 USA
| |
Collapse
|
6
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
7
|
Chen R, Qiu K, Han G, Kundu BK, Ding G, Sun Y, Diao J. Quantifying cell viability through organelle ratiometric probing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538448. [PMID: 37163053 PMCID: PMC10168353 DOI: 10.1101/2023.04.26.538448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.
Collapse
|
8
|
Garner RM, Molines AT, Theriot JA, Chang F. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations. Biophys J 2023; 122:767-783. [PMID: 36739478 PMCID: PMC10027447 DOI: 10.1016/j.bpj.2023.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not "well-mixed" but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.
Collapse
Affiliation(s)
- Rikki M Garner
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Arthur T Molines
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Julie A Theriot
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
9
|
Najafi J, Dmitrieff S, Minc N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc Natl Acad Sci U S A 2023; 120:e2216839120. [PMID: 36802422 PMCID: PMC9992773 DOI: 10.1073/pnas.2216839120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.
Collapse
Affiliation(s)
- Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| |
Collapse
|
10
|
Angert I, Karuka SR, Mansky LM, Mueller JD. Partitioning of ribonucleoprotein complexes from the cellular actin cortex. SCIENCE ADVANCES 2022; 8:eabj3236. [PMID: 35984883 PMCID: PMC9390997 DOI: 10.1126/sciadv.abj3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The cell cortex plays a crucial role in cell mechanics, signaling, and development. However, little is known about the influence of the cortical meshwork on the spatial distribution of cytoplasmic biomolecules. Here, we describe a fluorescence microscopy method with the capacity to infer the intracellular distribution of labeled biomolecules with subresolution accuracy. Unexpectedly, we find that RNA binding proteins are partially excluded from the cytoplasmic volume adjacent to the plasma membrane that corresponds to the actin cortex. Complementary diffusion measurements of RNA-protein complexes suggest that a rudimentary model based on excluded volume interactions can explain this partitioning effect. Our results suggest the actin cortex meshwork may play a role in regulating the biomolecular content of the volume immediately adjacent to the plasma membrane.
Collapse
Affiliation(s)
- Isaac Angert
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Siddarth Reddy Karuka
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M. Mansky
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Macdougall LJ, Hoffman TE, Kirkpatrick BE, Fairbanks BD, Bowman CN, Spencer SL, Anseth KS. Intracellular Crowding by Bio-Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202882. [PMID: 35671709 PMCID: PMC9377388 DOI: 10.1002/adma.202202882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Indexed: 05/22/2023]
Abstract
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h-1 vs 15 µm h-1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
Collapse
Affiliation(s)
- Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy E Hoffman
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Material Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Material Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Material Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
12
|
Schnitzer B, Welkenhuysen N, Leake MC, Shashkova S, Cvijovic M. The effect of stress on biophysical characteristics of misfolded protein aggregates in living Saccharomyces cerevisiae cells. Exp Gerontol 2022; 162:111755. [PMID: 35240259 DOI: 10.1016/j.exger.2022.111755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Aggregation of misfolded or damaged proteins is often attributed to numerous metabolic and neurodegenerative disorders. To reveal underlying mechanisms and cellular responses, it is crucial to investigate protein aggregate dynamics in cells. Here, we used super-resolution single-molecule microscopy to obtain biophysical characteristics of individual aggregates of a model misfolded protein ∆ssCPY* labelled with GFP. We demonstrated that oxidative and hyperosmotic stress lead to increased aggregate stoichiometries but not necessarily the total number of aggregates. Moreover, our data suggest the importance of the thioredoxin peroxidase Tsa1 for the controlled sequestering and clearance of aggregates upon both conditions. Our work provides novel insights into the understanding of the cellular response to stress via revealing the dynamical properties of stress-induced protein aggregates.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Mark C Leake
- Department of Physics, University of York, YO10 5DD York, UK; Department of Biology, University of York, YO10 5DD York, UK
| | - Sviatlana Shashkova
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden; Department of Physics, University of York, YO10 5DD York, UK.
