1
|
Buffa V, Adamo G, Picciotto S, Bongiovanni A, Romancino DP. A Simple, Semi-Quantitative Acyl Biotin Exchange-Based Method to Detect Protein S-Palmitoylation Levels. MEMBRANES 2023; 13:361. [PMID: 36984748 PMCID: PMC10053657 DOI: 10.3390/membranes13030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Protein S-palmitoylation is a reversible post-translational lipidation in which palmitic acid (16:0) is added to protein cysteine residue by a covalent thioester bond. This modification plays an active role in membrane targeting of soluble proteins, protein-protein interaction, protein trafficking, and subcellular localization. Moreover, palmitoylation is related to different diseases, such as neurodegenerative pathologies, cancer, and developmental defects. The aim of this research is to provide a straightforward and sensitive procedure to detect protein palmitoylation based on Acyl Biotin Exchange (ABE) chemistry. Our protocol setup consists of co-immunoprecipitation of native proteins (i.e., CD63), followed by the direct detection of palmitoylation on proteins immobilized on polyvinylidene difluoride (PVDF) membranes. With respect to the conventional ABE-based protocol, we optimized and validated a rapid semi-quantitative assay that is shown to be significantly more sensitive and highly reproducible.
Collapse
Affiliation(s)
- Valentina Buffa
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
- Integrare UMR_S951 Genethon, Inserm, University of Evry, Université Paris Saclay Genethon, 91000 Evry, France
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| | - Daniele P. Romancino
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy
| |
Collapse
|
2
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Huang J, Tian B, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Ou X, Mao S, Gao Q, Sun D. Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Front Microbiol 2022; 13:829754. [PMID: 35722336 PMCID: PMC9205190 DOI: 10.3389/fmicb.2022.829754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The herpesvirus UL11 protein is encoded by the UL11 gene and is a membrane-anchored protein with multiple functions. In the last stage of viral replication, UL11 participates in the secondary envelopment process. It also plays a key role in primary envelopment, the transportation of newly assembled viral particles through cytoplasmic vesicles, and virion egress from the cell. UL11 is an important accessory protein and sometimes cooperates with other proteins that participate in virus-induced cell fusion. Cell fusion is necessary for cell-to-cell transmissions. This review summarizes the latest literature and discusses the roles of UL11 in viral assembly, primary and secondary envelopment, and cell-to-cell transmission to obtain a better understanding of the UL11 protein in the life cycle of herpesviruses and to serve as a reference for studying other viruses. Additionally, some recently discovered characteristics of UL11 are summarized.
Collapse
Affiliation(s)
- Linjiang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Wnt-controlled sphingolipids modulate Anthrax Toxin Receptor palmitoylation to regulate oriented mitosis in zebrafish. Nat Commun 2020; 11:3317. [PMID: 32620775 PMCID: PMC7335183 DOI: 10.1038/s41467-020-17196-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2020] [Indexed: 11/24/2022] Open
Abstract
Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis. During development, oriented cell division is important to proper body axis extension. Here, the authors show that sphingolipids are required to direct spindle rotation and oriented mitosis via Anthrax receptor palmitoylation in zebrafish gastrulation.
Collapse
|
4
|
Wang Z, Schey KL. Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20. Invest Ophthalmol Vis Sci 2019; 59:5648-5658. [PMID: 30489624 PMCID: PMC6266727 DOI: 10.1167/iovs.18-25312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein–protein interactions in the lens. Methods The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange. Results The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus. Conclusions AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci U S A 2014; 111:16478-83. [PMID: 25368151 DOI: 10.1073/pnas.1417176111] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcium (Ca(2+)) is a secondary messenger in cells and Ca(2+) flux initiated from endoplasmic reticulum (ER) stores via inositol 1,4,5-triphosphate (IP3) binding to the IP3 receptor (IP3R) is particularly important for the activation and function of immune cells. Previous studies demonstrated that genetic deletion of selenoprotein K (Selk) led to decreased Ca(2+) flux in a variety of immune cells and impaired immunity, but the mechanism was unclear. Here we show that Selk deficiency does not affect receptor-induced IP3 production, but Selk deficiency through genetic deletion or low selenium in culture media leads to low expression of the IP3R due to a defect in IP3R palmitoylation. Bioinformatic analysis of the DHHC (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain) family of enzymes that catalyze protein palmitoylation revealed that one member, DHHC6, contains a predicted Src-homology 3 (SH3) domain and DHHC6 is localized to the ER membrane. Because Selk is also an ER membrane protein and contains an SH3 binding domain, immunofluorescence and coimmunoprecipitation experiments were conducted and revealed DHHC6/Selk interactions in the ER membrane that depended on SH3/SH3 binding domain interactions. DHHC6 knockdown using shRNA in stably transfected cell lines led to decreased expression of the IP3R and impaired IP3R-dependent Ca(2+) flux. Mass spectrophotometric and bioinformatic analyses of the IP3R protein identified two palmitoylated cysteine residues and another potentially palmitoylated cysteine, and mutation of these three cysteines to alanines resulted in decreased IP3R palmitoylation and function. These findings reveal IP3R palmitoylation as a critical regulator of Ca(2+) flux in immune cells and define a previously unidentified DHHC/Selk complex responsible for this process.
Collapse
|
6
|
Abstract
The covalent attachment of palmitate to proteins can alter protein-lipid and protein-protein interactions thereby influencing protein function. Palmitoylation is a reversible post-translational modification. Thus, like protein phosphorylation, protein palmitoylation can function in activation-dependent signaling pathways. This review will provide an overview of the mechanisms and regulation of protein palmitoylation and focus on the role of palmitoylation in signal transduction pathways of lymphocytes and platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Hemostasis and Thrombosis, Department of Medicine, Boston, MA, 02215, USA.
| | | |
Collapse
|
7
|
Zheng H, Jiménez-Flores R, Everett DW. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8403-8411. [PMID: 23931678 DOI: 10.1021/jf402591f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The impact of washing on the release of proteins from the milk fat globule membrane (MFGM) was examined by applying washing procedures with different degrees of stringency to milk fat globule (MFG) surfaces in simulated milk ultrafiltrate buffer solution. Three washing methods, M1 (3000g, 5 min, three washes), M2 (3750g, 15 min, one wash), and M3 (15000g, 20 min, three washes) were chosen. MFG ζ-potential increased after M3 washing (P < 0.05), suggesting surface damage. For M1, in which the native MFG surface was least damaged, cluster of differentiation 36 (CD 36) and periodic acid schiff 6/7 proteins were more strongly bound to the MFGM compared with other major membrane proteins. For M3, CD 36 together with fatty acid-binding protein was more strongly bound to the MFGM. Washing by centrifugation and redispersal of the fat globules damaged the MFGM, with release into the aqueous phase of some membrane-associated proteins. The current results show the impact of washing processes on retention of functional MFGM proteins.
Collapse
Affiliation(s)
- Haotian Zheng
- Riddet Institute and Department of Food Science, University of Otago , Dunedin 9054, New Zealand
| | | | | |
Collapse
|
8
|
Ciana A, Achilli C, Hannoush RN, Risso A, Balduini C, Minetti G. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:924-31. [DOI: 10.1016/j.bbamem.2012.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
9
|
Subcellular distribution of Lck during CD4 T-cell maturation in the thymic medulla regulates the T-cell activation threshold. Proc Natl Acad Sci U S A 2012; 109:7415-20. [PMID: 22529380 DOI: 10.1073/pnas.1119272109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.
