1
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
2
|
Soendenbroe C, Schjerling P, Bechshøft CJL, Svensson RB, Schaeffer L, Kjaer M, Chazaud B, Jacquier A, Mackey AL. Muscle fibroblasts and stem cells stimulate motor neurons in an age and exercise-dependent manner. Aging Cell 2024:e14413. [PMID: 39555723 DOI: 10.1111/acel.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024] Open
Abstract
Exercise preserves neuromuscular function in aging through unknown mechanisms. Skeletal muscle fibroblasts (FIB) and stem cells (MuSC) are abundant in skeletal muscle and reside close to neuromuscular junctions, but their relative roles in motor neuron maintenance remain undescribed. Using direct cocultures of embryonic rat motor neurons with either human MuSC or FIB, RNA sequencing revealed profound differential regulation of the motor neuron transcriptome, with FIB generally favoring neuron growth and cell migration and MuSC favoring production of ribosomes and translational machinery. Conditioned medium from FIB was superior to MuSC in preserving motor neurons and increasing their maturity. Lastly, we established the importance of donor age and exercise status and found an age-related distortion of motor neuron and muscle cell interaction that was fully mitigated by lifelong physical activity. In conclusion, we show that human muscle FIB and MuSC synergistically stimulate the growth and viability of motor neurons, which is further amplified by regular exercise.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie J L Bechshøft
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Schaeffer
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon-Hospices Civils de Lyon (HCL) Groupement Est, Bron, France
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Arnaud Jacquier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon-Hospices Civils de Lyon (HCL) Groupement Est, Bron, France
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
5
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
6
|
Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep 2022; 39:110785. [PMID: 35545045 PMCID: PMC9535675 DOI: 10.1016/j.celrep.2022.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury. Leinroth et al. explore the heterogeneity of Pdgfra+ muscle-resident mesenchymal cells, demonstrating that Pdgfra+ subpopulations have unique gene expression profiles, exhibit two distinct cell trajectories from a common progenitor, differ in their abilities to respond to muscle injuries, and show variable adipogenic and mineralizing capacities.
Collapse
|
7
|
Ravalli S, Federico C, Lauretta G, Saccone S, Pricoco E, Roggio F, Di Rosa M, Maugeri G, Musumeci G. Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents. Biomedicines 2021; 9:biomedicines9070807. [PMID: 34356871 PMCID: PMC8301487 DOI: 10.3390/biomedicines9070807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protocol for either 4 weeks or 16 weeks compared to sedentary rats. Histomorphometric analysis of muscle fibers diameter revealed muscle atrophy in sedentary rats. Telocytes were identified by double-positive immunofluorescence staining for CD34/CD117 and CD34/vimentin. The results showed that Telocytes were significantly reduced in sedentary rats at 16 weeks, while rats subjected to regular exercise maintained a stable Telocytes population after 16 weeks. Understanding of the relationship between Telocytes and exercise offers new chances in the field of regenerative medicine, suggesting possible triggers for Telocytes in sarcopenia and other musculoskeletal disorders, promoting adapted physical activity and rehabilitation programmes in clinical practice.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Elisabetta Pricoco
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
8
|
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021; 11:16. [PMID: 34210364 PMCID: PMC8247239 DOI: 10.1186/s13395-021-00265-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism-all the functions needed for an individual's health and well-being. The muscle connective tissue's main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, 2052, Australia.
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fabio M V Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
10
|
Blackburn DM, Lazure F, Soleimani VD. SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells. Crit Rev Biochem Mol Biol 2021; 56:284-300. [PMID: 33823731 DOI: 10.1080/10409238.2021.1908950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
11
|
Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol 2019; 82:20-37. [DOI: 10.1016/j.matbio.2019.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
|
12
|
Omairi S, Hau KL, Collins-Hooper H, Scott C, Vaiyapuri S, Torelli S, Montanaro F, Matsakas A, Patel K. Regulation of the dystrophin-associated glycoprotein complex composition by the metabolic properties of muscle fibres. Sci Rep 2019; 9:2770. [PMID: 30808964 PMCID: PMC6391483 DOI: 10.1038/s41598-019-39532-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
The dystrophin-glycoprotein complex (DGC) links the muscle cytoskeleton to the extracellular matrix and is responsible for force transduction and protects the muscle fibres from contraction induced damage. Mutations in components of the DGC are responsible for muscular dystrophies and congenital myopathies. Expression of DGC components have been shown to be altered in many myopathies. In contrast we have very little evidence of whether adaptive changes in muscle impact on DGC expression. In this study we investigated connection between muscle fibre phenotype and the DGC. Our study reveals that the levels of DGC proteins at the sarcolemma differ in highly glycolytic muscle compared to wild-type and that these changes can be normalised by the super-imposition of an oxidative metabolic programme. Importantly we show that the metabolic properties of the muscle do not impact on the total amount of DGC components at the protein level. Our work shows that the metabolic property of a muscle fibre is a key factor in regulating the expression of DGC proteins at the sarcolemma.
Collapse
Affiliation(s)
- Saleh Omairi
- School of Biological Sciences, University of Reading, Reading, UK.,College of Medicine, Wasit University, Kut, Iraq
| | - Kwan-Leong Hau
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences, Programme, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, WC1N 1EH, London, UK
| | | | - Charlotte Scott
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences, Programme, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, WC1N 1EH, London, UK
| | | | - Silvia Torelli
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences, Programme, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, WC1N 1EH, London, UK
| | - Federica Montanaro
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences, Programme, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, WC1N 1EH, London, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, Hull, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
13
|
Väremo L, Henriksen TI, Scheele C, Broholm C, Pedersen M, Uhlén M, Pedersen BK, Nielsen J. Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Med 2017; 9:47. [PMID: 28545587 PMCID: PMC5444103 DOI: 10.1186/s13073-017-0432-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. METHODS We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. RESULTS We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. CONCLUSIONS Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.
Collapse
Affiliation(s)
- Leif Väremo
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Tora Ida Henriksen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Camilla Scheele
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100, Copenhagen Ø, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Christa Broholm
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Maria Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mathias Uhlén
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology (KTH), 17121 Stockholm, Sweden
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Science for Life Laboratory, Royal Institute of Technology (KTH), 17121 Stockholm, Sweden
| |
Collapse
|
14
|
|
15
|
Chapman MA, Meza R, Lieber RL. Skeletal muscle fibroblasts in health and disease. Differentiation 2016; 92:108-115. [PMID: 27282924 DOI: 10.1016/j.diff.2016.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
As the primary producer of extracellular matrix (ECM) proteins in skeletal muscle, fibroblasts play an important role providing structural support to muscle. Skeletal muscle ECM is vital for force transduction from muscle cells to tendons and bones to create movement. It is these ECM connections that allow the movement created in muscle to be transmitted to our skeleton. This review discusses how fibroblasts participate in maintaining this healthy ECM within skeletal muscle. Additionally, from a basic science perspective, we discuss current methods to identify and study skeletal muscle fibroblasts, as this is critical to bettering our understanding of these important cells. Finally, skeletal muscle fibrosis is discussed, which is a devastating clinical condition characterized by an overproduction of ECM within skeletal muscle. We discuss the role that fibroblasts and other cells play in muscle fibrosis as well as the implications of this work.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel Meza
- Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Richard L Lieber
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Department of Veteran's Affairs, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, IL 60611, United States.
| |
Collapse
|
16
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
17
|
Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2012; 44:318-31. [PMID: 21949456 DOI: 10.1002/mus.22094] [Citation(s) in RCA: 623] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property that has clinical manifestations and alters muscle function. Here we review the structure, composition, and mechanical properties of skeletal muscle ECM; describe the cells that contribute to the maintenance of the ECM; and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure–function relationships. Detailed structure–function relationships of the ECM have yet to be defined and, as a result, we propose areas for future study.
