1
|
Inoue D. Surface Passivation of Norland Optical Adhesive Improves the Guiding Efficiency of Gliding Microtubules in Microfluidic Devices. NANO LETTERS 2024; 24:10790-10795. [PMID: 39146458 DOI: 10.1021/acs.nanolett.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system's application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.
Collapse
Affiliation(s)
- Daisuke Inoue
- Faculty of Design, Kyushu University, Shiobaru 4-9-1, Minami-Ku, Fukuoka 815-8540, Japan
| |
Collapse
|
2
|
Spector JO, Chen J, Roll-Mecak A. Multi-camera Simultaneous Total Internal Reflection and Interference Reflection Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610099. [PMID: 39372801 PMCID: PMC11451753 DOI: 10.1101/2024.08.28.610099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Interference Reflection Microscopy (IRM) is an optical technique that relies on the interference between the reflected light from an incident beam as it passes through materials of different refractive indices. This technique has been successfully used to image microtubules, biologically important biofilaments with a diameter of 25 nm. However, it is often desirable to image both the microtubule and microtubule interacting proteins simultaneously. Here we present a simple modification to a standard multi-color total internal reflection fluorescence (TIRF) microscope that enables simultaneous high-speed IRM and single molecule TIRF imaging. Our design utilizes a camera for each channel (IRM and TIRF) allowing independent optimization of camera parameters for the two different modalities. We illustrate its application by imaging unlabeled microtubules and GFP-labeled end-binding protein EB1 which forms comets on the tips of polymerizing microtubules. Our design is easily implemented, and with minimal cost, making it accessible to any laboratory with an existing fluorescence microscope.
Collapse
Affiliation(s)
- Jeffrey O. Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
| | - Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
3
|
Gulka SMD, Gowen B, Litke AM, Delaney KR, Chow RL. Laser-induced microinjury of the corneal basal epithelium and imaging of resident macrophage responses in a live, whole-eye preparation. Front Immunol 2023; 14:1050594. [PMID: 36814930 PMCID: PMC9939765 DOI: 10.3389/fimmu.2023.1050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 μm x 30 μm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 μm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm.
Collapse
Affiliation(s)
- Sebastian M. D. Gulka
- Department of Biology, University of Victoria, Victoria, BC, Canada
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Kerry R. Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Tsitkov S, Rodriguez JB, Bassir Kazeruni NM, Sweet M, Nitta T, Hess H. The rate of microtubule breaking increases exponentially with curvature. Sci Rep 2022; 12:20899. [PMID: 36463258 PMCID: PMC9719553 DOI: 10.1038/s41598-022-24912-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Microtubules, cylindrical assemblies of tubulin proteins with a 25 nm diameter and micrometer lengths, are a central part of the cytoskeleton and also serve as building blocks for nanobiodevices. Microtubule breaking can result from the activity of severing enzymes and mechanical stress. Breaking can lead to a loss of structural integrity, or an increase in the numbers of microtubules. We observed breaking of taxol-stabilized microtubules in a gliding motility assay where microtubules are propelled by surface-adhered kinesin-1 motor proteins. We find that over 95% of all breaking events are associated with the strong bending following pinning events (where the leading tip of the microtubule becomes stuck). Furthermore, the breaking rate increased exponentially with increasing curvature. These observations are explained by a model accounting for the complex mechanochemistry of a microtubule. The presence of severing enzymes is not required to observe breaking at rates comparable to those measured previously in cells.
Collapse
Affiliation(s)
- Stanislav Tsitkov
- grid.21729.3f0000000419368729Columbia University, 351L Engineering Terrace, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027 USA
| | - Juan B. Rodriguez
- grid.21729.3f0000000419368729Columbia University, 351L Engineering Terrace, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027 USA
| | - Neda M. Bassir Kazeruni
- grid.21729.3f0000000419368729Columbia University, 351L Engineering Terrace, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027 USA
| | - May Sweet
- grid.256342.40000 0004 0370 4927Applied Physics Course, Faculty of Engineering, Gifu University, Gifu, 501-1193 Japan
| | - Takahiro Nitta
- grid.256342.40000 0004 0370 4927Applied Physics Course, Faculty of Engineering, Gifu University, Gifu, 501-1193 Japan
| | - Henry Hess
- grid.21729.3f0000000419368729Columbia University, 351L Engineering Terrace, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027 USA
| |
Collapse
|
5
|
Kuo YW, Howard J. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy. Methods Mol Biol 2022; 2430:73-91. [PMID: 35476326 PMCID: PMC9131738 DOI: 10.1007/978-1-0716-1983-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamic architecture of the microtubule cytoskeleton is crucial for cell division, motility and morphogenesis. The dynamic properties of microtubules-growth, shrinkage, nucleation, and severing-are regulated by an arsenal of microtubule-associated proteins (MAPs). The activities of many of these MAPs have been reconstituted in vitro using microscope assays. As an alternative to fluorescence microscopy, interference-reflection microscopy (IRM) has been introduced as an easy-to-use, wide-field imaging technique that allows label-free visualization of microtubules with high contrast and speed. IRM circumvents several problems associated with fluorescence microscopy including the high concentrations of tubulin required for fluorescent labeling, the potential perturbation of function caused by the fluorophores, and the risks of photodamage. IRM can be implemented on a standard epifluorescence microscope at low cost and can be combined with fluorescence techniques like total-internal-reflection-fluorescence (TIRF) microscopy. Here we describe the experimental procedure to image microtubule dynamics and severing using IRM , providing practical tips and guidelines to resolve possible experimental hurdles.