Collapse
|
10
|
|
11
|
Takahashi Y, Moiseyev G, Ablonczy Z, Chen Y, Crouch RK, Ma JX. Identification of a novel palmitylation site essential for membrane association and isomerohydrolase activity of RPE65. J Biol Chem 2008; 284:3211-3218. [PMID: 19049981 DOI: 10.1074/jbc.m807248200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RPE65 is a membrane-associated protein abundantly expressed in the retinal pigment epithelium, which converts all-trans-retinyl ester to 11-cis-retinol, a key step in the retinoid visual cycle. Although three cysteine residues (Cys-231, Cys-329, and Cys-330) were identified to be palmitylated in RPE65, recent studies showed that a triple mutant, with all three Cys replaced by an alanine residue, was still palmitylated and remained membrane-associated, suggesting that there are other yet to be identified palmitylated Cys residues in RPE65. Here we mapped the entire RPE65 using mass spectrometry analysis and demonstrated that a trypsin-digested RPE65 fragment (residues 98-118), which contains two Cys residues (Cys-106 and Cys-112), was singly palmitylated in both native bovine and recombinant human RPE65. To determine whether Cys-106 or Cys-112 is the palmitylation site, these Cys were separately replaced by alanine. Mass spectrometry analysis of purified wild-type RPE65 and C106A and C112A mutants showed that mutation of Cys-106 did not affect the palmitylation status of the fragment 98-118, whereas mutation of Cys-112 abolished palmitylation in this fragment. Subcellular fractionation and immunocytochemistry analyses both showed that mutation of Cys-112 dissociated RPE65 from the membrane, whereas the C106A mutant remained associated with the membrane. In vitro isomerohydrolase activity assay showed that C106A has an intact enzymatic activity similar to that of wtRPE65, whereas C112A lost its enzymatic activity. These results indicate that the newly identified Cys-112 palmitylation site is essential for the membrane association and activity of RPE65.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Medicine Endocrinology, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Gennadiy Moiseyev
- Department of Medicine Endocrinology, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ying Chen
- Department of Medicine Endocrinology, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jian-Xing Ma
- Department of Medicine Endocrinology, Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
12
|
Hayden DB, Baker NR. Damage to Photosynthetic Membranes in Chilling-Sensitive Plants: Maize, a Case Study. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558909036742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M, Knipe DM, Kousoulas KG. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 2006; 360:264-74. [PMID: 17134730 PMCID: PMC7103323 DOI: 10.1016/j.virol.2006.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/14/2006] [Accepted: 10/18/2006] [Indexed: 11/21/2022]
Abstract
The SARS–coronavirus (SARS–CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS–CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.
Collapse
Affiliation(s)
- Chad M Petit
- Division of Biotechnology and Molecular Medicine (BIOMMED), USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tieleman DP, Marrink SJ. Lipids Out of Equilibrium: Energetics of Desorption and Pore Mediated Flip-Flop. J Am Chem Soc 2006; 128:12462-7. [PMID: 16984196 DOI: 10.1021/ja0624321] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential of mean force (PMF) of a phospholipid in a bilayer is a key thermodynamic property that describes the energetic cost of localized lipid defects. We have calculated the PMF by umbrella sampling using molecular dynamics simulations. The profile has a deep minimum at the equilibrium position in the bilayer and steeply rises for displacements both deeper into the bilayer and moving away from the bilayer. As the lipid loses contact with the bilayer, the profile abruptly flattens without a significant barrier. The calculated free energy difference of 80 kJ/mol between the minimum of the PMF and the value in water agrees well with the free energy difference calculated from the experimentally measured critical micelle concentration. Significant water/lipid defects form when a lipid is forced into the bilayer interior, in the form of a small water pore that spans the membrane. The energy required to form such a water pore is also found to be 80 kJ/mol. On the basis of this energy, we estimate the lipid flip-flop rate and permeability rate of sodium ions. The resulting rates are in good agreement with experimental measurements, suggesting lipid flip-flop and basal permeability of ions are pore mediated.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada.
| | | |
Collapse
|
15
|
Suzuki T, Ito M, Ezure T, Shikata M, Ando E, Utsumi T, Tsunasawa S, Nishimura O. N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry. Proteomics 2006; 6:4486-95. [PMID: 16835852 DOI: 10.1002/pmic.200600126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To evaluate the ability of an insect cell-free protein synthesis system to generate proper N-terminal cotranslational protein modifications such as removal of the initiating Met, N-acetylation, and N-myristoylation, several mutants were constructed using truncated human gelsolin (tGelsolin) as a model protein. Tryptic digests of these mutants were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The wild-type tGelsolin, which is an N-myristoylated protein, was found to be N-myristoylated when myristoyl-CoA was added to the in vitro translation reaction mixture. N-myristoylation did not occur on the Gly-2 to Ala mutant, in which the N-myristoylation motif was disrupted, whereas this mutant was found to be N-acetylated after removal of the initiating Met. Analyses of Gly-2 to His and Leu-3 to Asp mutants revealed that the amino acids at positions 2 and 3 strongly affect the susceptibility of the nascent peptide chain to removal of the initiating Met and to N-acetylation, respectively. These results suggest that N-terminal modifications occurring in the insect cell-free protein synthesis system are quite similar to those observed in the mammalian protein synthesis system. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein modifications.
Collapse
Affiliation(s)
- Takashi Suzuki
- Life Science Laboratory, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gubitosi-Klug RA, Mancuso DJ, Gross RW. The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proc Natl Acad Sci U S A 2005; 102:5964-8. [PMID: 15837928 PMCID: PMC1087951 DOI: 10.1073/pnas.0501999102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent K(+) channels rely on precise dynamic protein interactions with surrounding plasma membrane lipids to facilitate complex processes such as voltage sensing and channel gating. Many transmembrane-spanning proteins use palmitoylation to facilitate dynamic membrane interactions. Herein, we demonstrate that the human Kv1.1 ion channel is palmitoylated in the cytosolic portion of the S(2)-S(3) linker domain at residue C243. Through heterologous expression of the human Kv1.1 protein in Sf9 cells, covalent radiolabeling with [(3)H]palmitate, chemical stability studies of the [(3)H]-palmitoylated protein, and site-directed mutagenesis, C243 was identified as the predominant site of palmitoylation. The functional sequelae of palmitoylation were examined by analysis of whole cell currents from WT and mutant channels, which identified a 20-mV leftward shift in the current-voltage relationship when palmitoylation at C243 (but not with other cysteine deletions) is prevented by site-directed mutagenesis, implicating a role for palmitoylated C243 in modulating voltage sensing through protein-membrane interactions. Database searches identified an amino acid palmitoylation consensus motif (ACP/RSKT) that is present in multiple other members of the Shaker subfamily of K(+) channels and in several other unrelated regulatory proteins (e.g., CD36, nitric oxide synthase type 2, and the mannose-6 phosphate receptor) that are known to be palmitoylated by thioester linkages at the predicted consensus site cysteine residue. Collectively, these results (i) identify palmitoylation as a mechanism for K(+) channel interactions with plasma membrane lipids contributing to electric field-induced conformational alterations, and ii) define an amino acid consensus sequence for protein palmitoylation.
Collapse
Affiliation(s)
- Rose A Gubitosi-Klug
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
17
|
Lee HJ, Kim S, Pelletier J, Kim J. Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. FEBS Lett 2004; 564:188-98. [PMID: 15094065 DOI: 10.1016/s0014-5793(04)00314-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/05/2004] [Accepted: 03/11/2004] [Indexed: 12/17/2022]
Abstract
The three genes hTAF(II)68, EWS, and TLS (called the TET family) encode related RNA binding proteins containing an RNA recognition motif and three glycine-, arginine-, and proline-rich regions in the C-terminus and a degenerated repeat containing the consensus sequence Ser-Tyr-Gly-Gln-Ser in the N-terminus. In many human cancers, the N-terminal portion of hTAF(II)68, EWS, or TLS is fused to the DNA binding domain of one of several transcription factors including Fli-1, ERG, ETV1, E1AF, WT1, ATF-1, CHOP, or TEC. We have recognized the presence of several potential tyrosine phosphorylation sites within the amino-terminal domain of hTAF(II)68 and have investigated the potential effects of cytoplasmic signaling on hTAF(II)68 function. Herein, we find that hTAF(II)68 is phosphorylated on tyrosine residue(s) by ectopic expression of v-Src protein tyrosine kinase in vitro and in vivo. The hTAF(II)68 protein can associated with the SH3 domains of several cell signaling proteins, including v-Src protein tyrosine kinase. We also document that full-length v-Src can stimulate hTAF(II)68-mediated transcriptional activation, whereas deletion mutants of v-Src are unable to exert this effect. In addition, cellular Src activity appears important for hTAF(II)68 function since hTAF(II)68-mediated transactivation is reduced in a dose-dependent fashion by ectopic overexpression of a dominant-negative mutant of Src. Taken together, our results suggest that the biological activities of hTAF(II)68 are linked to the cytoplasmic Src signal transduction pathway.