Collapse
Affiliation(s)
- Allison R Gillies
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0863, USA
| | | |
Collapse
|
18
|
Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J Neurosci 2011; 31:13191-203. [PMID: 21917802 DOI: 10.1523/jneurosci.2953-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscle fibers degenerate and regenerate in response to contractile damage, during aging, and in various muscle diseases that weaken the fibers. It is known that degeneration and regeneration of the segment of the postsynaptic fiber produces dramatic alterations in the neuromuscular junction (NMJ) that forms on the regenerated fiber, but the mechanisms here are incompletely understood. We have used a laser microbeam to damage the postsynaptic fibers at individual NMJs in the sternomastoid muscle of living young adult mice and then followed the synapses vitally over time using fluorescent proteins expressed in motor neurons and glial cells and staining of postsynaptic acetylcholine receptors. We find, in contrast to previous reports, that the mouse nerve terminal retains contact with the synaptic basal lamina marked by cholinesterase staining even in the absence of the target, showing that this terminal does not require a continuous supply of target-derived molecules for its maintenance. Thus, remodeling of the nerve terminal during the period of target absence does not explain the subsequent changes in the new NMJ. Rather, we see that the synapse becomes altered as the new fiber segment regenerates. Mechanisms for remodeling the synapse include failure of the regenerating muscle fiber to contact the old basal lamina and nerve terminal, growth of the nerve terminal and its glia toward the regenerating fiber, and remodeling of the initial contact as the nerve terminal becomes varicose.
Collapse
|
19
|
Goetsch KP, Kallmeyer K, Niesler CU. Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol 2010; 30:109-17. [PMID: 21059388 DOI: 10.1016/j.matbio.2010.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 12/20/2022]
Abstract
Extracellular matrix factors, specifically fibronectin and collagen I, are essential for structural support during muscle regeneration. Decorin has been identified as an anti-fibrotic agent with binding sites located on both fibronectin and collagen I. Upon injury, activated myoblasts are required to migrate through the extracellular matrix factors deposited by the myofibroblasts to facilitate skeletal muscle regeneration. In this study we looked at the effects decorin on fibronectin- and collagen I-stimulated myoblast migration. Dose response studies demonstrated 10 μg/ml, 5 μg/ml and 25 μg/ml as the optimal stimulatory concentrations of decorin (1.2 fold increase), fibronectin (3.5 fold increase) and collagen I (2.4 fold increase), when compared with control respectively. A synergistic effect was identified when decorin and collagen I were added in combination; this effect was not evident when decorin was added with fibronectin. The effects of these factors on the ROCK signalling pathway were also analyzed. ROCK-2 was identified as the key Rho-activated kinase isoform involved in migration, due to its higher expression levels and localisation to focal points within migrating C2C12 myoblasts. Decorin and collagen I in combination stimulated an increase in the number of ROCK-2 localized focal points when compared with control, decorin and collagen I added separately. Fibronectin did not show any increase in ROCK-2 focal points when compared with control. These results show for the first time that decorin can modify collagen I-stimulated, but not fibronectin-stimulated myoblast migration in vitro. Furthermore, the synergistic, rather than additive, effect observed suggests a direct modification of collagen I signalling by decorin mediated, at least in part, by ROCK-2 rather than ROCK-1.
Collapse
Affiliation(s)
- K P Goetsch
- Department of Biochemistry, School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Scottsville, South Africa
| | | | | |
Collapse
|
20
|
Christiansen SP, Baker RS, Madhat M, Porter JD. Lengthening extraocular muscle with autologous muscle transplants. Strabismus 2009; 2:29-39. [DOI: 10.3109/09273979409105051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Lain E, Carnejac S, Escher P, Wilson MC, Lømo T, Gajendran N, Brenner HR. A novel role for embigin to promote sprouting of motor nerve terminals at the neuromuscular junction. J Biol Chem 2009; 284:8930-9. [PMID: 19164284 DOI: 10.1074/jbc.m809491200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult skeletal muscle accepts ectopic innervation by foreign motor axons only after section of its own nerve, suggesting that the formation of new neuromuscular junctions is promoted by muscle denervation. With the aim to identify new proteins involved in neuromuscular junction formation we performed an mRNA differential display on innervated versus denervated adult rat muscles. We identified transcripts encoding embigin, a transmembrane protein of the immunoglobulin superfamily (IgSF) class of cell adhesion molecules to be strongly regulated by the state of innervation. In innervated muscle it is preferentially localized to neuromuscular junctions. Forced overexpression in innervated muscle of a full-length embigin transgene, but not of an embigin fragment lacking the intracellular domain, promotes nerve terminal sprouting and the formation of additional acetylcholine receptor clusters at synaptic sites without affecting terminal Schwann cell number or morphology, and it delays the retraction of terminal sprouts following re-innervation of denervated endplates. Conversely, knockdown of embigin by RNA interference in wild-type muscle accelerates terminal sprout retraction, both by itself and synergistically with deletion of neural cell adhesion molecule. These findings indicate that embigin enhances neural cell adhesion molecule-dependent neuromuscular adhesion and thereby modulates neuromuscular junction formation and plasticity.
Collapse
Affiliation(s)
- Enzo Lain
- Institute of Physiology, Department of Biomedicine, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Court FA, Gillingwater TH, Melrose S, Sherman DL, Greenshields KN, Morton AJ, Harris JB, Willison HJ, Ribchester RR. Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. J Cell Sci 2008; 121:3901-11. [DOI: 10.1242/jcs.031047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuromuscular junctions (NMJs) are normally thought to comprise three major cell types: skeletal muscle fibres, motor neuron terminals and perisynaptic terminal Schwann cells. Here we studied a fourth population of junctional cells in mice and rats, revealed using a novel cytoskeletal antibody (2166). These cells lie outside the synaptic basal lamina but form caps over NMJs during postnatal development. NMJ-capping cells also bound rPH, HM-24, CD34 antibodies and cholera toxin B subunit. Bromodeoxyuridine incorporation indicated activation, proliferation and spread of NMJ-capping cells following denervation in adults, in advance of terminal Schwann cell sprouting. The NMJ-capping cell reaction coincided with expression of tenascin-C but was independent of this molecule because capping cells also dispersed after denervation in tenascin-C-null mutant mice. NMJ-capping cells also dispersed after local paralysis with botulinum toxin and in atrophic muscles of transgenic R6/2 mice. We conclude that NMJ-capping cells (proposed name `kranocytes') represent a neglected, canonical cellular constituent of neuromuscular junctions where they could play a permissive role in synaptic regeneration.