Collapse
Affiliation(s)
- Yin-Wei Kuo
- Department of Chemistry, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Chen J, Kholina E, Szyk A, Fedorov VA, Kovalenko I, Gudimchuk N, Roll-Mecak A. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Dev Cell 2021; 56:2016-2028.e4. [PMID: 34022132 PMCID: PMC8476856 DOI: 10.1016/j.devcel.2021.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Microtubules are non-covalent polymers of αβ-tubulin dimers. Posttranslational processing of the intrinsically disordered C-terminal α-tubulin tail produces detyrosinated and Δ2-tubulin. Although these are widely employed as proxies for stable cellular microtubules, their effect (and of the α-tail) on microtubule dynamics remains uncharacterized. Using recombinant, engineered human tubulins, we now find that neither detyrosinated nor Δ2-tubulin affect microtubule dynamics, while the α-tubulin tail is an inhibitor of microtubule growth. Consistent with the latter, molecular dynamics simulations show the α-tubulin tail transiently occluding the longitudinal microtubule polymerization interface. The marked differential in vivo stabilities of the modified microtubule subpopulations, therefore, must result exclusively from selective effector recruitment. We find that tyrosination quantitatively tunes CLIP-170 density at the growing plus end and that CLIP170 and EB1 synergize to selectively upregulate the dynamicity of tyrosinated microtubules. Modification-dependent recruitment of regulators thereby results in microtubule subpopulations with distinct dynamics, a tenet of the tubulin code hypothesis.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ekaterina Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Vladimir A Fedorov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Astrakhan State University, Astrakhan 414056, Russia; Sechenov University, Moscow 119991, Russia
| | - Nikita Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Triclin S, Inoue D, Gaillard J, Htet ZM, DeSantis ME, Portran D, Derivery E, Aumeier C, Schaedel L, John K, Leterrier C, Reck-Peterson SL, Blanchoin L, Théry M. Self-repair protects microtubules from destruction by molecular motors. NATURE MATERIALS 2021; 20:883-891. [PMID: 33479528 PMCID: PMC7611741 DOI: 10.1038/s41563-020-00905-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/09/2020] [Indexed: 05/30/2023]
Abstract
Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.
Collapse
Affiliation(s)
- Sarah Triclin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Daisuke Inoue
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Jérémie Gaillard
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Zaw Min Htet
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Didier Portran
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, Genève, Switzerland
| | - Laura Schaedel
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Karin John
- Laboratoire Interdisciplinaire de Physique, University of Grenoble-Alpes, CNRS, Grenoble, France
| | | | - Samara L Reck-Peterson
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.
- Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.
- Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.
| |
Collapse
|
8
|
In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy. Methods Mol Biol 2021. [PMID: 31879897 DOI: 10.1007/978-1-0716-0219-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Microtubules are dynamic non-covalent mesoscopic polymers. Their dynamic behavior is essential for cell biological processes ranging from intracellular transport to cell division and neurogenesis. Fluorescence microscopy has been the method of choice for monitoring microtubule dynamics in the last two decades. However, fluorescent microtubules are prone to photodamage that alters their dynamics, and the fluorescent label itself can affect microtubule properties. Dark-field imaging is a label-free technique that can generate high signal-to-noise, low-background images of microtubules at high acquisition rates without the photobleaching inherent to fluorescence microscopy. Here, we describe how to image in vitro microtubule dynamics using dark-field microscopy. The ability to image microtubules label-free allows the investigation of the dynamic properties of non-abundant tubulin species where fluorescent labeling is not feasible, free from the confounding effects arising from the addition of fluorescent labels.
Collapse
|
9
|
A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces. Polym J 2020. [DOI: 10.1038/s41428-020-00415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Bassir Kazeruni NM, Rodriguez JB, Saper G, Hess H. Microtubule Detachment in Gliding Motility Assays Limits the Performance of Kinesin-Driven Molecular Shuttles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7901-7907. [PMID: 32551689 DOI: 10.1021/acs.langmuir.0c01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 μm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 μm-2 at 1 mM ATP. Even microtubules longer than 3 μm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.
Collapse
Affiliation(s)
- Neda M Bassir Kazeruni
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Juan B Rodriguez
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Gadiel Saper
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Henry Hess
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
11
|
Gidi Y, Payne L, Glembockyte V, Michie MS, Schnermann MJ, Cosa G. Unifying Mechanism for Thiol-Induced Photoswitching and Photostability of Cyanine Dyes. J Am Chem Soc 2020; 142:12681-12689. [PMID: 32594743 DOI: 10.1021/jacs.0c03786] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyanines (Cy3, Cy5, Cy3B) are the most utilized dyes for single-molecule fluorescence and localization-based super-resolution imaging. These modalities exploit cyanines' versatile photochemical behavior with thiols. A mechanism reconciling seemingly divergent results and enabling control over cyanine photoreactivity is however missing. Utilizing single-molecule fluorescence on Cy5 and Cy5B, transient-absorption spectroscopy, and DFT modeling on a range of cyanine dyes, herein we show that photoinduced electron transfer (PeT) from a thiolate to Cy in their triplet excited state and then triplet-to-singlet intersystem crossing in the nascent geminate radical pair are crucial steps. Next, a bifurcation occurs, yielding either back electron transfer and regeneration of ground state Cy, required for photostabilization, or Cy-thiol adduct formation, necessary for super-resolution microscopy. Cy regeneration via photoinduced thiol elimination is favored by adduct absorption spectra broadening. Elimination is also shown to occur through an acid-catalyzed reaction. Overall, our work provides a roadmap for designing fluorophores, photoswitching agents, and triplet excited state quenchers for single-molecule and super-resolution imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Liam Payne
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Megan S Michie
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
12
|
Girão H, Maiato H. Measurement of Microtubule Half-Life and Poleward Flux in the Mitotic Spindle by Photoactivation of Fluorescent Tubulin. Methods Mol Biol 2020; 2101:235-246. [PMID: 31879908 DOI: 10.1007/978-1-0716-0219-5_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of microtubule dynamics is of utmost importance for the understanding of the mechanisms underlying mitotic fidelity. During mitosis, the microtubular cytoskeleton reorganizes to assemble a mitotic spindle necessary for chromosome segregation. Several methods, such as controlled exposure to cold, high pressure, high calcium concentration, or microtubule depolymerizing drugs, have been widely used to evaluate the dynamic properties of specific spindle microtubule populations. However, while these methods offer a qualitative approach that is sufficient to discern differences among specific spindle microtubule populations, they fall short in providing a robust quantitative picture that is sensitive enough to highlight minor differences, for example when comparing spindle microtubule dynamics in different genetic backgrounds. In this chapter we describe a detailed methodology to measure spindle microtubule dynamics using photoactivation of fluorescently tagged tubulin in living cells. This methodology allows the quantitative discrimination of the turnover of specific microtubule populations (e.g., kinetochore vs. non-kinetochore microtubules), as well as determination of microtubule poleward flux rates. These two conspicuous features of metazoan spindles must be tightly regulated to allow, on the one hand, efficient error correction, and on the other hand the satisfaction of the spindle assembly checkpoint that controls mitotic fidelity.