Collapse
Affiliation(s)
- Hye Jin Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-743, South Korea
| | | | | | | |
Collapse
|
18
|
Wan L, Chen YH, Chang TW. Improving pharmacokinetic properties of adrenocorticotropin by site-specific lipid modification. J Pharm Sci 2003; 92:1882-92. [PMID: 12950006 DOI: 10.1002/jps.10442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although many peptides are potentially good therapeutic agents for treating various diseases, only a few have been developed for limited applications. A major shortcoming is that peptides have generally very short serum half lives. In the present study, we use adrenocorticotropin (ACTH) as a model and explore the potential of combining site-specific amino acid substitution and lipid modification to increase the circulating half-lives of peptides. Phe39 of ACTH was substituted by Cys, which has a free sulfhydryl group that can react specifically with iodoacetamide derivatives of lipophilic groups. The biological activities of lipophilized ACTH(F39C)s were higher than native ACTH. Lipophilized ACTH(F39C)s bound more tightly to human serum albumin and cell membranes in vitro and had longer serum half-lives in vivo than native ACTH. These results indicate that the pharmacokinetic properties of peptides can be improved by site-specific substitution with cysteine residues and subsequent conjugation with lipophilic moieties.
Collapse
Affiliation(s)
- Lei Wan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 300
| | | | | |
Collapse
|
19
|
Utsumi T, Sakurai N, Nakano K, Ishisaka R. C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett 2003; 539:37-44. [PMID: 12650923 DOI: 10.1016/s0014-5793(03)00180-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To detect the posttranslational N-myristoylation of caspase substrates, the susceptibility of the newly exposed N-terminus of known caspase substrates to protein N-myristoylation was evaluated by in vivo metabolic labeling with [(3)H]myristic acid in transfected cells using a fusion protein in which the query sequence was fused to a model protein. As a result, it was found that the N-terminal nine residues of the newly exposed N-terminus of the caspase-cleavage product of cytoskeletal actin efficiently direct the protein N-myristoylation. Metabolic labeling of COS-1 cells transiently transfected with cDNA coding for full-length truncated actin (tActin) revealed the efficient incorporation of [(3)H]myristic acid into this molecule. When COS-1 cells transiently transfected with cDNA coding for full-length actin were treated with staurosporine, an apoptosis-inducing agent, an N-myristoylated tActin was generated. Immunofluorescence staining coupled with MitoTracker or fluorescence tagged-phalloidin staining revealed that exogenously expressed tActin colocalized with mitochondria without affecting cellular and actin morphology. Taken together, these results demonstrate that the C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage during apoptosis and targeted to mitochondria.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | |
Collapse
|
20
|
Mao X, Kong L, Li X, Guo B, Zou H. Unilamellar liposomes covalently coupled on silica gel for liquid chromatography. Anal Bioanal Chem 2003; 375:550-5. [PMID: 12610709 DOI: 10.1007/s00216-002-1721-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Revised: 10/31/2002] [Accepted: 11/25/2002] [Indexed: 11/27/2022]
Abstract
Silica gel was used as a support for the covalent coupling of liposomes, which could overcome drawbacks of soft gel beads in column efficiency and separation speed. The influences of the concentration of added dimethylaminopyridine and reaction time on the chloroformate activation reaction of silica gel were investigated. Temperature and pH for covalent coupling of liposomes on the activated silica gel were also optimized. Experimental results indicated that the stability of the covalently coupled liposome columns was obviously superior to that of the noncovalently coated liposome columns but the selectivity of both columns was basically identical. Separation and analysis of a crude extract of a traditional Chinese medicine Ligusticum Wallichii and a mixture of small peptides on both columns further support this conclusion.
Collapse
Affiliation(s)
- Xiqin Mao
- National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116011, Dalian, China
| | | | | | | | | |
Collapse
|
21
|
ten Brinke A, van Golde LMG, Batenburg JJ. Palmitoylation and processing of the lipopeptide surfactant protein C. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:253-65. [PMID: 12176392 DOI: 10.1016/s1388-1981(02)00248-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pulmonary surfactant, a mixture of lipids and proteins, reduces the surface tension at the air-water interface of the lung alveoli by forming a surface active film. This way, it prevents alveoli from collapsing and facilitates the work of breathing. Surfactant protein C (SP-C) plays an important role in this surfactant function. SP-C is expressed as a proprotein (proSP-C), which becomes posttranslationally modified with palmitate and undergoes several rounds of proteolytical cleavage. This results in the formation of mature SP-C, which is stored in the lamellar bodies (LB) and finally secreted into the alveolar space. Recently, new insights into the sorting, processing and palmitoylation of proSP-C have been obtained by mutagenesis studies. Moreover, reports on the association of development of lung disease with SP-C deficiency have led to new insights into the importance of SP-C for proper surfactant homeostasis. In addition, new information has become available on the role of the palmitoyl chains of SP-C in surface activity. This review summarizes these recent developments in the processing and function of SP-C, with particular emphasis on the signals for and role of palmitoylation of SP-C.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | | | |
Collapse
|
22
|
Wan L, Chang TW. Site-specific lipophilic modification of interferon-alpha. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:371-81. [PMID: 12492147 DOI: 10.1023/a:1021134131250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interferon-alpha (IFNalpha), a cytokine with modulatory activities on many cell types, is useful for treating many types of cancer and infectious diseases. This study investigates whether modification of a protein, using IFNalpha as an example, with a lipophilic group can alter its distribution and kinetic properties in the body. Ser163 of IFNalpha2a was mutated to Cys to generate a free sulfhydryl group for site-specific chemical modification. IFNalpha2a(S163C) was conjugated by iodoacetamide derivatives of varying lengths, and the modified IFNalpha2a was purified by gel filtration chromatography. The biological activities of IFNalpha2a(S163C) and lipophilized IFNalpha2a(S163C) were similar to that of IFNalpha2a, as evidenced by their inhibitory effects on the growth of Daudi cells and on the replication of vesicular stomatitis virus in Madin-Darby bovine kidney cells. Lipophilized IFNalpha2a(S163C) bound to human serum albumin and cell membranes more readily than did IFNalpha2a. Future experiments will investigate whether lipophilized IFNalpha2a(S163C) has improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Lei Wan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 300
| | | |
Collapse
|
23
|
LoPachin RM, Ross JF, Lehning EJ. Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology 2002; 23:43-59. [PMID: 12164547 DOI: 10.1016/s0161-813x(01)00074-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acrylamide (ACR) is considered to be prototypical among chemicals that cause a central-peripheral distal axonopathy. Multifocal neurofilamentous swellings and eventual degeneration of distal axon regions in the CNS and PNS have been traditionally considered the hallmark morphological features of this axonopathy. However, ACR has also been shown to produce early nerve terminal degeneration of somatosensory, somatomotor and autonomic nerve fibers under a variety of dosing conditions. Recent research from our laboratory has demonstrated that terminal degeneration precedes axonopathy during low-dose subchronic induction of neurotoxicity and occurs in the absence of axonopathy during higher-dose subacute intoxication. This relationship suggests that nerve terminal degeneration, and not axonopathy, is the primary or most important pathophysiologic lesion produced by ACR. In this hypothesis paper, we review evidence suggesting that nerve terminal degeneration is the hallmark lesion of ACR neurotoxicity, and we propose that this effect is mediated by the direct actions of ACR at nerve terminal sites. ACR is an electrophile and, therefore, sulfhydryl groups on presynaptic proteins represent rational molecular targets. Several presynaptic thiol-containing proteins (e.g. SNAP-25, NSF) are critically involved in formation of SNARE (soluble N-ethylmaleimide (NEM)-sensitive fusion protein receptor) complexes that mediate membrane fusion processes such as exocytosis and turnover of plasmalemmal proteins and other constituents. We hypothesize that ACR adduction of SNARE proteins disrupts assembly of fusion core complexes and thereby interferes with neurotransmission and presynaptic membrane turnover. General retardation of membrane turnover and accumulation of unincorporated materials could result in nerve terminal swelling and degeneration. A similar mechanism involving the long-term consequences of defective SNARE-based turnover of Na+/K(+)-ATPase and other axolemmal constituents might explain subchronic induction of axon degeneration. The ACR literature occupies a prominent position in neurotoxicology and has significantly influenced development of mechanistic hypotheses and classification schemes for neurotoxicants. Our proposal suggests a reevaluation of current classification schemes and mechanistic hypotheses that regard ACR axonopathy as a primary lesion.