Collapse
Affiliation(s)
- Felipe A. Court
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Shona Melrose
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Diane L. Sherman
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Kay N. Greenshields
- Division of Clinical Neuroscience, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - John B. Harris
- Institute of Neuroscience Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Hugh J. Willison
- Division of Clinical Neuroscience, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
23
|
Gordon T, Ly V, Hegedus J, Tyreman N. Early detection of denervated muscle fibers in hindlimb muscles after sciatic nerve transection in wild type mice and in the G93A mouse model of amyotrophic lateral sclerosis. Neurol Res 2008; 31:28-42. [PMID: 18768111 DOI: 10.1179/174313208x332977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The cell adhesion molecule N-CAM is localized to the adult neuromuscular junction but is also expressed in the extrajunctional membrane of denervated muscles concurrent with extrajunctional acetylcholine receptors. Here we used N-CAM immunohistochemistry to determine whether we could detect early denervation in hindlimb muscles of the G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS). In denervated wild type mouse muscles, N-CAM immunoreactivity on the sarcolemma of all fiber types and within the sarcoplasm of only type IIA fibers was detected at day 2: approximately 30% of the muscle fibers in cross-section were fully circumscribed by N-CAM immunoreactivity and approximately 25% of fibers were incompletely circumscribed. The proportion of the latter fibers remained constant over the next 8 days as the proportions of the former fibers increased exponentially. Thereafter, fully circumscribed muscle fibers increased to a maximum by 30 days with a concomitant fall in the incompletely circumscribed fibers. Hence, early muscle denervation was detected by the incomplete circumscription of fiber membranes by N-CAM immunoreactivity with full circumscription and intracellular localization indicating more long-term denervation. In the G93A transgenic mouse, rapid denervation of fast-twitch muscles was readily detected by a corresponding proportion of muscle fibers in cross-section with positive N-CAM immunoreactivity. The proportions of incompletely and completely circumscribed muscle fibers corresponded well with the rate of decline in intact motor units and reduced muscle contractile forces. Progressively more fully circumscribed muscle fibers became evident with age. We conclude that the N-CAM immunoreactivity on muscle fiber membranes in muscle cross-sections provides a sensitive means of detecting early muscle fiber denervation.
Collapse
Affiliation(s)
- T Gordon
- Division of Physical Medicine and Rehabilitation/Centre for Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alta T6G 2S2, Canada.
| | | | | | | |
Collapse
|
24
|
Abstract
Declining stem cell function during aging contributes to impaired tissue function. Muscle-specific stem cells ('satellite cells') are responsible for generating new muscle in response to injury in the adult. However, aged muscle displays a significant reduction in regenerative abilities and an increased susceptibility to age-related pathologies. This review describes components of the satellite cell niche and addresses how age-related changes in these components impinge on satellite cell function. In particular, we review changes in the key niche elements, the myofiber and the basal lamina that are in intimate contact with satellite cells. We address how these elements are influenced by factors secreted by interstitial cells, cells of the immune system, and cells associated with the vasculature, all of which change with age. In addition, we consider more distant sources of influence on the satellite cell niche that change with age, such as neural-mediated trophic factors and electrical activity and systemic factors present in the circulation. A better understanding of the niche elements and their influence on the satellite cell will facilitate the development of therapeutic interventions aimed at improving satellite cell activity and ultimately tissue response to injury in aged individuals.
Collapse
Affiliation(s)
- Suchitra D Gopinath
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA
| | | |
Collapse
|
25
|
Marqueste T, Decherchi P, Desplanches D, Favier R, Grelot L, Jammes Y. Chronic electrostimulation after nerve repair by self-anastomosis: effects on the size, the mechanical, histochemical and biochemical muscle properties. Acta Neuropathol 2006; 111:589-600. [PMID: 16520970 DOI: 10.1007/s00401-006-0035-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/03/2005] [Accepted: 12/10/2005] [Indexed: 11/25/2022]
Abstract
This study tests the effects of chronic electrostimulation on denervated/reinnervated skeletal muscle in producing an optimal restoration of size and mechanical and histochemical properties. We compared tibialis anterior muscles in four groups of rats: in unoperated control (C) and 10 weeks following nerve lesion with suture (LS) in the absence of electrostimulation and in the presence of muscle stimulation with either a monophasic rectangular current (LSEm) or a biphasic modulated current (LSEb). The main results were (1) muscle atrophy was reduced in LSEm (-26%) while it was absent in LSEb groups (-8%); (2) the peak twitch amplitude decreased in LS and LSEm but not in LSEb groups, whereas the contraction time was shorter; (3) muscle reinnervation was associated with the emergence of type IIC fibers and proportions of types I, IIA and IIB fibers recovered in the superficial portion of LSEb muscles; (4) the ratio of oxidative to glycolytic activities decreased in the three groups with nerve injury and repair; however, this decrease was more accentuated in LSEm groups. We conclude that muscle electrostimulation following denervation and reinnervation tends to restore size and functional and histochemical properties during reinnervation better than is seen in unstimulated muscle.
Collapse
Affiliation(s)
- T Marqueste
- Laboratoire des Déterminants Physiologiques de l'Activité Physique (UPRES EA 3285), Faculté des Sciences du Sport de Marseille-Luminy, Institut Fédératif de Recherches Etienne-Jules MAREY (IFR 107), Université de la Méditerranée (Aix-Marseille II), France
| | | | | | | | | | | |
Collapse
|
26
|
Demestre M, Orth M, Wells GM, Gearing AJ, Hughes RAC, Gregson NA. Characterization of matrix metalloproteinases in denervated muscle. Neuropathol Appl Neurobiol 2005; 31:545-55. [PMID: 16150125 DOI: 10.1111/j.1365-2990.2005.00676.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a nerve crush model of denervation, we examined muscle matrix metalloproteinase (MMP) expression, localization and activity. In normal muscle, MMP mRNA levels were low, and immunohistochemically MMPs were distributed around the muscle fibre with MMPs-3, -7 and -9 also staining at the neuromuscular junction. Seven days after nerve crush, muscle MMP immunoreactivity, especially MMP-12 and MMP-14, became irregularly distributed. At 20 days reinnervation of the muscle was observed, and some restitution of the normal pattern of immunoreactivity was noted concomitant with a higher level of MMP mRNA expression. In situ zymography showed that MMP activity was very weak in normal muscle whereas it was increased up to 40 days following denervation. Our results suggest that MMPs in muscle are involved in the tissue changes following denervation. Further experiments are required to test the hypothesis that MMP inhibition may be beneficial in protecting muscle from excessive remodelling following denervation and therefore improve reinnervation.