Collapse
Affiliation(s)
- Hugo Girão
- Chromosome Instability & Dynamics Laboratory, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Experimental Biology Unit, Faculdade de Medicina, Cell Division Group, Department of Biomedicine, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Abstract
Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.
Collapse
Affiliation(s)
- Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Halstead JM, Wilbertz JH, Wippich F, Lionnet T, Ephrussi A, Chao JA. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals. Methods Enzymol 2016; 572:123-57. [PMID: 27241753 DOI: 10.1016/bs.mie.2016.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.
Collapse
Affiliation(s)
- J M Halstead
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - F Wippich
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - T Lionnet
- Transcription Imaging Consortium, HHMI Janelia Research Campus, Ashburn, VA, United States
| | - A Ephrussi
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
15
|
Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC. Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 2014; 43:1044-56. [PMID: 24177677 PMCID: PMC3946787 DOI: 10.1039/c3cs60237k] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing "ultra-stable" fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research.
Collapse
Affiliation(s)
- Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nicholas MP, Rao L, Gennerich A. An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 2014; 1136:171-246. [PMID: 24633799 PMCID: PMC4254714 DOI: 10.1007/978-1-4939-0329-0_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | | | | |
Collapse
|
17
|
Okeyoshi K, Kawamura R, Yoshida R, Osada Y. Thermo- and photo-enhanced microtubule formation from Ru(bpy)32+-conjugated tubulin. J Mater Chem B 2014; 2:41-45. [DOI: 10.1039/c3tb21242d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Nicholas MP, Rao L, Gennerich A. Covalent immobilization of microtubules on glass surfaces for molecular motor force measurements and other single-molecule assays. Methods Mol Biol 2014; 1136:137-69. [PMID: 24633798 PMCID: PMC4258907 DOI: 10.1007/978-1-4939-0329-0_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | | | | |
Collapse
|
19
|
Zheng Q, Jockusch S, Zhou Z, Blanchard SC. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem Photobiol 2013; 90:448-454. [PMID: 24188468 DOI: 10.1111/php.12204] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022]
Abstract
Photoexcitation of fluorophores commonly used for biological imaging applications generates reactive oxygen species (ROS) which can cause bleaching of the fluorophore and damage to the biological system under investigation. In this study, we show that singlet oxygen contributes relatively little to Cy5 and ATTO 647N photobleaching at low concentrations in aqueous solution. We also show that Cy5 generates significantly less ROS when covalently linked to the protective agents, cyclooctatetraene (COT), nitrobenzyl alcohol (NBA) or Trolox. Such fluorophores exhibit enhanced photostability both in bulk solutions and in single-molecule fluorescence measurements. While the fluorophores ATTO 647N and ATTO 655 showed greater photostability than Cy5 and the protective-agent-linked Cy5 derivatives investigated here, both of ATTO 647N and ATTO 655 generated singlet oxygen and hydroxyl radicals at relatively rapid rates, suggesting that they may be substantially more phototoxic than Cy5 and its derivatives.
Collapse
Affiliation(s)
- Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University.,Tri-Institutional Training Program in Chemical Biology, 1300 York Avenue, New York, NY 10065, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Medical College of Cornell University
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Medical College of Cornell University.,Tri-Institutional Training Program in Chemical Biology, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Abstract
Microtubules are rigid and highly dynamic cellular polymers essential for intracellular transport, cell division and differentiation. Their stability is tightly regulated by a vast array of cellular factors. In vitro microtubule assays have proven to be powerful tools for deciphering the mechanism of microtubule dynamics regulators such as molecular motors and microtubule associated proteins. In this chapter we focus on microtubule severing enzymes that use the energy of ATP hydrolysis to introduce internal breaks in the microtubule lattice. We present a detailed protocol for a light microscopy based in vitro microtubule severing assay that was instrumental in the identification and characterization of these enzymes.
Collapse
|
21
|
Intermittent depolymerization of actin filaments is caused by photo-induced dimerization of actin protomers. Proc Natl Acad Sci U S A 2012; 109:10769-74. [PMID: 22699501 DOI: 10.1073/pnas.1121381109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin, one of the most abundant proteins within eukaryotic cells, assembles into long filaments that form intricate cytoskeletal networks and are continuously remodelled via cycles of actin polymerization and depolymerization. These cycles are driven by ATP hydrolysis, a process that also acts to destabilize the filaments as they grow older. Recently, abrupt dynamical changes during the depolymerization of single filaments have been observed and seemed to imply that old filaments are more stable than young ones [Kueh HY, et al. (2008) Proc Natl Acad Sci USA 105:16531-16536]. Using improved experimental setups and quantitative theoretical analysis, we show that these abrupt changes represent actual pauses in depolymerization, unexpectedly caused by the photo-induced formation of actin dimers within the filaments. The stochastic dimerization process is triggered by random transitions of single, fluorescently labeled protomers. Each pause represents the delayed dissociation of a single actin dimer, and the statistics of these single molecule events can be determined by optical microscopy. Unlabeled actin filaments do not exhibit pauses in depolymerization, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis, unless this aging effect is overcompensated by actin-binding proteins. The latter antagonism can now be systematically studied for single filaments using our combined experimental and theoretical method. Furthermore, the dimerization process discovered here provides a molecular switch, by which one can control the length of actin filaments via changes in illumination. This process could also be used to locally "freeze" the dynamics within networks of filaments.