Collapse
Affiliation(s)
- R M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA.
| | | | | |
Collapse
|
24
|
ten Brinke A, Vaandrager AB, Haagsman HP, Ridder ANJA, van Golde LMG, Batenburg JJ. Structural requirements for palmitoylation of surfactant protein C precursor. Biochem J 2002; 361:663-71. [PMID: 11802797 PMCID: PMC1222350 DOI: 10.1042/0264-6021:3610663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated. Substitution of the transmembrane domain by an artificial transmembrane domain had no effect on palmitoylation. However, an inverse correlation was found between palmitoylation of proSP-C and the number of amino acids present between the cysteines and the transmembrane domain. Moreover, substitution by alanines of amino acids localized on the N-terminal side of the cysteines had drastic effects on palmitoylation, probably as a result of the removal of hydrophobic amino acids. These data, together with the observation that substitution by alanines of the amino acids localized between the cysteines and the transmembrane domain had no effect on palmitoylation, suggest that the palmitoylation of proSP-C depends not on specific sequence motifs, but more on the probability that the cysteine is in the vicinity of the membrane surface. This is probably determined not only by the number of amino acids between the cysteines and the transmembrane domain, but also by the hydrophobic interaction of the N-terminus with the membrane. This may also be the case for the palmitoylation of other transmembrane proteins.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
ten Brinke A, Batenburg JJ, Gadella BM, Haagsman HP, Vaandrager AB, van Golde LM. The juxtamembrane lysine and arginine residues of surfactant protein C precursor influence palmitoylation via effects on trafficking. Am J Respir Cell Mol Biol 2001; 25:156-63. [PMID: 11509324 DOI: 10.1165/ajrcmb.25.2.4423] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein (SP)-C propeptide (proSP-C) becomes palmitoylated on cysteines 5 and 6 before mature SP-C is formed by several proteolytic steps. To study the structural requirements for the palmitoylation of proSP-C, his-tagged human proSP-C (his-proSP-C) and his-proSP-C mutants were expressed in Chinese hamster ovary cells and analyzed by metabolic labeling with [(3)H]palmitate and immunocytochemistry. Substitution of cysteines 5 and 6 by serines showed that these were the only two cysteine residues palmitoylated in his-proSP-C. Substitution of the juxtamembrane basic residues lysine and arginine by uncharged glutamines led to a large decrease in palmitoylation level of proSP-C. The addition of brefeldin A nearly abolished this decrease for the lysine and double mutant; the palmitoylation of the arginine mutant increased also, but not to wild-type (WT) levels. Fluorescence immunocytochemistry showed that WT proSP-C was localized in punctate vesicles throughout the cell, whereas the mutant lacking the juxtamembrane positive charges was found more perinuclear, probably in the endoplasmic reticulum (ER). This indicates that the two basic juxtamembrane residues influence palmitoylation of proSP-C by preventing the transport of proSP-C out of the ER, implying that proSP-C becomes palmitoylated normally in a compartment distal to the ER.
Collapse
Affiliation(s)
- A ten Brinke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Ramulu P, Nathans J. Cellular and subcellular localization, N-terminal acylation, and calcium binding of Caenorhabditis elegans protein phosphatase with EF-hands. J Biol Chem 2001; 276:25127-35. [PMID: 11312268 DOI: 10.1074/jbc.m011712200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RdgC/PPEF family of serine/threonine protein phosphatases is distinguished by the presence of C-terminal EF-hands and neuron-specific expression, including frequent expression in primary sensory neurons. Here we report that the sole Caenorhabditis elegans PPEF (CePPEF) homolog is also highly expressed in primary sensory neurons and is not found outside the nervous system. Neurons expressing CePPEF include the ciliary chemosensory neurons AWB and AWC; and within these neurons, CePPEF is highly enriched in the sensory cilia. In transgenic C. elegans and in transfected 293 cells, CePPEF is membrane-associated, and the N terminus of CePPEF is necessary and sufficient for this membrane association. [(3)H]Myristate and [(3)H]palmitate labeling studies in 293 cells demonstrated that this association was mediated by myristoylation at Gly(2) and palmitoylation at Cys(3). Introducing the G2A or C3S mutation into CePPEF greatly reduced membrane association in 293 cells and in transgenic nematodes. A recombinant C-terminal fragment of CePPEF containing two putative EF-hands bound between one and two Ca(2+) ions/protein, and mutation of residues presumed to ligand calcium in the two putative EF-hands led to diminished calcium binding. These results establish the first direct evidence for fatty acylation and calcium binding of a PPEF family member and demonstrate a remarkable conservation of sensory neuron expression among the members of this distinctive family of protein phosphatases.
Collapse
Affiliation(s)
- P Ramulu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
27
|
Utsumi T, Takeshige T, Tanaka K, Takami K, Kira Y, Klostergaard J, Ishisaka R. Transmembrane TNF (pro-TNF) is palmitoylated. FEBS Lett 2001; 500:1-6. [PMID: 11434916 DOI: 10.1016/s0014-5793(01)02576-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human transmembrane tumor necrosis factor (pro-TNF) was examined for protein acylation. The cDNA encoding pro-TNF was expressed in both COS-1 cells and Sf9 cells and metabolic labeling with [(3)H]myristic or [(3)H]palmitic acid was attempted. The 17 kDa mature TNF secreted from the transfected cells was not labeled, whereas the 26 kDa pro-TNF was specifically labeled with [(3)H]palmitic acid. The [(3)H]palmitic acid labeling of pro-TNF was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation of a cysteine residue via a thioester bond. Site-directed mutagenesis of the two cysteine residues residing in the leader sequence of pro-TNF demonstrated that palmitoylation of pro-TNF occurs solely at Cys-47, located at the boundary between the transmembrane and cytoplasmic domains of pro-TNF. Thus, pro-TNF interacts with the plasma membrane via both its proteinaceous transmembrane domain and a lipid anchor.