Collapse
Affiliation(s)
- M Demestre
- Department of Clinical Neurosciences, Guy's, King's and St. Thomas' School of Medicine, London, SEI 1UL, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Ogawa T, Nikawa T, Furochi H, Kosyoji M, Hirasaka K, Suzue N, Sairyo K, Nakano S, Yamaoka T, Itakura M, Kishi K, Yasui N. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am J Physiol Cell Physiol 2005; 289:C697-707. [PMID: 16100390 DOI: 10.1152/ajpcell.00565.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined pathophysiological roles of osteoactivin, a functionally unknown type I membrane glycoprotein, in mouse skeletal muscle atrophied by denervation (sciatic neurectomy). Denervation increased the amounts of osteoactivin, vimentin, matrix metalloproteinase-3 (MMP-3), and MMP-9 in mouse gastrocnemius muscle. Interestingly, immunohistochemical analysis revealed that vimentin, MMP-3, and MMP-9 were mainly present in fibroblast-like cells infiltrated into denervated mouse gastrocnemius muscle, whereas osteoactivin was expressed in the sarcolemma of myofibers adjacent to the fibroblast-like cells. On the basis of these findings, we reasoned that osteoactivin in myocytes was involved in activation of the infiltrated fibroblasts. To address this issue, we examined effects of osteoactivin on expression of MMPs in fibroblasts in vitro and in vivo. Overexpression of osteoactivin in NIH-3T3 fibroblasts induced expression of MMP-3, but not in mouse C(2)C(12) myoblasts, indicating that osteoactivin might functionally target fibroblasts. Treatment with recombinant mouse osteoactivin increased the amounts of collagen type I, MMP-3, and MMP-9 in mouse NIH-3T3 fibroblasts. The upregulated expression of these fibroblast marker proteins was significantly inhibited by heparin, but not by an integrin inhibitor, indicating that a heparin-binding motif in the extracellular domain might be an active site of osteoactivin. In osteoactivin-transgenic mice, denervation further enhanced expression of MMP-3 and MMP-9 in fibroblasts infiltrated into gastrocnemius muscle, compared with wild-type mice. Our present results suggest that osteoactivin might function as an activator for fibroblasts infiltrated into denervated skeletal muscles and play an important role in regulating degeneration/regeneration of extracellular matrix.
Collapse
Affiliation(s)
- Takayuki Ogawa
- Dept. of Orthopaedics, The University of Tokushima School of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mochizuki Y, Ojima K, Uezumi A, Masuda S, Yoshimura K, Takeda S. Participation of bone marrow-derived cells in fibrotic changes in denervated skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1721-32. [PMID: 15920157 PMCID: PMC1602421 DOI: 10.1016/s0002-9440(10)62482-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In denervated skeletal muscle, mononuclear interstitial cells accumulate in the perisynaptic regions before fibrotic change occurs. These cells are currently considered to be fibroblasts that originate from muscle tissue. However, when we denervated hind limbs of GFP-bone marrow chimeric mice by excising the sciatic nerve unilaterally, many bone marrow-derived cells (BM-DCs) infiltrated the interstitial spaces and accumulated in the perisynaptic regions, peaking 14 days after denervation. They accounted for nearly one-half of the increase in mononuclear interstitial cells. Although BM-DCs did not incorporate into satellite cells, immunohistochemical and FACS analyses revealed that BM-DCs were both CD45 and CD11b positive, indicating that they were of macrophage/monocyte lineage. BrdU staining showed inactive proliferation of BM-DCs. Reverse transcriptase-polymerase chain reaction of mononuclear cells isolated by FACS revealed that BM-DCs did not express type I collagen or tenascin-C; however, they did express transforming growth factor-beta1, suggesting that they regulate the fibrotic process. In contrast, muscle tissue-derived interstitial cells expressed type I collagen and tenascin-C, suggesting that these populations were the final effectors of fibrosis. These findings identify elementary targets that may regulate the migration, homing, differentiation, and function of BM-DCs, leading to amelioration of the excessive fibrosis of denervated skeletal muscle.
Collapse
Affiliation(s)
- Yasushi Mochizuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Kishi M, Kummer TT, Eglen SJ, Sanes JR. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. ACTA ACUST UNITED AC 2005; 169:355-66. [PMID: 15851520 PMCID: PMC2171857 DOI: 10.1083/jcb.200411012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5β, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5β is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in “corraling” AChRs. Consistent with this idea, perturbing LL5β expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Anatomy and Neurobiology, Washington University Medical Center, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
30
|
Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci U S A 2005; 102:4359-64. [PMID: 15749817 PMCID: PMC555524 DOI: 10.1073/pnas.0500711102] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate skeletal muscle fibers contain hundreds of nuclei, of which three to six are functionally specialized and stably anchored beneath the postsynaptic membrane at the neuromuscular junction (NMJ). The mechanisms that localize synaptic nuclei and the roles they play in neuromuscular development are unknown. Syne-1 is concentrated at the nuclear envelope of synaptic nuclei; its Caenorhabditis elegans orthologue ANC-1 functions to tether nuclei to the cytoskeleton. To test the involvement of Syne proteins in nuclear anchoring, we generated transgenic mice overexpressing the conserved C-terminal Klarsicht/ANC-1/Syne homology domain of Syne-1. The transgene acted in a dominant interfering fashion, displacing endogenous Syne-1 from the nuclear envelope. Muscle nuclei failed to aggregate at the NMJ in transgenic mice, demonstrating that localization and positioning of synaptic nuclei require Syne proteins. We then exploited this phenotype to show that synaptic nuclear aggregates are dispensable for maturation of the NMJ.
Collapse
Affiliation(s)
- R Mark Grady
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Monks DA, O'Bryant EL, Jordan CL. Androgen receptor immunoreactivity in skeletal muscle: enrichment at the neuromuscular junction. J Comp Neurol 2004; 473:59-72. [PMID: 15067718 DOI: 10.1002/cne.20088] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Potential cellular targets of androgen action within skeletal muscle of the rat were determined by comparing the cellular distribution of androgen receptor (AR)-positive nuclei in the highly androgen-responsive levator ani (LA) muscle with that of the relatively androgen-unresponsive extensor digitorum longus (EDL) muscle. We found that androgen responsiveness correlates with AR expression in muscle fibers and not in fibroblasts. Results indicate that a much higher percentage of myonuclei in the LA are AR(+) than in the EDL (74% vs. 7%), correlating with differences in androgen responsiveness. Both muscles contain an equivalent proportion of AR(+) fibroblasts (approximately 62%). AR(+) nuclei were not observed in terminal Schwann cells in either muscle. These results suggest that ARs within LA muscle fibers mediate the androgen-dependent survival and growth of the LA muscle and its motoneurons. We also observed an unexpected enrichment of AR(+) myonuclei and fibroblasts proximate to neuromuscular junctions, suggesting that ARs at muscle synapses may selectively regulate synapse-specific genes important for the survival and growth of motoneurons. Although castration reduced the proportion of AR(+) fibroblasts in both muscles, the proportion of AR(+) myonuclei was reduced only in the LA. As expected, testosterone treatment prevented these effects of castration but, unexpectedly, increased the proportion of AR(+) myonuclei in the EDL to above normal. These results suggest that how AR expression in skeletal muscle is influenced by androgens depends not only on the particular muscle but on the particular cell type within that muscle.