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
13
|
Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu CT, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev Cell 2022; 57:466-479.e6. [PMID: 35231427 PMCID: PMC9319896 DOI: 10.1016/j.devcel.2022.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Morgan Gazzola
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France
| | | | | | - Chieh-Ting Hsu
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory and Division of Biological Science, Graduate School of Science, Nagoya University, Toba City, Mie, Japan; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Manuel Thery
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France; Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
14
|
Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning. Proc Natl Acad Sci U S A 2022; 119:2115593119. [PMID: 35169074 PMCID: PMC8872784 DOI: 10.1073/pnas.2115593119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
The regulation of mitotic spindle positioning is a key process for tissue architecture, embryo development, and stem cells. To date, most models have assumed that spindles are positioned by forces exerted by polar cytoskeleton networks, like microtubule asters or actomyosin bundles. Here, using in situ magnetic tweezers to apply calibrated forces and torques to mitotic spindles in live dividing sea urchin cells, we found that the viscoelastic properties of the cytoplasm medium in which spindles are embedded can hold spindles in place and move them back if their original position is perturbed. These viscoelastic forces are large and may significantly participate in the force balance that position and orient mitotic spindles in many cell types. Cells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics, and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division, remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original positions. These forces are independent of cytoskeletal force generators yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.
Collapse
|
15
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
16
|
Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It is a tough challenge for many decades to decipher the complex relationships between cell behaviors and cellular physical properties. Single particle tracking (SPT) with high spatial and temporal resolution has been applied extensively in cell research to understand physicochemical properties of cells and their bio-functions by tracking endogenous or exogenous probes. This review describes the fundamental principles of SPT as well as its applications in intracellular mechanics, membrane dynamics, organelles distribution, and processes of internalization and transport. Finally, challenges and future directions of SPT are also discussed.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuejing Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- School of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150027, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
17
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
18
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
19
|
Persson LB, Ambati VS, Brandman O. Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability. Cell 2020; 183:1572-1585.e16. [PMID: 33157040 DOI: 10.1016/j.cell.2020.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/26/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Abstract
Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.
Collapse
Affiliation(s)
- Laura B Persson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Vardhaan S Ambati
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Back to the Future: Genetically Encoded Fluorescent Proteins as Inert Tracers of the Intracellular Environment. Int J Mol Sci 2020; 21:ijms21114164. [PMID: 32545175 PMCID: PMC7312867 DOI: 10.3390/ijms21114164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Over the past decades, the discovery and development of genetically encoded fluorescent proteins (FPs) has brought a revolution into our ability to study biologic phenomena directly within living matter. First, FPs enabled fluorescence-labeling of a variety of molecules of interest to study their localization, interactions and dynamic behavior at various scales-from cells to whole organisms/animals. Then, rationally engineered FP-based sensors facilitated the measurement of physicochemical parameters of living matter-especially at the intracellular level, such as ion concentration, temperature, viscosity, pressure, etc. In addition, FPs were exploited as inert tracers of the intracellular environment in which they are expressed. This oft-neglected role is made possible by two distinctive features of FPs: (i) the quite null, unspecific interactions of their characteristic β-barrel structure with the molecular components of the cellular environment; and (ii) their compatibility with the use of time-resolved fluorescence-based optical microscopy techniques. This review seeks to highlight the potential of such unique combinations of properties and report on the most significative and original applications (and related advancements of knowledge) produced to date. It is envisioned that the use of FPs as inert tracers of living matter structural organization holds a potential for several lines of further development in the next future, discussed in the last section of the review, which in turn can lead to new breakthroughs in bioimaging.