Collapse
|
22
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
23
|
Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP. Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13659-13668. [PMID: 21970472 DOI: 10.1021/la202467f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Over the last few decades, the in vitro motility assay has been performed to probe the biophysical and chemo-mechanical properties as well as the self-organization process of biomolecular motor systems such as actin-myosin and microtubule-kinesin. However, aggression of the reactive oxygen species (ROS) and concomitant termination of the activity of biomolecular motors during investigation remains a drawback of this assay. Despite enzymatic protection that makes use of a combination of glucose, glucose oxidase, and catalase, the active lifetime of biomolecular motors is found to be only a few hours and this short lifetime restricts further study on those systems. We have solved this problem by using a newly developed system of the in vitro motility assay that is conducted in an inert nitrogen gas atmosphere free of ROS. Using microtubule-kinesin as a model system we have shown that our system has prolonged the active lifetime of the biomolecular motor until several days and even a week by protecting it from oxidative damage.
Collapse
Affiliation(s)
- Arif Md Rashedul Kabir
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
24
|
Zhang ZX, Gao PF, Guo XF, Wang H, Zhang HS. 1,3,5,7-Tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)difluoroboradiaza-s-indacene as a new fluorescent labeling reagent for HPLC determination of amino acid neurotransmitters in the cerebral cortex of mice. Anal Bioanal Chem 2011; 401:1905-14. [DOI: 10.1007/s00216-011-5253-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022]
|
25
|
Abstract
Microtubules are one of the most spectacular features in the cell: long, fairly rigid tubules that provide physical strength while at the same time serving as tracks of the intracellular transport network. In addition, they are the main constituents of the cell division machinery, and guide axonal growth and the direction of cell migration. To be able to fulfil such diverse functions, microtubules have to be arranged into suitable patterns and remodelled according to extra- and intracellular cues. Moreover, the delicate regulation of microtubule dynamics and the dynamic interactions with subcellular structures, such as kinetochores or cell adhesion sites, appear to be of crucial importance to microtubule functions. It is, therefore, important to understand microtubule dynamics and its spatiotemporal regulation at the molecular level. In this chapter, I introduce the concept of microtubule dynamics and discuss the techniques that can be employed to study microtubule dynamics in vitro and in cells, for many of which detailed protocols can be found in this volume. Microtubule dynamics is traditionally assessed by the four parameters of dynamic instability: growth and shrinkage rates, rescue and catastrophe frequencies, sometimes supplemented by pause duration. I discuss emerging issues with and alternatives to this parameter description of microtubule dynamics.
Collapse
Affiliation(s)
- Anne Straube
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
26
|
Jeune-Smith Y, Agarwal A, Hess H. Cargo loading onto kinesin powered molecular shuttles. J Vis Exp 2010:2006. [PMID: 21085103 DOI: 10.3791/2006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cells have evolved sophisticated molecular machinery, such as kinesin motor proteins and microtubule filaments, to support active intracellular transport of cargo. While kinesins tail domain binds to a variety of cargoes, kinesins head domains utilize the chemical energy stored in ATP molecules to step along the microtubule lattice. The long, stiff microtubules serve as tracks for long-distance intracellular transport. These motors and filaments can also be employed in microfabricated synthetic environments as components of molecular shuttles. In a frequently used design, kinesin motors are anchored to the track surface through their tails, and functionalized microtubules serve as cargo carrying elements, which are propelled by these motors. These shuttles can be loaded with cargo by utilizing the strong and selective binding between biotin and streptavidin. The key components (biotinylated tubulin, streptavidin, and biotinylated cargo) are commercially available. Building on the classic inverted motility assay, the construction of molecular shuttles is detailed here. Kinesin motor proteins are adsorbed to a surface precoated with casein; microtubules are polymerized from biotinylated tubulin, adhered to the kinesin and subsequently coated with rhodamine-labeled streptavidin. The ATP concentration is maintained at subsaturating concentration to achieve a microtubule gliding velocity optimal for loading cargo. Finally, biotinylated fluorescein-labeled nanospheres are added as cargo. Nanospheres attach to microtubules as a result of collisions between gliding microtubules and nanospheres adhering to the surface. The protocol can be readily modified to load a variety of cargoes such as biotinylated DNA, quantum dots or a wide variety of antigens via biotinylated antibodies.
Collapse
|
27
|
In vitro assays to study the tracking of shortening microtubule ends and to measure associated forces. Methods Cell Biol 2010; 95:657-76. [PMID: 20466158 DOI: 10.1016/s0091-679x(10)95033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Accurate segregation of mitotic chromosomes relies in part on a strong linkage between the kinetochores and the plus ends of spindle microtubules (MTs). These attachments are maintained even as the MTs shorten from their kinetochore-associated ends, and despite the large variability in the magnitude of load from the chromosomal "cargo." Analysis of the underlying mechanisms has recently been facilitated by the identification and purification of various kinetochore complexes. In this chapter we review some existing approaches to study the interaction of these protein complexes with the ends of shortening MTs in vitro. Specifically, we describe the application of a "segmented" MT technique, which allows quantitative characterization of the tracking of the shortening MT ends by fluorescent proteins and protein-coated beads, as well as controlled measurement of the associated forces. There is a marked similarity between these methods and the approaches that are used to study the motions and forces produced by ATP-dependent motor enzymes walking on coverslip-attached, stable MTs. However, optical resolution at the shortening ends of coverslip-tethered MTs is not as good and the thermal noise is high. Furthermore, there are significant differences in the mechanisms of motions of microbeads driven by motors and by MT depolymerization, as well as in the interpretation of the resulting forces. Clearly, the depolymerization-driven motions are difficult to study and the corresponding phenomenology and theories are more complex than in the motors field. We hope, however, that the relatively straightforward assays based on "segmented" MTs, which are described below, will become a routine methodology, thereby helping to advance the studies of the MT-depolymerization-dependent motility.