Collapse
Affiliation(s)
- Douglas Ashley Monks
- Neuroscience Program and Department of Psychology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | |
Collapse
|
32
|
Flück M, Kitzmann M, Däpp C, Chiquet M, Booth FW, Fernandez A. Transient induction of cyclin A in loaded chicken skeletal muscle. J Appl Physiol (1985) 2003; 95:1664-71. [PMID: 12819222 DOI: 10.1152/japplphysiol.00276.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell proliferation is believed to contribute to the increased synthesis rate during load-induced growth of avian anterior latissimus dorsi (ALD) skeletal muscle, but the relative contribution of different cell types to this proliferative response and the time course of cell activation are not well documented. The present investigation measured the abundance and localization of cyclin A protein, which is uniquely present in proliferating cells and required for the entry of vertebrate cells into the DNA synthesis phase during the time course of chicken ALD loading. Total protein content in 1.5-, 7-, and 13-day loaded ALD increased by 60, 191, and 294%, respectively. Immunoblotting analysis identified that cyclin A protein per total protein was dramatically increased in ALD muscle after 1.5 days of loading but returned to control level at 7 days. In vitro kinase assays demonstrated a corresponding massive activation of the cyclin A-regulated, cyclin-dependent kinase 2 but not of cyclin-dependent kinase 2 protein level in muscle homogenates after 1.5 days of muscle loading. Immunofluorescence experiments demonstrated that the increase of cyclin A in 1.5 days of loaded ALD was primarily confined to nuclei of interstitial cells (92%) but was also found in fiber-associated cells (8%). In situ hybridization demonstrated an increased number of nuclei of interstitial cells expressing collagen I transcripts after 1.5 days of loading. These data show that the cell cycle protein cyclin A is induced in fiber-associated cells during the early growth response in loaded ALD but also implicate an activation of interstitial cells as playing an early role in this model for muscle growth.
Collapse
Affiliation(s)
- Martin Flück
- Dept. of Anatomy, Univ. of Bern, Bühlstrasse 26, 3000 Bern 9, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Chadaram SR, Laskowski MB. Denervation and age modify neuromuscular positional selectivity. JOURNAL OF NEUROBIOLOGY 2003; 56:347-59. [PMID: 12918019 DOI: 10.1002/neu.10240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The rostrocaudal position of neurons within the spinal motor pool maps systematically onto the surface of several muscles in mammals. In an effort to understand the mechanisms that generate such maps, we have been studying choices made by embryonic spinal cord neurons on muscle membrane substrates in the in vitro stripe assay. In this report we explore the effects of postnatal age of the muscle on neurite choice, and how prior denervation modifies this choice. Our results further differentiate rostral from caudal motor neurons in preferring one substrate to another. First, caudal neurites prefer to grow on P6 neonatal caudal over rostral membranes, but lose this ability to distinguish axial position of origin in older muscles. Rostral neurites prefer growth on rostral membranes, but this preference also diminishes with age. Second, when adult muscles have been denervated, both rostral and caudal neurites regain their positional growth selectivity. Third, caudal neurites are particularly sensitive to substrate choice. When growing on a preferred substrate (gluteus) caudal neurites prefer neonatal over adult membranes. These results support the concept of fundamental differences in the growth preferences of rostral and caudal spinal neurites. These differences will assist in the identification of molecular guidance cues that determine the formation of neuromuscular positional maps.
Collapse
Affiliation(s)
- S R Chadaram
- WWAMI Medical Education Program and Department of Biological Sciences, University of Idaho, P.O. Box 444207, Moscow, Idaho 83844-4207, USA
| | | |
Collapse
|
34
|
Stettler EM, Galileo DS. Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain. J Comp Neurol 2003; 468:441-51. [PMID: 14681936 DOI: 10.1002/cne.10987] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We demonstrated previously that alpha8beta1 integrin regulates the migration and survival of immature neurons during development of the chicken optic tectum; however, the potential extracellular ligand was unknown. We used immunohistochemistry to determine if several potential ligands (fibronectin, tenascin, vitronectin, and osteopontin) were expressed during neuronal migration along radial glia (RG). Fibronectin was localized in a pattern relevant to radial migration and survival of neurons; it was present before and during neuronal migration and appeared oriented along RG fibers by conventional fluorescence microscopy. Confocal microscopy confirmed that fibronectin was localized along RG cells during radial migration. It was more concentrated in some superficial laminae, which might support directional movement. Fibronectin was present after formation of definitive tectal laminae, but was diffuse and not aligned along RG, which persist. Flow cytometry analysis of dissociated optic tectum cells revealed that almost all RG were positive for fibronectin. Short-term cell culture experiments using an exocytosis inhibitor revealed that fibronectin accumulated in most RG cells. Thus, fibronectin is produced by RG and is aligned along their surfaces before and during migration. Fibronectin, therefore, is a potential ligand for general radial neuronal migration in the chick optic tectum. Its predominant source appears to be RG, in contrast with developing mammalian cortex, where fibronectin was not found in a pattern that could guide widespread radial migration and where neurons are the predominant producers of fibronectin during migration.