Collapse
|
21
|
Heimlicher MB, Bächler M, Liu M, Ibeneche-Nnewihe C, Florin EL, Hoenger A, Brunner D. Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. J Cell Sci 2019; 132:jcs.231688. [PMID: 31558680 PMCID: PMC6857596 DOI: 10.1242/jcs.231688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cells depend on a highly ordered organisation of their content and must develop strategies to maintain the anisotropic distribution of organelles during periods of nutrient shortage. One of these strategies is to solidify the cytoplasm, which was observed in bacteria and yeast cells with acutely interrupted energy production. Here, we describe a different type of cytoplasm solidification fission yeast cells switch to, after having run out of nutrients during multiple days in culture. It provides the most profound reversible cytoplasmic solidification of yeast cells described to date. Our data exclude the previously proposed mechanisms for cytoplasm solidification in yeasts and suggest a mechanism that immobilises cellular components in a size-dependent manner. We provide experimental evidence that, in addition to time, cells use intrinsic nutrients and energy sources to reach this state. Such cytoplasmic solidification may provide a robust means to protect cellular architecture in dormant cells. Summary: After prolonged quiescence, fission yeast cell populations switch state to immobilise subcellular components much more profoundly than cells experiencing acute energy depletion.
Collapse
Affiliation(s)
- Maria B Heimlicher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirjam Bächler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minghua Liu
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Chieze Ibeneche-Nnewihe
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Hoenger
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Damian Brunner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
22
|
Murade CU, Shubeita GT. A Molecular Sensor Reveals Differences in Macromolecular Crowding between the Cytoplasm and Nucleoplasm. ACS Sens 2019; 4:1835-1843. [PMID: 31250628 DOI: 10.1021/acssensors.9b00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a molecular sensor that reports, using fluorescence resonance energy transfer (FRET), on the degree of macromolecular crowding in different cellular compartments. The oligonucleotide-based sensor is sensitive to changes in the volume fraction of macromolecules over a wide range in vitro and, when introduced in cells, rapidly distributes and shows a striking contrast between the cytosol and the nucleus. This contrast can be modulated by osmotic stress or by using a number of drugs that alter chromatin organization within the nucleus. These findings suggest that the sensor can be used as a tool to probe chromosome organization. Further, our finding that the cell maintains different degrees of macromolecular crowding in the cytoplasm and nucleoplasm has implications on molecular mechanisms since crowding can alter protein conformations, binding rates, reaction kinetics, and therefore protein function.
Collapse
Affiliation(s)
- Chandrashekhar U. Murade
- Physics Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - George T. Shubeita
- Physics Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Mignani S, Shi X, Zablocka M, Majoral JP. Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine. Bioconjug Chem 2019; 30:1938-1950. [PMID: 31246431 DOI: 10.1021/acs.bioconjchem.9b00385] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antisense oligonucleotide (AON)-based therapies concern the treatment for genetic disorders or infections such as a range of neurodegenerative and neuromuscular diseases and have shown benefits in animal models and patients. Nevertheless, successes in the clinic are still strongly limited by unfavorable biodistribution and poor cellular uptake of AONs. Dendrimer macromolecules are synthetically accessible and consist of a core with repeated iterations (named branches) surrounding this core, and on the periphery functional groups which can be modified for ligand attachment. The generations of these branched nanoparticles are based on the number of branches emanating from the core with layered architectures. Dendrimers show promise in several biomedical applications based on their tunable surface modifications allowing the adjustment of their in vivo behavior related to biocompatibility and pharmacokinetic parameters. Dendrimers can be used as nanocarriers of various types of drugs including AONs or nanodrugs. As nanocarriers, polycationic dendrimers can complex multiple negatively charged DNA oligonucleotides on their surface and form stable complexes to promote internalization into the cells based on a good cell membrane affinity. These nanocarriers complexing antisense oligonucleotides must be stable enough to reach the cellular target, but with adequate in vivo global clearance, and have good pharmacokinetic (PK) and pharmacodynamic (PD) profiles. This Review was designed to analyze the development of AONs carried by polycationic and polyanionic (few example) dendrimers. This Review strongly supports the idea that dendrimers, with adequate modulation of their terminal groups, could be used to carry AONs in cells.