Collapse
|
28
|
Extracting the mechanical properties of microtubules from thermal fluctuation measurements on an attached tracer particle. Methods Cell Biol 2010. [PMID: 20466155 DOI: 10.1016/s0091-679x(10)95030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mechanical properties of microtubules have been the subject of intense study during recent decades because of their importance to the many cell functions that they are involved in. Observations of microtubule thermal fluctuations have proven to be a reliable method to extract mechanical properties because they provide intrinsic calibration. While analysis of the entire microtubule shape is limited by spatial resolution to very long microtubules, we show that even for short microtubules, one can obtain high-precision fluctuation information from one point along the contour by the use of tracer particles attached to the microtubule. The information is sufficient to extract key mechanical parameters such as stiffness and first mode relaxation time. In this article, we discuss sample preparation as well as measurements and data analysis.
Collapse
|
29
|
Gikas E, Parissi‐Poulou M, Kazanis M, Vavagianis A. MOZPhCSE, a New Coumarin Based Fluorescent Derivatization Reagent. J LIQ CHROMATOGR R T 2009. [DOI: 10.1081/jlc-200029226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Evagelos Gikas
- a Division of Pharmaceutical Chemistry, Department of Pharmacy , University of Athens , Athens , Greece
- b GAIA Research Center, The Goulandris Natural History Museum , 13 Levidou Str., Kifissia , 14562 , Greece
| | - Maria Parissi‐Poulou
- a Division of Pharmaceutical Chemistry, Department of Pharmacy , University of Athens , Athens , Greece
| | - Michael Kazanis
- a Division of Pharmaceutical Chemistry, Department of Pharmacy , University of Athens , Athens , Greece
| | - Andreas Vavagianis
- a Division of Pharmaceutical Chemistry, Department of Pharmacy , University of Athens , Athens , Greece
| |
Collapse
|
30
|
Simple non-fluorescent polarity labeling of microtubules for molecular motor assays. Biotechniques 2009; 46:543-9. [DOI: 10.2144/000113124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transport of intracellular organelles along the microtubule cytoskeleton occurs in a bidirectional manner due to opposing activity of microtubule-associated motor proteins of the kinesin and dynein families. Regulation of this opposing activity and the resultant motion is believed to generate a polarized distribution of many organelles within the cell. The bidirectional motion can be reconstituted on in vitro assembled microtubules using organelles extracted from cells. This provides an opportunity to understand the regulation of intracellular transport through quantitative analysis of the motion of organelles in a controlled environment. Such analysis requires the use of polarity-labeled microtubules to resolve the plus and minus components of bidirectional motion. However, existing methods of in vitro microtubule polarity labeling are unsuitable for high-resolution recording of motion. Here we present a simple and reliable method that uses avidin-coated magnetic beads to prepare microtubules labeled at the minus end. The microtubule polarity can be identified without any need for fluorescence excitation. We demonstrate video-rate high-resolution imaging of single cellular organelles moving along plus and minus directions on labeled microtubules. Quantitative analysis of this motion indicates that these organelles are likely to be driven by multiple dynein motors in vivo.
Collapse
|
31
|
Wolff J. Plasma membrane tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1415-33. [PMID: 19328773 DOI: 10.1016/j.bbamem.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 01/17/2023]
Abstract
The association of tubulin with the plasma membrane comprises multiple levels of penetration into the bilayer: from integral membrane protein, to attachment via palmitoylation, to surface binding, and to microtubules attached by linker proteins to proteins in the membrane. Here we discuss the soundness and weaknesses of the chemical and biochemical evidence marshaled to support these associations, as well as the mechanisms by which tubulin or microtubules may regulate functions at the plasma membrane.
Collapse
Affiliation(s)
- J Wolff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Swayne TC, Lipkin TG, Pon LA. Live-cell imaging of the cytoskeleton and mitochondrial-cytoskeletal interactions in budding yeast. Methods Mol Biol 2009; 586:41-68. [PMID: 19768424 DOI: 10.1007/978-1-60761-376-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This chapter describes labeling methods and optical approaches for live-cell imaging of the cytoskeleton and of a specific organelle-cytoskeleton interaction in budding yeast.
Collapse
Affiliation(s)
- Theresa C Swayne
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
33
|
Jacobson K, Rajfur Z, Vitriol E, Hahn K. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol 2008; 18:443-50. [PMID: 18706812 DOI: 10.1016/j.tcb.2008.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Chromophore-assisted laser inactivation (CALI) is a technique whereby engineered proteins and dye molecules that produce substantial amounts of reactive oxygen species upon absorption of light are used to perturb biological systems in a spatially and temporally defined manner. CALI is an important complement to conventional genetic and pharmacological manipulations. In this review, we examine the applications of CALI to cell biology and discuss the underlying photochemical mechanisms that mediate this powerful technique.