Collapse
Affiliation(s)
- T Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Utsumi T, Sato M, Nakano K, Takemura D, Iwata H, Ishisaka R. Amino acid residue penultimate to the amino-terminal gly residue strongly affects two cotranslational protein modifications, N-myristoylation and N-acetylation. J Biol Chem 2001; 276:10505-13. [PMID: 11124252 DOI: 10.1074/jbc.m006134200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the amino-terminal sequence requirements for cotranslational protein N-myristoylation, a series of site-directed mutagenesis of N-terminal region were performed using tumor necrosis factor as a nonmyristoylated model protein. Subsequently, the susceptibility of these mutants to protein N-myristoylation was evaluated by metabolic labeling in an in vitro translation system or in transfected cells. It was found that the amino acid residue at position 3 in an N-myristoylation consensus motif, Met-Gly-X-X-X-Ser-X-X-X, strongly affected the susceptibility of the protein to two different cotranslational protein modifications, N-myristoylation and N-acetylation; 10 amino acids (Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, and His) with a radius of gyration smaller than 1.80 A directed N-myristoylation, two negatively charged residues (Asp and Glu) directed N-acetylation, and two amino acids (Gly and Met) directed heterogeneous modification with both N-myristoylation and N-acetylation. The amino acid requirements at this position for the two modifications were dramatically changed when Ser at position 6 in the consensus motif was replaced with Ala. Thus, the amino acid residue penultimate to the N-terminal Gly residue strongly affected two cotranslational protein modifications, N-myristoylation and N-acetylation, and the amino acid requirements at this position for these two modifications were significantly affected by downstream residues.
Collapse
Affiliation(s)
- T Utsumi
- Department of Biological Chemistry and Department of Veterinary Medicine, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Qi Q, Rajala RV, Anderson W, Jiang C, Rozwadowski K, Selvaraj G, Sharma R, Datla R. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana. J Biol Chem 2000; 275:9673-83. [PMID: 10734119 DOI: 10.1074/jbc.275.13.9673] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97) catalyzes the co-translational addition of myristic acid to the amino-terminal glycine residue of a number of important proteins of diverse functions. We have isolated a full-length Arabidopsis thaliana cDNA encoding NMT (AtNMT1), the first described from a higher plant. This AtNMT1 cDNA clone has an open reading frame of 434 amino acids and a predicted molecular mass of 48,706 Da. The primary structure is 50% identical to the mammalian NMTs. Analyses of Southern blots, genomic clones, and database sequences suggested that the A. thaliana genome contains two copies of NMT gene, which are present on different chromosomes and have distinct genomic organizations. The recombinant AtNMT1 expressed in Escherichia coli exhibited a high catalytic efficiency for the peptides derived from putative plant myristoylated proteins AtCDPK6 and Fen kinase. The AtNMT was similar to the mammalian NMTs with respect to a relative specificity for myristoyl CoA among the acyl CoA donors and also inhibition by the bovine brain NMT inhibitor NIP(71). The AtNMT1 expression profile indicated ubiquity in roots, stem, leaves, flowers, and siliques (approximately 1.7 kb transcript and approximately 50 kDa immunoreactive polypeptide) but a greater level in the younger tissue, which are developmentally very active. NMT activity was also evident in all these tissues. Subcellular distribution studies indicated that, in leaf extracts, approximately 60% of AtNMT activity was associated with the ribosomal fractions, whereas approximately 30% of the activity was observed in the cytosolic fractions. The NMT is biologically important to plants, as noted from the stunted development when the AtNMT1 was down-regulated in transgenic Arabidopsis under the control of an enhanced CaMV 35S promoter. The results presented in this study provide the first direct molecular evidence for plant protein N-myristoylation and a mechanistic basis for understanding the role of this protein modification in plants.
Collapse
Affiliation(s)
- Q Qi
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon S7N 0W9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology 2000; 269:212-24. [PMID: 10725213 PMCID: PMC7131280 DOI: 10.1006/viro.2000.0219] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein of mouse hepatitis virus strain A59 mediates the early events leading to infection of cells, including fusion of the viral and cellular membranes. The spike is a type I membrane glycoprotein that possesses a conserved transmembrane anchor and an unusual cysteine-rich (cys) domain that bridges the putative junction of the anchor and the cytoplasmic tail. In this study, we examined the role of these carboxyl-terminal domains in spike-mediated membrane fusion. We show that the cytoplasmic tail is not required for fusion but has the capacity to enhance membrane fusion activity. Chimeric spike protein mutants containing substitutions of the entire transmembrane anchor and cys domain with the herpes simplex virus type 1 glycoprotein D (gD-1) anchor demonstrated that fusion activity requires the presence of the A59 membrane-spanning domain and the portion of the cys domain that lies upstream of the cytoplasmic tail. The cys domain is a required element since its deletion from the wild-type spike protein abrogates fusion activity. However, addition of the cys domain to fusion-defective chimeric proteins was unable to restore fusion activity. Thus, the cys domain is necessary but is not sufficient to complement the gD-1 anchor and allow for membrane fusion. Site-specific mutations of conserved cysteine residues in the cys domain markedly reduce membrane fusion, which further supports the conclusion that this region is crucial for spike function. The results indicate that the carboxyl-terminus of the spike transmembrane anchor contains at least two distinct domains, both of which are necessary for full membrane fusion.
Collapse
Affiliation(s)
- K W Chang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
31
|
Abstract
The characteristics and possible functions of the most abundant proteins associated with the bovine milk-fat globule membrane are reviewed. Under the auspices of the Milk Protein Nomenclature Committee of the ADSA, a revised nomenclature for the major membrane proteins is proposed and discussed in relation to earlier schemes. We recommend that proteins be assigned specific names as they are identified by molecular cloning and sequencing techniques. The practice of identifying proteins according to their Mr, electrophoretic mobility, or staining characteristics should be discontinued, except for uncharacterized proteins. The properties and amino acid sequences of the following proteins are discussed in detail: MUC1, xanthine dehydrogenase/oxidase, CD36, butyrophilin, adipophilin, periodic acid Schiff 6/7 (PAS 6/7), and fatty acid binding protein. In addition, a compilation of less abundant proteins associated with the bovine milk-fat globule membrane is presented.
Collapse
Affiliation(s)
- I H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, USA.
| |
Collapse
|
32
|
Olsen KE, Andersen KB. Palmitoylation of the intracytoplasmic R peptide of the transmembrane envelope protein in Moloney murine leukemia virus. J Virol 1999; 73:8975-81. [PMID: 10516003 PMCID: PMC112929 DOI: 10.1128/jvi.73.11.8975-8981.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously it was reported that the 16-amino-acid (aa) C-terminal cytoplasmic tail of Moloney murine leukemia virus (MoMLV) transmembrane protein Pr15E is cleaved off during virus synthesis, yielding the mature, fusion active transmembrane protein p15E and the 16-aa peptide (R peptide or p2E). It remains to be elucidated how the R peptide impairs fusion activity of the uncleaved Pr15E. The R peptide from MoMLV was analyzed by Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunostained with antiserum against the synthetic 16-aa R peptide. The R peptide resolved with an apparent molecular mass of 7 kDa and not the 4 kDa seen with the corresponding synthetic peptide. The 7-kDa R peptide was found to be membrane bound in MoMLV-infected NIH 3T3 cells, showing that cleavage of the 7-kDa R-peptide tail must occur before or during budding of progeny virions, in which only small amounts of the 7-kDa R peptide were found. The 7-kDa R peptide was palmitoylated since it could be labeled with [(3)H]palmitic acid, which explains its membrane association, slower migration on gels, and high sensitivity in immunoblotting. The present results are in contrast to previous findings showing equimolar amounts of R peptide and p15E in virions. The discrepancy, however, can be explained by the presence of nonpalmitoylated R peptide in virions, which were poorly detected by immunoblotting. A mechanistic model is proposed. The uncleaved R peptide can, due to its lipid modification, control the conformation of the ectodomain of the transmembrane protein and thereby govern membrane fusion.