Collapse
Affiliation(s)
- Serge Mignani
- Department of Pharmacy , Zhengzhou Railway Vocational & Technical College , Zhengzhou 450018 , China.,Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860 , Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique , 45, rue des Saints Peres , 75006 Paris , France.,CQM - Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus da Penteada, 9020-105 Funchal , Portugal.,Glycovax Pharma , 424 Guy Street, Suite 202 , Montreal , Quebec H3J 1S6 , Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| | - Jean-Pierre Majoral
- Department of Pharmacy , Zhengzhou Railway Vocational & Technical College , Zhengzhou 450018 , China.,Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne , 31077 , Toulouse Cedex 4, France.,Université Toulouse , 118 route de Narbonne , 31077 Toulouse Cedex 4, France
| |
Collapse
|
24
|
Abstract
Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.
Collapse
Affiliation(s)
- T J Mitchison
- Marine Biological Laboratory, Woods Hole, MA 02543.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
Abstract
The cytoplasm is a highly crowded and complex environment, and the regulation of its physical properties has only recently begun to be revealed. In this issue of Cell, Delarue et al. demonstrate that the control of ribosome concentration through mTORC1 sets limits on the diffusion of large particles and controls phase separation in eukaryotic cells.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Maier CM, Huergo MA, Milosevic S, Pernpeintner C, Li M, Singh DP, Walker D, Fischer P, Feldmann J, Lohmüller T. Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. NANO LETTERS 2018; 18:7935-7941. [PMID: 30468387 DOI: 10.1021/acs.nanolett.8b03885] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.
Collapse
Affiliation(s)
- Christoph M Maier
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Maria Ana Huergo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET , Sucursal 4 Casilla de Correo 16 , 1900 La Plata , Argentina
| | - Sara Milosevic
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
| | - Carla Pernpeintner
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Miao Li
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
| | - Dhruv P Singh
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
| | - Debora Walker
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Department of Physics , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich and Center for Nanoscience (CeNS) , Schellingstraße 4 , 80799 Munich , Germany
| |
Collapse
|
27
|
Lee JS, Eom K, Polucha C, Lee J. Standard-unit measurement of cellular viability using dynamic light scattering optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5227-5239. [PMID: 30460124 PMCID: PMC6238897 DOI: 10.1364/boe.9.005227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 05/24/2023]
Abstract
Dynamic light scattering optical coherence microscopy (DLS-OCM) integrates DLS, which measures diffusion or flow of particles by analyzing fluctuations in light scattered by the particles, and OCM, which achieves single-cell resolution by combining coherence and confocal gating, integratively enabling cellular-resolution 3D mapping of the diffusion coefficient, and flow velocity. The diffusion coefficient mapping has a potential for the non-destructive measurement of cellular viability in the standard unit but has not been validated yet. Here, we present DLS-OCM imaging of intra-cellular motility (ICM) as a surrogate of cellular viability. For this purpose, we have simultaneously obtained and compared ICM-contrast DLS-OCM images and calcium fluorescence-contrast images of retinal ganglion cells, and then characterized the responses of the measured ICM to a change in cellular viability induced by environmental conditions such as temperature and pH. The diffusion-coefficient-represented ICM exhibits consistent changes with the manipulated cellular viability.
Collapse
Affiliation(s)
- Julia S. Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kyungsik Eom
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
28
|
Lee CT, Terentjev EM. Microtubule buckling in an elastic matrix with quenched disorder. J Chem Phys 2018; 149:145101. [DOI: 10.1063/1.5049538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Cheng-Tai Lee
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
29
|
Chen E, Esquerra RM, Meléndez PA, Chandrasekaran SS, Kliger DS. Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements. J Phys Chem B 2018; 122:11381-11389. [PMID: 30118225 DOI: 10.1021/acs.jpcb.8b07362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A protein's folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscosity-the viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell's heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Raymond M Esquerra
- Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , California 94132 , United States
| | - Philipp A Meléndez
- Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , California 94132 , United States
| | - Sita S Chandrasekaran
- Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , California 94132 , United States
| | - David S Kliger
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| |
Collapse
|
30
|
Etoc F, Balloul E, Vicario C, Normanno D, Liße D, Sittner A, Piehler J, Dahan M, Coppey M. Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells. NATURE MATERIALS 2018; 17:740-746. [PMID: 29967464 DOI: 10.1038/s41563-018-0120-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The diffusivity of macromolecules in the cytoplasm of eukaryotic cells varies over orders of magnitude and dictates the kinetics of cellular processes. However, a general description that associates the Brownian or anomalous nature of intracellular diffusion to the architectural and biochemical properties of the cytoplasm has not been achieved. Here we measure the mobility of individual fluorescent nanoparticles in living mammalian cells to obtain a comprehensive analysis of cytoplasmic diffusion. We identify a correlation between tracer size, its biochemical nature and its mobility. Inert particles with size equal or below 50 nm behave as Brownian particles diffusing in a medium of low viscosity with negligible effects of molecular crowding. Increasing the strength of non-specific interactions of the nanoparticles within the cytoplasm gradually reduces their mobility and leads to subdiffusive behaviour. These experimental observations and the transition from Brownian to subdiffusive motion can be captured in a minimal phenomenological model.