Collapse
Affiliation(s)
- Ken Jacobson
- Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | |
Collapse
|
34
|
Widengren J, Chmyrov A, Eggeling C, Löfdahl PA, Seidel CAM. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. J Phys Chem A 2007; 111:429-40. [PMID: 17228891 DOI: 10.1021/jp0646325] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the particular importance of dye photostability for single-molecule and fluorescence fluctuation spectroscopy investigations, refined strategies were explored for how to chemically retard dye photobleaching. These strategies will be useful for fluorescence correlation spectroscopy (FCS), fluorescence-based confocal single-molecule detection (SMD) and related techniques. In particular, the effects on the addition of two main categories of antifading compounds, antioxidants (n-propyl gallate, nPG, ascorbic acid, AA) and triplet state quenchers (mercaptoethylamine, MEA, cyclo-octatetraene, COT), were investigated, and the relevant rate parameters involved were determined for the dye Rhodamine 6G. Addition of each of the compound categories resulted in significant improvements in the fluorescence brightness of the monitored fluorescent molecules in FCS measurements. For antioxidants, we identify the balance between reduction of photoionized fluorophores on the one hand and that of intact fluorophores on the other as an important guideline for what concentrations to be added for optimal fluorescence generation in FCS and SMD experiments. For nPG/AA, this optimal concentration was found to be in the lower micromolar range, which is considerably less than what has previously been suggested. Also, for MEA, which is a compound known as a triplet state quencher, it is eventually its antioxidative properties and the balance between reduction of fluorophore cation radicals and that of intact fluorophores that defines the optimal added concentration. Interestingly, in this optimal concentration range the triplet state quenching is still far from sufficient to fully minimize the triplet populations. We identify photoionization as the main mechanism of photobleaching within typical transit times of fluorescent molecules through the detection volume in a confocal FCS or SMD instrument (<1-20 ms), and demonstrate its generation via both one- and multistep excitation processes. Apart from reflecting a major pathway for photobleaching, our results also suggest the exploitation of the photoinduced ionization and the subsequent reduction by antioxidants for biomolecular monitoring purposes and as a possible switching mechanism with applications in high-resolution microscopy.
Collapse
Affiliation(s)
- Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Varzakas T, Arapoglou D, Israilides C. Kinetics of endoglucanase and endoxylanase uptake by soybean seeds. J Biosci Bioeng 2006; 101:111-9. [PMID: 16569605 DOI: 10.1263/jbb.101.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 10/28/2005] [Indexed: 11/17/2022]
Abstract
The uptakes of endoglucanase and endoxylanase by soybean were studied by measuring the fluorescent intensity of a carboxyfluorescein. The disappearance rates of these enzymes from solution were compared with predictions from different models. The Freundlich model provided the best fit for our data. Enzyme concentration in the solution did not change significantly after 11 d, and therefore it was assumed that equilibrium was reached. Average mass transfer coefficient was calculated for both endoglucanase and endoxylanase from the plot of the rate of uptake against (C(l av) -Cl*) and a value of 4 x 10(-5) ms(-1) was obtained. K value was used to calculate the effective diffusivities of the two enzymes assuming a slice. It is found that K was asymptotic with long residence times, and a value of 4.8 x 10(-10) m2 s(-1) was obtained.
Collapse
Affiliation(s)
- Theodoros Varzakas
- Ministry of Development, Hellenic Food Safety Authority, Karystou 5, Ampelokipi, 11523 Athens, Greece
| | | | | |
Collapse
|
36
|
Tian F, Johnson K, Lesar AE, Moseley H, Ferguson J, Samuel IDW, Mazzini A, Brancaleon L. The pH-dependent conformational transition of β-lactoglobulin modulates the binding of protoporphyrin IX. Biochim Biophys Acta Gen Subj 2006; 1760:38-46. [PMID: 16297563 DOI: 10.1016/j.bbagen.2005.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 11/23/2022]
Abstract
We have investigated the interaction between PPIX and beta-lactoglobulin (beta-lg) as a function of the pH of the solution. beta-lg is a small globular protein (MW approximately 18 kDa) with a very well characterized structure that reveals several possible binding sites for ligands. The interaction with beta-lg affects the photophysical properties of PPIX. The shift of PPIX emission maximum, excitation maximum and the increase of the fluorescence intensity is an indicator that binding between the porphyrin and beta-lg occurs. The binding constant appears to be modulated by the pH of the solution. Spectroscopic measurements do not reveal any significant energy transfer between the Trp residues of beta-lg and PPIX, however, fluorescence anisotropy decay measurements confirm the binding and the modulation introduced by the pH of the solution. Since beta-lg has been shown to be stable within the range of pH adopted in our experiments (5.0-9.0), the results suggest that PPIX binds a site affected by the pH of the solution. Because of the crystallographic evidence an obvious site is near the aperture of the interior beta-barrel however an alternative (or concurrent) binding site may still be present.
Collapse
Affiliation(s)
- Fang Tian
- Department of Physics and Astronomy, University of Texas at San Antonio, 6900 N Loop 1604 W, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Moseley H, Ibbotson S, Woods J, Brancaleon L, Lesar A, Goodman C, Ferguson J. Clinical and research applications of photodynamic therapy in dermatology: Experience of the scottish PDT centre. Lasers Surg Med 2006; 38:403-16. [PMID: 16788933 DOI: 10.1002/lsm.20369] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES The Scottish PDT Centre has carried out 3,442 treatments on 762 patients with superficial skin lesions, especially superficial basal cell carcinoma (sBCC), Bowen's disease (BD) and actinic keratosis (AK). STUDY DESIGN MATERIALS AND METHODS: The article reviews our experience of various light sources and associated dosimetry; thereafter we discuss clinical outcome followed by some of our research studies in clinically important areas. RESULTS We show that improved dosimetry is required to ensure an optimal light dose is delivered to the tumour. We have shown that photosensitizers and proteins interact in such a way that their photophysical and photochemical properties are modified. We have also demonstrated the presence of DNA strand breaks with two different photosensitizers, but there is no evidence that PDT is significantly mutagenic in clinical practice. CONCLUSIONS In our experience, topical PDT is generally well tolerated and is an effective treatment of sBCC, BD, AK, field change and lesions at sites of poor healing.
Collapse
Affiliation(s)
- H Moseley
- The Photobiology Unit & Scottish PDT Centre, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Guo H, Xu C, Liu C, Qu E, Yuan M, Li Z, Cheng B, Zhang D. Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J 2005; 90:2093-8. [PMID: 16387782 PMCID: PMC1386787 DOI: 10.1529/biophysj.105.071209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The breakage of fluorescence-labeled microtubules under irradiation of excitation light is found in our experiments. Its mechanism is studied. The results indicate that free radicals are the main reason for the photosensitive breakage. Furthermore, the mechanical properties of the microtubules are probed with a dual-optical tweezers system. It is found that the fluorescence-labeled microtubules are much easier to extend compared with those without fluorescence. Such microtubules can be extended by 30%, and the force for breaking them up is only several piconewtons. In addition, we find that the breakup of the protofilaments is not simultaneous but step-by-step, which further confirms that the interaction between protofilaments is fairly weak.