Collapse
Affiliation(s)
- K E Olsen
- Department of Pharmacology, The Royal Danish School of Pharmacy, DK-2100 Copenhagen O, Denmark
| | | |
Collapse
|
33
|
Schweizer A, Löffler BM, Rohrer J. Palmitoylation of the three isoforms of human endothelin-converting enzyme-1. Biochem J 1999; 340 ( Pt 3):649-56. [PMID: 10359648 PMCID: PMC1220295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Endothelin-converting enzyme-1 (ECE-1) is a membrane-bound metalloprotease that catalyses the conversion of inactive big endothelins into active endothelins. Here we have examined whether the three isoforms of human ECE-1 (ECE-1a, ECE-1b and ECE-1c) are modified by the covalent attachment of the fatty acid palmitate and have evaluated a potential functional role of this modification. To do this, wild-type and mutant enzymes were expressed and analysed by metabolic labelling with [3H]palmitate, immunoprecipitation and SDS/PAGE. All three ECE-1 isoforms were found to be palmitoylated via hydroxylamine-sensitive thioester bonds. In addition, the isoforms showed similar levels of acylation. Cys46 in ECE-1a, Cys58 in ECE-1b and Cys42 in ECE-1c were identified as sites of palmitoylation and each of these cysteines accounted for all the palmitoylation that occured in the corresponding isoform. Immunofluorescence analysis demonstrated further that palmitoylated and non-palmitoylated ECE-1 isoforms had the same subcellular localizations. Moreover, complete solubility of the three isoforms in Triton X-100 revealed that palmitoylation does not target ECE-1 to cholesterol and sphingolipid-rich membrane domains or caveolae. The enzymic activities of ECE-1a, ECE-1b and ECE-1c were also not significantly affected by the absence of palmitoylation.
Collapse
Affiliation(s)
- A Schweizer
- F.Hoffmann-La Roche Ltd., Pharma Division, Preclinical Cardiovascular Research, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | |
Collapse
|
34
|
Clegg RS, Hutchison JE. Control of Monolayer Assembly Structure by Hydrogen Bonding Rather Than by Adsorbate−Substrate Templating. J Am Chem Soc 1999. [DOI: 10.1021/ja9901011] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert S. Clegg
- Contribution from the Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253
| | - James E. Hutchison
- Contribution from the Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253
| |
Collapse
|
35
|
Abstract
An understanding of the action of many drugs requires a knowledge of how the drug reaches the site of action in a cell. A detailed knowledge of the structure and function of cell membranes is often required to understand the transport of drugs across the plasma membrane. To obtain this information proteins must be isolated. The isolation and characterisation of cell membrane proteins usually requires the solubilisation of the membrane and a method of separation of the various membrane proteins and glycoproteins. The starting point for such an investigation is the choice of a suitable surfactant (detergent) to solubilise the membrane. This review considers the range of surfactants that are available for membrane solubilisation, how surfactants interact with membranes, the part they play in the separation of integral membrane proteins and in the reconstitution of membrane proteins for functional studies. The solubilisation of specific membrane proteins and glycoproteins including the human erythrocyte anion transporter, mitochondrial porin, sarcoplasmic reticulum Ca(2+)-ATPase, the ATPase-active multidrug transporter P-glycoprotein, bacteriorhodopsin and rhodopsin are also discussed.
Collapse
Affiliation(s)
- M N Jones
- School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
36
|
Marrink SJ, Berger O, Tieleman P, Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J 1998; 74:931-43. [PMID: 9533704 PMCID: PMC1302572 DOI: 10.1016/s0006-3495(98)74016-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipid adhesion forces can be measured using several experimental techniques, but none of these techniques provide insight on the atomic level. Therefore, we performed extensive nonequilibrium molecular dynamics simulations of a phospholipid membrane in the liquid-crystalline phase out of which individual lipid molecules were pulled. In our method, as an idealization of the experimental setups, we have simply attached a harmonic spring to one of the lipid headgroup atoms. Upon retraction of the spring, the force needed to drag the lipid out of the membrane is recorded. By simulating different retraction rates, we were able to investigate the high pull rate part of the dynamical spectrum of lipid adhesion forces. We find that the adhesion force increases along the unbinding path, until the point of rupture is reached. The maximum value of the adhesion force, the rupture force, decreases as the pull rate becomes slower, and eventually enters a friction-dominated regime. The computed bond lengths depend on the rate of rupture, and show some scatter due to the nonequilibrium nature of the experiment. On average, the bond length increases from approximately 1.7 nm to 2.3 nm as the rates go down. Conformational analyses elucidate the detailed mechanism of lipid-membrane bond rupture. We present results of over 15 ns of membrane simulations. Implications for the interpretation and understanding of experimental rupture data are discussed.
Collapse
Affiliation(s)
- S J Marrink
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | | | | | |
Collapse
|
37
|
Utsumi T, Tou E, Takemura D, Ishisaka R, Yabuki M, Iwata H. Met-Gly-Cys motif from G-protein alpha subunit cannot direct palmitoylation when fused to heterologous protein. Arch Biochem Biophys 1998; 349:216-24. [PMID: 9448708 DOI: 10.1006/abbi.1997.0468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To determine whether the N-terminal Met-Gly-Cys motif from G-protein alpha subunit can direct palmitoylation of protein, we have generated heterologous fusion proteins containing the first 10 amino acids of Gi1 alpha and Gs alpha using tumor necrosis factor as a model protein and determined their ability to incorporate palmitate using in vitro and in vivo expression systems. DNA sequences coding for the N-terminal 10 amino acids of Gi1 alpha and Gs alpha were fused to the 5'-end of the cDNA coding for the mature domain of tumor necrosis factor (TNF) to give Gi1 alpha-TNF and Gs alpha-TNF cDNA. In vitro translation of the mRNA coding for the Gi1 alpha-TNF cDNA gave rise to an N-myristoylated fusion TNF with a molecular mass of 18 kDa as determined by the incorporation of [3H]myristic acid and by immunoprecipitation with anti-TNF antibody. In contrast, no incorporation of fatty acid was detected for Gs alpha-TNF. Baculovirus expression of the Gi1 alpha-TNF cDNA in Sf-9 cells gave rise to an N-myristoylated but not palmitoylated fusion TNF. This myristoylation was inhibited by replacement of Gly-2 with Ala but not Cys-3 with Ala, indicating the acylation reaction is entirely dependent on the N-myristoylation signal (Met-Gly-X-X-X-Ser) and Cys-3 is not involved. As is the case with in vitro translation, no incorporation of fatty acid was detected for Gs alpha-TNF. These results indicated that unlike the myristoylation signal Met-Gly-X-X-X-Ser/Thr/Cys, the Met-Gly-Cys motif found in G-protein alpha subunits itself is not sufficient to direct palmitoylation even if Gly-2 is myristoylated after removal of initiating Met. Thus, another structural determinant is implicated in this modification.
Collapse
Affiliation(s)
- T Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Niidome T, Kawakami R, Okamoto K, Ohmori N, Mihara H, Aoyagi H. Interaction of lipophilic peptides derived from mastoparan with phospholipid vesicles. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 50:458-64. [PMID: 9440047 DOI: 10.1111/j.1399-3011.1997.tb01209.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various kinds of lipophilic peptides were prepared by acylation of an alpha-helical peptide, mastoparan, to investigate the effects of acyl groups on the interaction of peptides with phospholipid membranes. alpha-Helicity of the peptides was increased by introduction of long acyl groups. Acyl peptides showed different membrane-perturbation activities for neutral and acidic phospholipid vesicles, whereas a peptide with a dialkycarbamoyl group always exhibited a strong activity. High hemolytic activities were observed for the peptides with long acyls (single or double chain). These results indicate that lipophilic groups introduced to mastoparan contribute greatly to the interaction of the peptide with phospholipid membranes with lengthening of the acyl chain and that the structural character of the lipophilic group also influences the conformation of the peptide.
Collapse
Affiliation(s)
- T Niidome
- Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
A variety of fatty acids can become covalently attached to platelet proteins by thioester linkage. These fatty acids include palmitate, myristate, stearate, arachidonate, and eicosapentaenoate. More than 20 platelet proteins can be acylated by fatty acids. Several of the acylated platelet proteins have been identified, including glycoprotein Ib beta, glycoprotein IX, P-selectin, G-protein alpha subunits, and CD9. This report reviews the fatty acid acylation of platelet proteins.