Collapse
Affiliation(s)
- Fred Etoc
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Elie Balloul
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
| | - Chiara Vicario
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Normanno
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, Marseilles, France.
| | - Domenik Liße
- Division of Biophysics, Department of Biology, Osnabrück University, Osnabrück, Germany
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Jacob Piehler
- Division of Biophysics, Department of Biology, Osnabrück University, Osnabrück, Germany
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
| |
Collapse
|
31
|
Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 2018. [PMID: 29937223 DOI: 10.1016/j.cell.2018.1005.1042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
Collapse
Affiliation(s)
- M Delarue
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - S Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - I V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA
| | - S Pinglay
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - K J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - M Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J I Gutierrez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - D Sang
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G Poterewicz
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - J K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA
| | - J M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - C Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06511, USA
| | - B D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - L J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
32
|
Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev 2018; 132:3-15. [PMID: 29935217 DOI: 10.1016/j.addr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
The manipulation of single cells and whole tissues has been possible since the early 70's, when semi-automatic injectors were developed. Since then, microinjection has been used to introduce an ever-expanding range of colloids of up to 1000 nm in size into living cells. Besides injecting nucleic acids to study transfection mechanisms, numerous cellular pathways have been unraveled through the introduction of recombinant proteins and blocking antibodies. The injection of nanoparticles has also become popular in recent years to investigate toxicity mechanisms and intracellular transport, and to conceive semi-synthetic cells containing artificial organelles. This article reviews colloidal systems such as proteins, nucleic acids and nanoparticles that have been injected into cells for different research aims, and discusses the scientific advances achieved through them. The colloids' intracellular processing and ultimate fate are also examined from a drug delivery perspective with an emphasis on the differences observed for endocytosed versus microinjected material.
Collapse
|
33
|
Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 2018; 174:338-349.e20. [PMID: 29937223 PMCID: PMC10080728 DOI: 10.1016/j.cell.2018.05.042] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
Collapse
Affiliation(s)
- M Delarue
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - S Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - I V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA
| | - S Pinglay
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - K J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - M Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J I Gutierrez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - D Sang
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G Poterewicz
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - J K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA
| | - J M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - C Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06511, USA
| | - B D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - L J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
34
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Tiefenboeck P, Kim JA, Trunk F, Eicher T, Russo E, Teijeira A, Halin C, Leroux JC. Microinjection for the ex Vivo Modification of Cells with Artificial Organelles. ACS NANO 2017; 11:7758-7769. [PMID: 28777538 DOI: 10.1021/acsnano.7b01404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microinjection is extensively used across fields to deliver material intracellularly. Here we address the fundamental aspects of introducing exogenous organelles into cells to endow them with artificial functions. Nanocarriers encapsulating biologically active cargo or extreme intraluminal pH were injected directly into the cytosol of cells, where they bypassed subcellular processing pathways and remained intact for several days. Nanocarriers' size was found to dictate their intracellular distribution pattern upon injection, with larger vesicles adopting polarized agglomerated distributions and smaller colloids spreading evenly in the cytosol. This in turn determined the symmetry or asymmetry of their dilution following cell division, ultimately affecting the intracellular dose at a cell population level. As an example of microinjection's applicability, a cell type relevant for cell-based therapies (dendritic cells) was injected with vesicles, and its migratory properties were studied in a co-culture system mimicking lymphatic capillaries.