Collapse
Affiliation(s)
- Honglian Guo
- Optical Physics Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR. Force production by disassembling microtubules. Nature 2005; 438:384-8. [PMID: 16292315 DOI: 10.1038/nature04132] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/08/2005] [Indexed: 11/09/2022]
Abstract
Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.
Collapse
|
40
|
Varzakas TH, Arapoglou D, Israilides CJ. Infusion of an endoglucanase and an endoxylanase from Aspergillus niger in soybean. Lebensm Wiss Technol 2005. [DOI: 10.1016/j.lwt.2004.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Affiliation(s)
- N Hirokawa
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Hongo, Tokyo 113, Japan
| | | |
Collapse
|
42
|
Abstract
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With >63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k(off). It was found that 10k(off)(GMPCPP) approximately equal k(off)(GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With <63% sites occupied, recovery times decreased as approximately [Tax](-1/5) for both types of microtubules. We conclude that the diffusion of taxol inside the microtubule bundle is hindered by rebinding events when open sites are within approximately 7 nm of each other.
Collapse
Affiliation(s)
- Jennifer L Ross
- Physics Department, University of California, Santa Barbara, California 93106-9530, USA
| | | |
Collapse
|
43
|
Belperio JA, Keane MP, Burdick MD, Lynch JP, Xue YY, Li K, Ross DJ, Strieter RM. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1037-49. [PMID: 12097412 DOI: 10.4049/jimmunol.169.2.1037] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival post-lung transplantation and is characterized by a persistent peribronchiolar inflammation that eventually gives way to airway fibrosis/obliteration. Acute rejection is the main risk factor for the development of BOS and is characterized by a perivascular/bronchiolar leukocyte infiltration. The specific mechanism(s) by which these leukocytes are recruited have not been elucidated. The CXC chemokines (monokine induced by IFN-gamma (MIG)/CXC chemokine ligand (CXCL)9, IP-10/CXCL10, and IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11) act through their shared receptor, CXCR3. Because they are potent leukocyte chemoattractants and are involved in other inflammation/fibroproliferative diseases, we hypothesized that the expression of these chemokines during an allogeneic response promotes the persistent recruitment of mononuclear cells, leading to chronic lung rejection. We found that elevated levels of MIG/CXCL9, IFN-inducible protein 10 (IP-10)/CXCL10, and ITAC/CXCL11 in human bronchoalveolar lavage fluid were associated with the continuum from acute to chronic rejection. Translational studies in a murine model demonstrated increased expression of MIG/CXCL9, IP-10/CXCL10, and ITAC/CXCL11 paralleling the recruitment of CXCR3-expressing mononuclear cells. In vivo neutralization of CXCR3 or its ligands MIG/CXCL9 and IP-10/CXCL10 decreased intragraft recruitment of CXCR3-expressing mononuclear cells and attenuated BOS. This supports the notion that ligand/CXCR3 biology plays an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of BOS.
Collapse
MESH Headings
- Animals
- Bronchiolitis Obliterans/etiology
- Bronchiolitis Obliterans/immunology
- Bronchiolitis Obliterans/pathology
- Cell Migration Inhibition
- Cell Movement/immunology
- Chemokine CXCL10
- Chemokine CXCL11
- Chemokine CXCL9
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Disease Models, Animal
- Extracellular Matrix/immunology
- Extracellular Matrix/pathology
- Female
- Humans
- Intercellular Signaling Peptides and Proteins
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lung Transplantation/adverse effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Prospective Studies
- Receptors, CXCR3
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/pathology
- Syndrome
- Trachea/immunology
- Trachea/pathology
- Transplantation, Homologous/immunology
- Transplantation, Homologous/pathology
Collapse
Affiliation(s)
- John A Belperio
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Odde DJ, Ma L, Briggs AH, DeMarco A, Kirschner MW. Microtubule bending and breaking in living fibroblast cells. J Cell Sci 1999; 112 ( Pt 19):3283-8. [PMID: 10504333 DOI: 10.1242/jcs.112.19.3283] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubules in living cells frequently bend and occasionally break, suggesting that relatively strong forces act on them. Bending implies an increase in microtubule lattice energy, which could in turn affect the kinetics and thermodynamics of microtubule-associated processes such as breaking. Here we show that the rate of microtubule breaking in fibroblast cells increases approximately 40-fold as the elastic energy stored in curved microtubules increases to > approximately 1 kT/tubulin dimer. In addition, the length-normalized breaking rate is sufficiently large (2.3 breaks × mm(−1) × minute(−1)) to infer that breaking is likely a major mechanism by which noncentrosomal microtubules are generated. Together the results suggest a physiologically important, microtubule-based mechanism for mechanochemical information processing in the cell.