Collapse
Affiliation(s)
- E M Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114-2696, USA
| | | | | |
Collapse
|
40
|
Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RG, Xu S, Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem 1997; 272:13242-9. [PMID: 9148942 DOI: 10.1074/jbc.272.20.13242] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The class B, type I scavenger receptor, SR-BI, was the first molecularly well defined cell surface high density lipoprotein (HDL) receptor to be described. It mediates transfer of lipid from HDL to cells via selective lipid uptake, a mechanism distinct from receptor-mediated endocytosis via clathrin-coated pits and vesicles. SR-BI is expressed most abundantly in steroidogenic tissues (adrenal gland, ovary), where trophic hormones coordinately regulate its expression with steroidogenesis, and in the liver, where it may participate in reverse cholesterol transport. Here we have used immunochemical methods to study the structure and subcellular localization of murine SR-BI (mSR-BI) expressed either in transfected Chinese hamster ovary cells or in murine adrenocortical Y1-BS1 cells. mSR-BI, an approximately 82-kDa glycoprotein, was initially synthesized with multiple high mannose N-linked oligosaccharide chains, and some, but not all, of these were processed to complex forms during maturation of the protein in the Golgi apparatus. Metabolic labeling with [3H]palmitate and [3H]myristate demonstrated that mSR-BI was fatty acylated, a property shared with CD36, another class B scavenger receptor, and other proteins that concentrate in specialized, cholesterol- and glycolipid-rich plasma membrane microdomains called caveolae. OptiPrep density gradient fractionation of plasma membranes established that mSR-BI copurified with caveolin-1, a constituent of caveolae; and immunofluorescence microscopy demonstrated that mSR-BI colocalized with caveolin-1 in punctate microdomains across the surface of cells and on the edges of cells. Thus, mSR-BI colocalizes with caveolae, and this raises the possibility that the unique properties of these specialized cell surface domains may play a critical role in SR-BI-mediated transfer of lipids between lipoproteins and cells.
Collapse
Affiliation(s)
- J Babitt
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Tao N, Wagner SJ, Lublin DM. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J Biol Chem 1996; 271:22315-20. [PMID: 8798390 DOI: 10.1074/jbc.271.37.22315] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The membrane protein CD36 has been reported to carry out a wide range of potential functions, including serving as a receptor for thrombospondin, collagen, oxidized low density lipoprotein, fatty acids, anionic phospholipids, and Plasmodium falciparum malaria parasitized erythrocytes. This implicates CD36 in cellular adhesion, human atherosclerotic lesion formation, lipid metabolism, and malaria. A presumed rat homolog of CD36 was previously reported to be palmitoylated. We confirmed that human CD36 is palmitoylated and identified cysteines 3, 7, 464, and 466 as the palmitoylation sites using a mutagenesis approach. This result suggests that both the N- and C-terminal tails of CD36 are cytoplasmic. Published models for the topology of CD36 have the C terminus located in the cytoplasm but differ as to whether the N terminus is cytoplasmic or extracellular. To address this question, a C-terminal truncation mutant of CD36 was made by introducing a stop codon just upstream of the C-terminal transmembrane domain. This mutant was found membrane-bound when expressed in human embryonic kidney 293 cells, indicating that the N-terminal hydrophobic domain serves as a transmembrane anchor, and thus supporting a CD36 topology with two transmembrane domains.
Collapse
Affiliation(s)
- N Tao
- Department of Pathology, Division of Laboratory Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
42
|
Effect of dehydration and hydrostatic pressure on phosphatidylinositol bilayers: an infrared spectroscopic study. Chem Phys Lipids 1996. [DOI: 10.1016/0009-3084(96)02602-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Schroeder H, Leventis R, Shahinian S, Walton PA, Silvius JR. Lipid-modified, cysteinyl-containing peptides of diverse structures are efficiently S-acylated at the plasma membrane of mammalian cells. J Cell Biol 1996; 134:647-60. [PMID: 8707845 PMCID: PMC2120939 DOI: 10.1083/jcb.134.3.647] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A variety of cysteine-containing, lipid-modified peptides are found to be S-acylated by cultured mammalian cells. The acylation reaction is highly specific for cysteinyl over serinyl residues and for lipid-modified peptides over hydrophilic peptides. The S-acylation process appears by various criteria to be enzymatic and resembles the S-acylation of plasma membrane-associated proteins in various characteristics, including inhibition by tunicamycin. The substrate range of the S-acylation reaction encompasses, but is not limited to, lipopeptides incorporating the motifs myristoylGC- and -CXC(farnesyl)-OCH3, which are reversibly S-acylated in various intracellular proteins. Mass-spectrometric analysis indicates that palmitoyl residues constitute the predominant but not the only type of S-acyl group coupled to a lipopeptide carrying the myristoylGC- motif, with smaller amounts of S-stearoyl and S-oleoyl substituents also detectable. Fluorescence microscopy using NBD-labeled cysteinyl lipopeptides reveals that the products of lipopeptide S-acylation, which cannot diffuse between membranes, are in almost all cases localized preferentially to the plasma membrane. This preferential localization is found even at reduced temperatures where vesicular transport from the Golgi complex to the plasma membrane is suppressed, strongly suggesting that the plasma membrane itself is the preferred site of S-acylation of these species. Uniquely among the lipopeptides studied, species incorporating an unphysiological N-myristoylcysteinyl- motif also show substantial formation of S-acylated products in a second, intracellular compartment identified as the Golgi complex by its labeling with a fluorescent ceramide. Our results suggest that distinct S-acyltransferases exist in the Golgi complex and plasma membrane compartments and that S-acylation of motifs such as myristoylGC- occurs specifically at the plasma membrane, affording efficient targeting of cellular proteins bearing such motifs to this membrane compartment.
Collapse
Affiliation(s)
- H Schroeder
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
44
|
Liu D, Sy MS. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J Exp Med 1996; 183:1987-94. [PMID: 8642309 PMCID: PMC2192584 DOI: 10.1084/jem.183.5.1987] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the transmembrane domain and cytoplasmic domain of human CD44 protein there are two cysteine residues. These two cysteines are conserved in all known mammalian CD44 proteins. The functions of these cysteine residues are not known. Site-specific mutagenesis was used to create CD44 mutant proteins lacking either one or both of these cysteine residues. Wild-type CD44 and mutant CD44 genes were transfected into CD44- Jurkat cells to establish stable transfectants. These transfectants were used to study whether these two cysteine residues are important in the binding of CD44(H) to fluorescein-conjugated hyaluronic acid (F-HA). Jurkat transfectant bearing wild-type CD44 did not bind F-HA, unless they were stimulated in vitro with immobilized anti-CD3 monoclonal antibody. Anti-CD3 antibody also stimulated the binding of F-HA in Jurkat CD44.C295A transfectant in which the cytoplasmic cysteine residue has been replaced with alanine. In contrast, anti-CD3 antibody failed to stimulate the binding of F-HA in Jurkat transfectant (CD44.C286A), in which the transmembrane domain cysteine 286 has been replaced with an alanine, and in Jurkat transfectant CD44.2C2A, in which both of the cysteine residues have been altered. Binding can also be induced with a monoclonal anti-CD44 antibody (F-44-10-2) in Jurkat wild-type CD44 and Jurkat CD44.C295A transfectants but not in CD44. C286A transfectant. These results provide evidence that the transmembrane domain of CD44, more specifically the cysteine residue in the transmembrane domain, is important for both activation-induced and anti-CD44 antibody-induced binding of soluble HA.