Collapse
Affiliation(s)
- Peter Tiefenboeck
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Jong Ah Kim
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Ferdinand Trunk
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Tamara Eicher
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Erica Russo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
36
|
Abstract
The early steps of HBV entry remain largely unknown despite the recent discovery of an HBV-specific entry receptor. Following entry HBV capsids have to be transported through the cytoplasm to the nuclear periphery, followed by nuclear entry. These steps have to take place in a coordinated manner to allow delivery of the genome into the nucleus. Due to the viscosity of the cytoplasm, the intracytoplasmic translocation has to be active and directed.Here, we describe protocols that can be applied to investigations of the HBV capsid with the cytoplasmic transport systems. We have chosen to present two independent experimental approaches, which allow avoiding artifacts. Aside of the specific capsid detection system, the protocols can be applied to any other viral structure.
Collapse
Affiliation(s)
- Quentin Osseman
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France.
| |
Collapse
|
37
|
Visser AJWG, Westphal AH, Skakun VV, Borst JW. GFP as potential cellular viscosimeter. Methods Appl Fluoresc 2016; 4:035002. [PMID: 28355162 DOI: 10.1088/2050-6120/4/3/035002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Collapse
Affiliation(s)
- Antonie J W G Visser
- Laboratory of Biochemistry, Microspectroscopy Centre, Wageningen University, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Spatiotemporal Fluorescence Correlation Spectroscopy of Inert Tracers: A Journey Within Cells, One Molecule at a Time. PERSPECTIVES ON FLUORESCENCE 2016. [DOI: 10.1007/4243_2016_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Huang H, He X. Fluid displacement during droplet formation at microfluidic flow-focusing junctions. LAB ON A CHIP 2015; 15:4197-205. [PMID: 26381220 PMCID: PMC4605896 DOI: 10.1039/c5lc00730e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications.
Collapse
Affiliation(s)
- Haishui Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
40
|
Abstract
Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.
Collapse
Affiliation(s)
- Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | | |
Collapse
|
41
|
Khayyeri H, Barreto S, Lacroix D. Primary cilia mechanics affects cell mechanosensation: A computational study. J Theor Biol 2015; 379:38-46. [DOI: 10.1016/j.jtbi.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
42
|
Anton H, Taha N, Boutant E, Richert L, Khatter H, Klaholz B, Rondé P, Réal E, de Rocquigny H, Mély Y. Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy. PLoS One 2015; 10:e0116921. [PMID: 25723396 PMCID: PMC4344342 DOI: 10.1371/journal.pone.0116921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleocapsid protein (NCp7) of the Human immunodeficiency virus type 1 (HIV-1) is a small basic protein containing two zinc fingers. About 2000 NCp7 molecules coat the genomic RNA in the HIV-1 virion. After infection of a target cell, the viral core enters into the cytoplasm, where NCp7 chaperones the reverse transcription of the genomic RNA into the proviral DNA. As a consequence of their much lower affinity for double-stranded DNA as compared to single-stranded RNAs, NCp7 molecules are thought to be released in the cytoplasm and the nucleus of infected cells in the late steps of reverse transcription. Yet, little is known on the cellular distribution of the released NCp7 molecules and on their possible interactions with cell components. Hence, the aim of this study was to identify potential cellular partners of NCp7 and to monitor its intracellular distribution and dynamics by means of confocal fluorescence microscopy, fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, fluorescence correlation and cross-correlation spectroscopy, and raster imaging correlation spectroscopy. HeLa cells transfected with eGFP-labeled NCp7 were used as a model system. We found that NCp7-eGFP localizes mainly in the cytoplasm and the nucleoli, where it binds to cellular RNAs, and notably to ribosomal RNAs which are the most abundant. The binding of NCp7 to ribosomes was further substantiated by the intracellular co-diffusion of NCp7 with the ribosomal protein 26, a component of the large ribosomal subunit. Finally, gradient centrifugation experiments demonstrate a direct association of NCp7 with purified 80S ribosomes. Thus, our data suggest that NCp7 molecules released in newly infected cells may primarily bind to ribosomes, where they may exert a new potential role in HIV-1 infection.