Collapse
Affiliation(s)
- D J Odde
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
45
|
Sutovsky P, Ramalho-Santos J, Moreno RD, Oko R, Hewitson L, Schatten G. On-stage selection of single round spermatids using a vital, mitochondrion-specific fluorescent probe MitoTracker(TM) and high resolution differential interference contrast microscopy. Hum Reprod 1999; 14:2301-12. [PMID: 10469700 DOI: 10.1093/humrep/14.9.2301] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The selection of individual round spermatids for round spermatid injection (ROSI), a prerequisite for the successful application of this infertility treatment, has been hampered by the ambiguous definition of a round spermatid and the lack of specific vital and non-vital markers. Using cells from rhesus monkey and bull, we describe a non-invasive method for the on-stage selection of individual round spermatids for ROSI, based on the polarized patterns of mitochondria, visualized in live round spermatid cells by epifluorescence microscopy after incubation with MitoTracker(TM), a vital, mitochondrion-specific fluorescent probe. The correct identification of live round spermatid was confirmed by the presence of the acrosomal granule or acrosomal cap in parallel observations by Nomarski differential interference contrast microscopy. The existence of mitochondrial polarization was first established by the labelling of MitoTracker-tagged round spermatids with spermatid-specific antibodies against proteins of nascent sperm accessory structures combined with antibodies against a nuclear pore complex component, known to disappear at the round spermatid stage. Using an inverted microscope equipped with epifluorescence, the round spermatids can be individually selected from a heterogeneous population of testicular cells labelled with MitoTracker dyes. A major advantage of this approach is that the dyes are incorporated into the paternal mitochondria, destined for rapid elimination after fertilization. In addition, the relatively high excitation and emission wavelengths of MitoTracker dyes are less harmful to DNA after their photon excitation. Before the appropriate clinical testing is conducted, the MitoTracker-based round spermatid selection may be instrumental in the training of clinical staff.
Collapse
Affiliation(s)
- P Sutovsky
- Departments of Obstetrics and Gynecology, and Cell and Developmental Biology, Oregon Health Sciences University, and the Oregon Regional Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
46
|
Choidas A, Jungbluth A, Sechi A, Murphy J, Ullrich A, Marriott G. The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur J Cell Biol 1998; 77:81-90. [PMID: 9840457 DOI: 10.1016/s0171-9335(98)80075-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The product of a GFP-actin gene fusion, permanently or transiently transfected in diverse mammalian cell lines, was shown to be a suitable, intrinsic probe of both the organization and dynamics of the actin cytoskeleton. In live Swiss 3T3 and NIH 3T3 cells, the fusion protein was found to accumulate in lamellipodia, filopodia, focal contacts and stress fibers. Furthermore, comparisons of fluorescence images of GFP-actin and Cy3.5-phalloidin, an independent marker of F-actin, in permeabilized cells showed a complete overlap of the two fluorescence signals. In GFP-actin-transfected Hela cells that had been infected with Listeria monocytogenes, the fluorescence of the fusion protein was shown to dynamically associate in the F-actin rich comet tail that formed behind a motile bacterium. In stable transfectants of PC12 cells, GFP-actin constituted on the average 5% of the total actin - these cells exhibited normal growth behavior and responded to treatment with nerve growth factor by extending neurite-like extensions, the filopodia-like tips of which were densely packed with filamentous GFP-actin. Finally, the photobleaching decay time of GFP-actin in live cells of 63 seconds was much longer than that of fluorescein-labeled actin conjugates and little or no damage to the cytoskeleton was found during the photobleaching of GFP-actin. Having shown the suitability of GFP-actin as a probe of the cytoskeleton, its fluorescence was used in long-term imaging studies aimed at documenting changes in the cytoskeleton of rat bladder NBT-II carcinoma cells during the 24-hour growth factor-mediated epithelia to mesenchyme transformation. The intrinsic fluorescent probe was also used to investigate the organization of the actin cytoskeleton and behavior of individual mesenchyme NBT-II cells slowly migrating through a colony of epithelia cells.
Collapse
Affiliation(s)
- A Choidas
- Department of Molecular Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Chapter 20: GFP Biofluorescence: Imaging Gene Expression and Protein Dynamics in Living Cells. Methods Cell Biol 1998. [DOI: 10.1016/s0091-679x(08)61964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
48
|
Hofer G, Steyrer E, Kostner GM, Hermetter A. LDL-mediated interaction of Lp[a] with HepG2 cells: a novel fluorescence microscopy approach. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)30026-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Waterman-Storer CM, Salmon ED. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 1997; 139:417-34. [PMID: 9334345 PMCID: PMC2139796 DOI: 10.1083/jcb.139.2.417] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally "pioneering" MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 mircon/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione-2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that approximately 80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, 607 Fordham Hall, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
50
|
Asahi M, Fujii J, Takao T, Kuzuya T, Hori M, Shimonishi Y, Taniguchi N. The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor. J Biol Chem 1997; 272:19152-7. [PMID: 9235904 DOI: 10.1074/jbc.272.31.19152] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glutathione peroxidase (GPx) was inactivated by S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a nitric oxide donor (Asahi, M., Fujii, J., Suzuki, K., Seo, H. G., Kuzuya, T., Hori, M., Tada, M., Fujii, S., and Taniguchi, N. (1995) J. Biol. Chem. 270, 21035-21039). The structural basis of the inactivation was studied. We also show that 3-morpholinosydnonimine N-ethylcarbamide, a peroxynitrite precursor, as well as synthetic peroxynitrite also inactivated bovine GPx. The degree of incorporation of a sulfhydryl reagent, n-octyldithionitrobenzoic acid, into GPx decreased after pretreatment with SNAP as evidenced by mass spectrometry. To identify the modification site of this enzyme by SNAP, both SNAP-pretreated and untreated GPxs were reacted with n-octyldithionitrobenzoic acid and digested with lysylendopeptidase, and the resulting peptides were subjected to mass spectrometry. This technique identified a bridge between two peptides, one of which contains Sec45 at the catalytic center and Cys74, and the other contains Cys91. Although there are two possible combinations, selenocysteine 45 (Sec45) and Cys91 or Cys74 and Cys91, the tertiary structure of GPx indicates that a cross-link between Sec45 and Cys91 is more feasible. This is consistent with the experimental evidence that SNAP specifically inactivates GPx, in which Sec45 forms the catalytic center. Thus, we conclude that SNAP mainly oxidized Sec45 to form a selenenyl sulfide (Se-S) with a free thiol, leading to the inactivation of the enzyme. These data suggest that nitric oxide and its derivatives directly inactivate GPx in a specific manner via the production of a selenenyl sulfide, resulting in an increase in intracellular peroxides that are responsible for cellular damage.
Collapse
Affiliation(s)
- M Asahi
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | |
Collapse
|