Collapse
Affiliation(s)
- D Liu
- Department of Dermatology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4943, USA
| | | |
Collapse
|
45
|
Zanello LP, Aztiria E, Antollini S, Barrantes FJ. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys J 1996; 70:2155-64. [PMID: 9172739 PMCID: PMC1225190 DOI: 10.1016/s0006-3495(96)79781-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the effect of the physical state of the cell membrane on the activity of the nicotinic acetylcholine receptor (AChR) in various clonal cell lines transfected with the cDNAs of embryonic or adult AChR by measuring single-channel properties and some membrane physicochemical properties as a function of temperature. Unitary conductance and channel closing rate, alpha, had Q(10) values of 1.2 and 2.2, respectively. Using Eyring's transition state theory, it was calculated that both embryonic and adult-type AChR had relatively low thermal sensitivity of ionic conductance and activation energy (E(a) of 3.0-5.0 kcal-mol(-1) at 20 degrees C), indicating that once the AChR channel opens, ion movement is dominated by diffusional processes. Channel closure exhibited higher energy requirements, with E(a) values of about 13 kcal-mol(-1). This process appears to be more endothermic (higher delta H(a) values) than ion permeation, and it is plausible that the energy acquired by the system can be used in the maintenance of its degree of order, as revealed by the delta S(a) 0 calculated for channel closure. The influence of the membrane environment on AChR function is reinforced by the observation that the conductance of the same, embryonic-type AChR protein, expressed in qualitatively different cellular lipid environments, appeared to have different energetic requirements. A correlation between the electrophysiological and thermodynamic parameters of the AChR and physicochemical properties of the membrane bilayer in which the protein is embedded could be established using measurements of the so-called generalized polarization (GP) of the lipophilic probe laurdan. Both embryonic and adult AChR exhibited a higher GP and a higher sensitivity to temperature-dependent changes in GP when heterologously expressed in stable form in Chinese hamster ovary (CHO)-derived cells than did the native embryonic AChR in BC3H-1 cells, indicating that these two properties are determined by the host membrane and are not inherent properties of the AChR type. In addition, the differences in the macroscopic physical states of the lipids and membrane-associated solvent (water) dipolar relaxation between BC3H-1 and CHO-derived cells indicated by the spectroscopic properties of laurdan suggest that both lipid and associated water may influence the microscopic activity of individual AChR molecules embedded in the lipid bilayer. Finally, the different dependence of AChR channel conductance and mean open time as a function of GP observed between the different AChR subtypes in clonal cell lines suggests the importance of specific lipid-protein interactions in addition to bulk membrane properties.
Collapse
Affiliation(s)
- L P Zanello
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur, Bahia Blanca, Argentina
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- J R Kuszak
- Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
47
|
Nelle TD, Wills JW. A large region within the Rous sarcoma virus matrix protein is dispensable for budding and infectivity. J Virol 1996; 70:2269-76. [PMID: 8642653 PMCID: PMC190068 DOI: 10.1128/jvi.70.4.2269-2276.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All retroviruses have a layer of matrix protein (MA) situated directly beneath the lipid of their envelope. This protein is initially expressed as the amino-terminal sequence of the Gag polyprotein, where it plays an important role in binding Gag to the plasma membrane during the early steps of the budding process. Others have suggested that MA may provide additional functions during virion assembly, including the selective incorporation of viral glycoproteins and the RNA genome into the emerging virion. To further study the role of the Rous sarcoma virus MA sequence in the viral replication cycle, we have pursued an extensive deletion analysis. Surprisingly, the entire second half of MA (residues 87 to 155) and part of the neighboring p2 sequence were found to be dispensable not only for budding but also for infectivity in avian cells. Thus, all of the functions associated with the Rous sarcoma virus MA sequence must be contained within its first half.
Collapse
Affiliation(s)
- T D Nelle
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
48
|
Schweizer A, Kornfeld S, Rohrer J. Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J Biophys Biochem Cytol 1996; 132:577-84. [PMID: 8647889 PMCID: PMC2199859 DOI: 10.1083/jcb.132.4.577] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have examined whether the two cysteine residues (Cys30 and Cys34) in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor are palmitoylated via thioesters and whether these residues influence the biologic function of the receptor. To do this, mouse L cells expressing wild-type and mutant receptors were analyzed by metabolic labeling with [3H]palmitate, immunoprecipitation, and SDS-PAGE. Both Cys30 and Cys34 were found to be sites of palmitoylation and together they accounted for the total palmitoylation of the receptor. The palmitate rapidly turned over with a half-life of approximately 2 h compared to a half-life of greater than 40 h for the protein. Mutation of Cys34 to Ala resulted in the gradual accumulation of the receptor in dense lysosomes and the total loss of cathepsin D sorting function in the Golgi. A Cys30 to Ala mutation had no biologic consequences, showing the importance of Cys34. Mutation of amino acids 35-39 to alanines impaired palmitoylation of Cys30 and Cys34 and resulted in abnormal receptor trafficking to lysosomes and loss of cathepsin D sorting. These data suggest that palmitoylation of Cys30 and Cys34 leads to anchoring of this region of the cytoplasmic tail to the lipid bilayer. Anchoring via Cys34 is essential for the normal trafficking and lysosomal enzyme sorting function of the receptor.
Collapse
Affiliation(s)
- A Schweizer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
49
|
Abstract
Phospholipid bilayers deposited on sensor surfaces are excellent substrates for immobilizing proteins via a molecular anchor. An integrated optics sensing device was used to accurately measure the binding kinetics of proteins thus anchored. By comparing the results with measurements using proteins from which the anchor had been enzymatically removed, it was shown that the anchor accounts for essentially all the irreversible binding. The insertion of the anchor into the lipid bilayer is a spontaneous process. This method of immobilization should be widely applicable to many soluble protein molecules, to which an anchor can be attached by routine methods of molecular engineering.
Collapse
Affiliation(s)
- J J Ramsden
- Department of Biophysical Chemistry, Biozentrum, Basel, Switzerland.
| | | | | |
Collapse
|
50
|
Robinson LJ, Michel T. Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc Natl Acad Sci U S A 1995; 92:11776-80. [PMID: 8524847 PMCID: PMC40485 DOI: 10.1073/pnas.92.25.11776] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The endothelial nitric oxide synthase (ec-NOS) plays a key role in the transduction of signals from the bloodstream to the underlying smooth muscle. ecNOS undergoes a complex series of covalent modifications, including myristoylation and palmitoylation, which appear to play a role in ecNOS membrane association. Mutagenesis of the myristoylation site, which prevents both myristoylation and palmitoylation, blocks ecNOS targeting to cell membranes. Further, as described for some G-protein alpha subunits, both membrane association and palmitoylation of ecNOS are dynamically regulated: in response to agonists, the enzyme undergoes partial redistribution to the cell cytosol concomitant with depalmitoylation. To clarify the role of palmitoylation in determining ecNOS subcellular localization, we have constructed palmitoylation-deficient mutants of ecNOS. Serine was substituted for cysteine at two potential palmitoylation sites (Cys-15 and Cys-26) by site-directed mutagenesis. Immunoprecipitation of ecNOS mutants following cDNA transfection and biosynthetic labeling with [3H]palmitate revealed that mutagenesis of either cysteine residue attenuated palmitoylation, whereas replacement of both residues completely eliminated palmitoylation. Analysis of N-terminal deletion mutations of ecNOS demonstrated that the region containing these two cysteine residues is both necessary and sufficient for enzyme palmitoylation. The cysteines thus identified as the palmitoylation sites for ecNOS are separated by an unusual (Gly-Leu)5 sequence and appear to define a sequence motif for dual acylation. We analyzed the subcellular distribution of ecNOS mutants by differential ultracentrifugation and found that mutagenesis of the ecNOS palmitoylation sites markedly reduced membrane association of the enzyme. These results document that ecNOS palmitoylation is an important determinant for the subcellular distribution of ecNOS and identify a new motif for the reversible palmitoylation of signaling proteins.
Collapse
Affiliation(s)
- L J Robinson
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|