Collapse
Affiliation(s)
- Halina Anton
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| | - Nedal Taha
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Heena Khatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Bruno Klaholz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Philippe Rondé
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| |
Collapse
|
43
|
Yu HW, Chen YQ, Huang CM, Liu CY, Chiou A, Wang YK, Tang MJ, Kuo JC. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration. J Cell Mol Med 2015; 19:934-47. [PMID: 25683605 PMCID: PMC4420597 DOI: 10.1111/jcmm.12441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β-PIX (PAK-interacting exchange factor-β). In H1299 cells, β-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.
Collapse
Affiliation(s)
- Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hosp JA, Nolan HE, Luft AR. Topography and collateralization of dopaminergic projections to primary motor cortex in rats. Exp Brain Res 2015; 233:1365-75. [PMID: 25633321 DOI: 10.1007/s00221-015-4211-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 11/30/2022]
Abstract
Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.
Collapse
Affiliation(s)
- Jonas A Hosp
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | | | | |
Collapse
|
45
|
Aon MA, Cortassa S. Function of metabolic and organelle networks in crowded and organized media. Front Physiol 2015; 5:523. [PMID: 25653618 PMCID: PMC4300868 DOI: 10.3389/fphys.2014.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 11/13/2022] Open
Abstract
(Macro)molecular crowding and the ability of the ubiquitous cytoskeleton to dynamically polymerize–depolymerize are prevalent cytoplasmic conditions in prokaryotic and eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential or in complexes - whole metabolic pathways and organelles can be affected by crowding, the type and polymeric status of cytoskeletal proteins (e.g., tubulin, actin), and their imparted organization. The self-organizing capability of the cytoskeleton can orchestrate metabolic fluxes through entire pathways while its fractal organization can frame the scaling of activities in several levels of organization. The intracellular environment dynamics (e.g., biochemical reactions) is dominated by the orderly cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence underscores the inherent capacity of intracellular organization to generate emergent global behavior. Yet unknown is the relative impact on cell function provided by organelle or functional compartmentation based on transient proteins association driven by weak interactions (quinary structures) under specific environmental challenges or functional conditions (e.g., hypoxia, division, differentiation). We propose a qualitative, integrated structural–functional model of cytoplasmic organization based on a modified version of the Sierspinsky–Menger–Mandelbrot sponge, a 3D representation of a percolation cluster, and examine its capacity to accommodate established experimental facts.
Collapse
Affiliation(s)
- Miguel A Aon
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Sonia Cortassa
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
46
|
Li H, Dou SX, Liu YR, Li W, Xie P, Wang WC, Wang PY. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum. J Am Chem Soc 2015; 137:436-44. [PMID: 25535941 DOI: 10.1021/ja511273c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The crowded intracellular environment influences the diffusion-mediated cellular processes, such as metabolism, signaling, and transport. The hindered diffusion of macromolecules in heterogeneous cytoplasm has been studied over years, but the detailed diffusion distribution and its origin still remain unclear. Here, we introduce a novel method to map rapidly the diffusion distribution in single cells based on single-particle tracking (SPT) of quantum dots (QDs). The diffusion map reveals the heterogeneous intracellular environment and, more importantly, an unreported compartmentalization of QD diffusions in cytoplasm. Simultaneous observations of QD motion and green fluorescent protein-tagged endoplasmic reticulum (ER) dynamics provide direct evidence that the compartmentalization results from micron-scale domains defined by ER tubules, and ER cisternae form perinuclear areas that restrict QDs to enter. The same phenomenon was observed using fluorescein isothiocyanate-dextrans, further confirming the compartmentalized diffusion. These results shed new light on the diffusive movements of macromolecules in the cell, and the mapping of intracellular diffusion distribution may be used to develop strategies for nanoparticle-based drug deliveries and therapeutics.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat Commun 2014; 5:5891. [PMID: 25532887 PMCID: PMC4281647 DOI: 10.1038/ncomms6891] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 11/18/2014] [Indexed: 12/02/2022] Open
Abstract
The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing to the lack of techniques capable of probing crowding with the required temporal and spatial resolution. Here we show that fluorescence-fluctuation analysis of raster scans at variable timescales can provide this information. By using green fluorescent proteins in cells, we measure protein motion at the unprecedented timescale of 1 μs, unveiling unobstructed Brownian motion from 25 to 100 nm, and partially suppressed diffusion above 100 nm. Furthermore, experiments on model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. We discuss the implications of these results for intracellular processes. Models for protein diffusion in cells assume a large macromolecular crowding effect. Here Di Rienzo et al. visualize GFP diffusion at the millisecond timescale to observe unobstructed Brownian motion in mammalian cells for distances up to 100 nm, revealing minimal influence of macromolecular crowding.