Collapse
Affiliation(s)
- Erin M Stettler
- University of Delaware, Department of Biological Sciences, Wolf Hall, Newark, Delaware 19716, USA
| | | |
Collapse
|
35
|
Marqueste T, Decherchi P, Dousset E, Berthelin F, Jammes Y. Effect of muscle electrostimulation on afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Neuroscience 2002; 113:257-71. [PMID: 12127084 DOI: 10.1016/s0306-4522(02)00187-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous previous studies were devoted to the regeneration of motoneurons toward a denervated muscle after nerve repair by self-anastomosis but, to date, few investigations have evaluated the regeneration of sensory muscle endings. In a previous electrophysiological study (Decherchi et al., 2001) we showed that the functional characteristics of tibialis anterior muscle afferents are affected after self-anastomosis of the peroneal nerve even when the neuromuscular preparation was not chronically stimulated. The present study examines the regeneration of groups I-II (mechanosensitive) and groups III-IV (metabosensitive) muscle afferents by evaluating the recovery of their response to different test agents after self-anastomosis combined or not with chronic muscle stimulation for a 10-weeks period. We compared five groups of rats: C, control; L, nerve lesion without suture; LS, nerve lesion with suture; LSE(m): nerve lesion plus chronic muscle stimulation with a monophasic rectangular current; and LSE(b): nerve lesion plus chronic stimulation with a biphasic current with modulations of pulse duration and frequency, eliciting a pattern of activity resembling that delivered by the nerve to the muscle. Compared to the control group, (1) muscle kept only its original weight in the LSE(b) group, (2) in the LS group the response curve to tendon vibration was shifted toward the highest mechanical frequencies and the response of groups III-IV afferents after fatiguing muscle stimulation lowered, (3) in the LSE(m) group, the pattern of activation of mechanoreceptors by tendon vibrations was altered as in the LS group, and the response of metabosensitive afferents to KCl injections was markedly reduced, (4) in the LSE(b) group, the response to tendon vibration was not modified and the activation of metabosensitive units by increased extracellular potassium chloride concentration was conserved. Both LSE(b) and LSE(m) conditions were ineffective to maintain the post muscle stimulation activation of metabosensitive units as well as their activation by injected lactic acid solutions. Our data indicate that chronic muscle electrostimulation partially favors the recovery of mechano- and metabosensitivity in a denervated muscle and that biphasic modulated currents seem to provide better results.
Collapse
Affiliation(s)
- T Marqueste
- Institut Fédératif de Recherche Jean ROCHE (IFR11), Faculté de Médecine Nord, Université de la Méditerranée (Aix-Marseille II), Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
36
|
Bartsch U, Bartsch S, Dörries U, Schachner M. Immunohistological Localization of Tenascin in the Developing and Lesioned Adult Mouse Optic Nerve. Eur J Neurosci 2002; 4:338-352. [PMID: 12106360 DOI: 10.1111/j.1460-9568.1992.tb00881.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To gain insight into the morphogenetic functions of the recognition molecule tenascin in the central nervous system, we have studied its localization in the developing and lesioned adult mouse optic nerve using light and electron microscopic immunocytochemistry. Since tenascin is a secreted molecule, we have analysed the tenascin-synthesizing cells in tissue sections of retinae and optic nerves by in situ hybridization. A weak and homogeneous tenascin immunoreactivity was detectable in the developing retinal nerve fibre layer and optic nerve of 14-day-old mouse embryos, the earliest developmental age investigated. In the optic nerve of neonatal and 1-week-old animals, a high number of tenascin messenger RNA (mRNA)-containing cells were present, and antibodies to tenascin labelled the surfaces of astrocytes and unmyelinated retinal ganglion cell axons. With increasing age, expression of tenascin in the optic nerve was down-regulated at the mRNA and protein levels. At the fourth postnatal week, blood vessels in the optic nerve and collagen fibrils in the vicinity of meningeal fibroblast-like cells still showed significant immunoreactivity, but the optic nerve tissue proper no longer did so. In adult animals, tenascin was no longer detectable in association with blood vessels located in the myelinated part of the optic nerve, and meninges were only weakly immunoreactive. Also, tenascin mRNA-containing cells were no longer detectable in the myelinated part of the adult mouse optic nerve and few labelled cells were found in the meninges. In the retina, ganglion cells contained no detectable levels of tenascin mRNA at any of the developmental ages analysed. No significant up-regulation of tenascin expression was seen in the nerve tissue proper of transected proximal (i.e. retinal) and distal (i.e. cranial) optic nerve stumps of adult mice during the first 4 weeks after lesioning, the time period studied. However, collagen fibrils associated with meningeal fibroblast-like cells and located near the lesion site became strongly tenascin-immunoreactive 2 days after lesioning. Also, some blood vessels at the lesion site became immunoreactive. We conclude that tenascin in the optic nerve is synthesized by glial cells and not by retinal ganglion cells. The detectability of tenascin at embryonic ages suggests that it may mediate neurite growth in vivo. The absence of a strong, lesion-induced up-regulation of tenascin expression in the regeneration-prohibitive mouse optic nerve contrasts with the lesion-induced pronounced up-regulation in the regeneration-permissive peripheral nervous system, and may indicate a functional involvement of tenascin in regenerative processes. The high tenascin positivity of collagen fibrils at early postnatal ages and after lesioning suggests that tenascin expression may be correlated with mitotic activity of the associated meningeal fibroblast-like cells. Finally, tenascin may be involved in the process of vascularization, since the molecule is associated with blood vessels in developing and adult lesioned, but not intact adult, optic nerves.
Collapse
Affiliation(s)
- Udo Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Cifuentes-Diaz C, Faille L, Goudou D, Schachner M, Rieger F, Angaut-Petit D. Abnormal reinnervation of skeletal muscle in a tenascin-C-deficient mouse. J Neurosci Res 2002; 67:93-9. [PMID: 11754084 DOI: 10.1002/jnr.10109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The possible involvement of tenascin-C in the reinnervation of a skeletal muscle was investigated in the tenascin-C-deficient mouse (T-/-) produced by Saga et al. (1992; Genes Dev 6:1821-1831). The pattern of reinnervation, observed after denervation of the triangularis sterni muscle, differs in T-/- and wild-type muscles in several traits. Axonal growth and stability of terminal arbors are impaired in the T-/- muscle: Some axons in mutant muscles grow beyond their original targets and reinnervate other synaptic sites, which may become dually innervated. In contrast to wild type, polyinnervation increases with time after denervation in T-/- muscles and is still present 7 months after nerve crush. The expression of a tenascin-C mRNA product disappears between 1 and 2 months after nerve crush. Of interest is that this transcriptional regulation in T-/- muscles occurs when major alterations in the morphology of regenerating endings become obvious. These observations strongly implicate tenascin-C in the formation, maturation, and stabilization of the neuromuscular junction.
Collapse
|
38
|
Joffroy S, Letellier T, Rossignol R, Malgat M, Delage JP, Powell JA, Mazat JP, Koenig J. Modification of mitochondrial metabolism in fibroblasts from mice with a skeletal muscle mutation (muscular dysgenesis). Evidence of embryonic communication between myoblasts and fibroblasts. Differentiation 2000; 65:261-70. [PMID: 10929205 DOI: 10.1046/j.1432-0436.2000.6550261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle development during embryogenesis is a complex process involving many mechanisms. It requires a close communication among the different cellular types of the muscle, especially the fibroblasts and myoblasts. Indeed, any abnormality in one cell type might influence the differentiation of the other. Thus, any disturbance altering the metabolism of the myoblasts might lead to modifications in the fibroblasts. To study this phenomenon, we used the dysgenic mouse (mdg-"muscular dysgenesis") carrying a homozygous recessive lethal mutation expressed only in skeletal muscle cells. First, we found that fibroblasts isolated from such mutant muscle (and not from mutant skin tissue) and grown in culture exhibited an altered metabolism. Secondly, muscle fibroblasts showed a lower capacity for proliferation. We also observed that respiration and ATP synthesis of dysgenic muscle fibroblasts were deficient, while respiratory chain enzymatic activities were normal. Finally, intracellular [Ca2+] levels of dysgenic fibroblasts are 50% of those of normal fibroblasts. These results support the hypothesis that certain characteristics of fibroblasts are determined by the surrounding cellular environment during embryonic organogenesis, and that such modifications are stable when the fibroblasts are isolated in vitro. Since fibroblast differentiation was disrupted permanently, this suggests, in the case of myopathies, that the modified cells, surrounding the muscle tissue, could contribute to the muscle pathology. Synergistic activities of this type should be considered when studying the course of pathologies in different types of muscle diseases.
Collapse
Affiliation(s)
- S Joffroy
- INSERM E 99-29, Mitochondrial Physiology, Université Bordeaux 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mai J, Finley RL, Waisman DM, Sloane BF. Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. J Biol Chem 2000; 275:12806-12. [PMID: 10777578 DOI: 10.1074/jbc.275.17.12806] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To study potential roles of plasma membrane-associated extracellular cathepsin B in tumor cell invasion and metastasis, we used the yeast two-hybrid system to screen for proteins that interact with human procathepsin B. The annexin II light chain (p11), one of the two subunits of the annexin II tetramer, was one of the proteins identified. We have confirmed that recombinant human procathepsin B interacts with p11 as well as with the annexin II tetramer in vitro. Furthermore, procathepsin B could interact with the annexin II tetramer in vivo as demonstrated by coimmunoprecipitation. Cathepsin B and the annexin II tetramer were shown by immunofluorescent staining to colocalize on the surface of human breast carcinoma and glioma cells. Taken together, our results indicate that the annexin II tetramer can serve as a binding protein for procathepsin B on the surface of tumor cells, an interaction that may facilitate tumor invasion and metastasis.
Collapse
Affiliation(s)
- J Mai
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
40
|
Lantuéjoul S, Laverrière MH, Sturm N, Moro D, Frey G, Brambilla C, Brambilla E. NCAM (neural cell adhesion molecules) expression in malignant mesotheliomas. Hum Pathol 2000; 31:415-21. [PMID: 10821486 DOI: 10.1053/hp.2000.6552] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural cell adhesion molecules (NCAM) are adhesion molecules expressed by neural and neuroendocrine tumors and a few biphasic tumors such as synovialosarcomas and breast phyllode tumors. To investigate NCAM expression in mesotheliomas, we studied 26 cases of epithelioid (n = 12), biphasic (n = 11), and sarcomatoid (n = 3) malignant mesotheliomas (MM), in comparison with normal mesothelium, and 50 primary non-small cell lung carcinomas (NSCLC) (25 adenocarcinomas [ADC] and 25 squamous cell carcinomas [SCC]), using electron microscopy as a gold standard for recognition of MM. NCAM reactivity using 123C3 antibody was compared with that of NE markers such as chromogranin A and synaptophysin. Although normal mesothelium remains negative, NCAM was expressed in 19 of 26 MM (73%) with a membranous staining on frozen or paraffin sections. In 6 of 12 epithelioid MM, the tumor cells expressed NCAM, whereas in 5 cases stromal fibroblasts showed a strong but focal staining. In 11 biphasic MM, 4 presented an NCAM reactivity of both epithelioid and spindle cell components, whereas in 7, only fusiform component was NCAM positive. Two of 3 sarcomatoid MM showed an NCAM expression. Chromogranin expression was never seen, whereas synaptophysin was noticed in 2 cases. No case of NSCLC showed membranous 123C3 staining, whereas 2 ADC weakly expressed synaptophysin. We conclude that NCAM expression in MM is reminiscent of its expression in mesoderm during fetal life and consistent with that reported in other biphasic tumors. These data show that NCAM expression occurs in 73% of MM, highly exceeding that observed in lung cancer.
Collapse
|
41
|
Mai J, Waisman DM, Sloane BF. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:215-30. [PMID: 10708859 DOI: 10.1016/s0167-4838(99)00274-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.
Collapse
Affiliation(s)
- J Mai
- Department of Pharmacology, Wayne State University, School of Medicine, 540 East Canfield, Detroit, MI 48201, USA
| | | | | |
Collapse
|
42
|
Padilla F, Marc M�ge R, Sobel A, Nicolet M. Upregulation and redistribution of cadherins reveal specific glial and muscle cell phenotypes during Wallerian degeneration and muscle denervation in the mouse. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991015)58:2<270::aid-jnr7>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Schoser BG, Faissner A, Goebel HH. Immunolocalization of tenascin-C in human type II fiber atrophy. J Mol Neurosci 1999; 13:167-75. [PMID: 10691303 DOI: 10.1385/jmn:13:1-2:167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tenascin-C is a multifunctional extracellular matrix glycoprotein with stimulatory and anti-adhesive or inhibitory properties for axon growth. Its location and discontinuous expression are restricted in innervated muscle tissues. Tenascin-C accumulated interstitially among human denervated muscle fibers and close to normal-sized fibers. To expand our knowledge of the expression of tenascin-C in human neuromuscular disorders, we investigated immunohistologically 20 human muscle specimens with type II myofiber atrophy of children and adults. Tenascin-C immunoreactivity in adult type II atrophy was frequent, and accumulation in children was sparse and weak. In both groups, tenascin-C immunoreactivity was found: 1. Interstitially around normal-sized type II muscle fibers. 2. Around atrophic type II muscle fibers. 3. Around small-caliber myofibers with centrally located nuclei. These results indicate that tenascin-C immunoreactivity: (1) is detectable around early denervated and reinnervated muscle fibers and, therefore, (2) may reflect in part the molecularly ongoing process of denervation and reinnervation in human type II fiber atrophy.
Collapse
Affiliation(s)
- B G Schoser
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
44
|
Abstract
Similar to astrocytes at CNS synapses, perisynaptic Schwann cells (PSCs) surround nerve terminals at the neuromuscular junction (NMJ). These special teloglial cells are sensitive to neurotransmitters and upregulate glial fibrillary acidic protein (GFAP) when deprived of synaptic activity. We found that activation of muscarinic acetylcholine receptors (mAChRs) at PSCs, but not purinergic (ATP and adenosine) or peptidergic [substance P (SP) and calcitonin gene-related peptide (CGRP)] receptors, prevented this upregulation. When applied onto single PSCs, muscarine evoked Ca2+ responses that fatigued but prevented upregulation of this glial cytoskeletal protein. Application of ATP onto single PSCs evoked Ca2+ signals that showed little fatigue, and GFAP upregulation occurred. Thus, Ca2+ signals alone cannot prevent GFAP upregulation in the PSCs. After blockade of cholinergic receptors by gallamine, neuronal activity was not effective in maintaining low GFAP levels in the perisynaptic glia. Last, immunohistochemistry disclosed mAChRs on PSCs and nearby fibroblasts. Thus, acetylcholine secreted by the nerve terminal acts on the PSCs via mAChRs to regulate GFAP. Cytoskeletal changes may influence perisynaptic glial functions, including growth, remodeling, and modulation of the synapse.