Collapse
|
48
|
Baum DA, Baum B. An inside-out origin for the eukaryotic cell. BMC Biol 2014; 12:76. [PMID: 25350791 PMCID: PMC4210606 DOI: 10.1186/s12915-014-0076-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. RESULTS Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. CONCLUSIONS The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.
Collapse
|
49
|
Ohshima D, Ichikawa K. Regulation of nuclear NF-κB oscillation by a diffusion coefficient and its biological implications. PLoS One 2014; 9:e109895. [PMID: 25302804 PMCID: PMC4193834 DOI: 10.1371/journal.pone.0109895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/10/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor NF-κB shuttles between the cytoplasm and the nucleus, and nuclear NF-κB is known to oscillate with a cycle of 1.5-2.5 h following the application of external stimuli. Oscillation pattern of NF-κB is implicated in regulation of the gene expression profile. In a previous report, we found that the oscillation pattern of nuclear NF-κB in a computational 3D spherical cell was regulated by spatial parameters such as nuclear to cytoplasmic volume ratio, nuclear transport, locus of protein synthesis, and diffusion coefficient. Here we report analyses and a biological implication for the regulation of oscillation pattern by diffusion coefficient. Our analyses show that the “reset” of nuclear NF-κB, defined as the return of nuclear NF-κB to the initial level or lower, was crucial for the oscillation; this was confirmed by the flux analysis. In addition, we found that the distant cytoplasmic location from the nucleus acted as a “reservoir” for storing newly synthesized IκBα. When the diffusion coefficient of proteins was large (≥10−11 m2/s), a larger amount of IκBα was stored in the “reservoir” with a large flux by diffusion. Subsequently, stored IκBα diffused back to the nucleus, where nuclear NF-κB was “reset” to the initial state. This initiated the next oscillation cycle. When the diffusion coefficient was small (≤10−13 m2/s), oscillation of nuclear NF-κB was not observed because a smaller amount of IκBα was stored in the “reservoir” and there was incomplete “reset” of nuclear NF-κB. If the diffusion coefficient for IκBα was increased to 10−11 m2/s keeping other proteins at 10−13 m2/s, the oscillation was rescued confirming the “reset” and “reservoir” hypothesis. Finally, we showed altered effective value of diffusion coefficient by diffusion obstacles. Thus, organelle crowding seen in stressed cells possibly changes the oscillation pattern by controlling the effective diffusion coefficient.
Collapse
Affiliation(s)
- Daisuke Ohshima
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuhisa Ichikawa
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Saucerman JJ, Greenwald EC, Polanowska-Grabowska R. Mechanisms of cyclic AMP compartmentation revealed by computational models. ACTA ACUST UNITED AC 2014; 143:39-48. [PMID: 24378906 PMCID: PMC3874575 DOI: 10.1085/jgp.201311044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | | | | |
Collapse
|