Collapse
|
45
|
Georgiou J, Robitaille R, Charlton MP. Muscarinic control of cytoskeleton in perisynaptic glia. J Neurosci 1999; 19:3836-46. [PMID: 10234016 PMCID: PMC6782737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Similar to astrocytes at CNS synapses, perisynaptic Schwann cells (PSCs) surround nerve terminals at the neuromuscular junction (NMJ). These special teloglial cells are sensitive to neurotransmitters and upregulate glial fibrillary acidic protein (GFAP) when deprived of synaptic activity. We found that activation of muscarinic acetylcholine receptors (mAChRs) at PSCs, but not purinergic (ATP and adenosine) or peptidergic [substance P (SP) and calcitonin gene-related peptide (CGRP)] receptors, prevented this upregulation. When applied onto single PSCs, muscarine evoked Ca2+ responses that fatigued but prevented upregulation of this glial cytoskeletal protein. Application of ATP onto single PSCs evoked Ca2+ signals that showed little fatigue, and GFAP upregulation occurred. Thus, Ca2+ signals alone cannot prevent GFAP upregulation in the PSCs. After blockade of cholinergic receptors by gallamine, neuronal activity was not effective in maintaining low GFAP levels in the perisynaptic glia. Last, immunohistochemistry disclosed mAChRs on PSCs and nearby fibroblasts. Thus, acetylcholine secreted by the nerve terminal acts on the PSCs via mAChRs to regulate GFAP. Cytoskeletal changes may influence perisynaptic glial functions, including growth, remodeling, and modulation of the synapse.
Collapse
Affiliation(s)
- J Georgiou
- Department of Physiology, Medical Research Council Group in Nerve Cells and Synapses, and Neuroscience Network, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
46
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
47
|
Abstract
Tenascin-C is a glycoprotein of the extracellular matrix that acts in vitro as both a permissive and a nonpermissive substrate for neurite growth. We analyzed, by immunocytochemistry, the distribution of tenascin-C along neural growth pathways in the developing mouse cochlea. In the spiral lamina, tenascin-C coexists in a region where nerve bundles arborize. In the organ of Corti, tenascin-C lines the neural pathways along pillar and Deiters' cells before and during the time of nerve fiber ingrowth. By embryonic day 16, tenascin-C is abundant on the pillar side of the inner hair cell but does not accumulate on the modiolar side until about birth, a time after the arrival of afferent fibers. The synaptic zones beneath outer hair cells are strongly labeled during the time when early events in afferent synaptogenesis are progressing but not during the time of efferent synaptogenesis. At the age when most neural growth ceases, tenascin-C immunoreactivity disappears. Faint tenascin-C immunolabeling of normal hair cells, strong tenascin immunolabeling in pathological hair cells of Bronx waltzer (bv/bv) mice, and staining for beta-galactosidase, whose gene replaces tenascin in a "knockout" mouse, indicate that hair cells supply at least part of the tenascin-C. The changing composition of the extracellular matrix in the synaptic region during afferent and efferent synaptogenesis is consistent with a role for tenascin in synaptogenesis. The presence of tenascin-C along the growth routes of nerve fibers, particularly toward the outer hair cells, raises the possibility that growth cone interactions with tenascin-C helps to guide nerve fibers in the cochlea.
Collapse
Affiliation(s)
- D S Whitlon
- Audiology and Hearing Sciences Program and Institute for Neuroscience, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
48
|
Abstract
Tenascin was immunolocalized in the chinchilla cochlea and vestibular system to better understand the functional morphology of the inner ear. Inner ear tissues were fixed with acetone, decalcified and cryosectioned. Indirect immunofluorescence, using antibodies directed against human tenascin epitopes, were used to detect tenascin. As a positive control, tenascin immunoreactivity was found in kidney, cortical mesangial cells and the extracellular matrix of glomeruli and medullary tubule interstitial spaces, concurring with previously reported results. In the cochlea, tenascin immunoreactivity was present in osteocytes, the mesothelial cells underlying the basilar membrane (BM) and within the fibrous matrix of the BM. Greater reactivity was observed in the mesothelial cells than in the fibrous matrix of the BM. In the vestibular system, tenascin immunoreactivity formed a diffuse band directly beneath the basal lamina of the ampullary and otoconial organs. Tenascin immunoreactivity was also observed in cup-shaped regions between the type I vestibular hair cells and their surrounding VIII nerve calyces in the ampullary and otoconial organs. This is the first report of the anatomical distribution of tenascin in the adult, mammalian inner ear, other than our previously published abstract P.A. Santi and D. Swartz, Soc. Neurosci. Abstr. 23 (1997) 731.
Collapse
Affiliation(s)
- D J Swartz
- University of Iowa Medical School, Iowa City 52242, USA
| | | |
Collapse
|
49
|
O'Malley JP, Waran MT, Balice-Gordon RJ. In vivo observations of terminal Schwann cells at normal, denervated, and reinnervated mouse neuromuscular junctions. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19990205)38:2<270::aid-neu9>3.0.co;2-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Pu SF, Zhuang HX, Marsh DJ, Ishii DN. Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:207-16. [PMID: 9878740 DOI: 10.1016/s0169-328x(98)00250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Insulin-like growth factors (IGFs) increase the rate of motor axon elongation, prevent motoneuron death, and may support the reestablishment of synapses following nerve injury. In situ hybridization was used in the present study to examine the temporal and spatial distribution of IGF gene expression in soleus muscle following sciatic nerve crush in rats. In intact muscle, IGF-II gene expression was generally low, and localized to interstitial cells, possibly fibroblast and Schwann cells. These cells were found in the middle of muscle which is enriched in neuromuscular junctions. IGF-II gene expression, 4-6 days postcrush, was increased in interstitial cells. Thereafter, IGF-II gene expression was also increased in muscle cells or cells closely associated with muscle fibers, such as satellite cells. IGF-II gene expression was increased to a much greater extent in the midregion of muscle enriched in end-plates than in the two ends of muscle, but returned towards normal following the reestablishment of functional synapses. On the other hand, IGF-I gene expression was only slightly increased following nerve crush, and this increase was associated with interstitial, but not muscle cells. These results show that the IGF-I and IGF-II genes are regulated by independent signals and may play separate roles during nerve regeneration. For example, a regional increase in IGF-II gene expression may support preferential nerve terminal sprouting in the middle of muscle enriched in neuromuscular junctions, thereby increasing the probability for the reestablishment of synapses.
Collapse
Affiliation(s)
- S F Pu
- Department of Physiology and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|