1
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
2
|
Ahn NG, Seger R, Bratlien RL, Krebs EG. Growth factor-stimulated phosphorylation cascades: activation of growth factor-stimulated MAP kinase. CIBA FOUNDATION SYMPOSIUM 2007; 164:113-26; discussion 126-31. [PMID: 1327676 DOI: 10.1002/9780470514207.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an important mechanism in the response of cells to growth factors by which signals can be conveyed from cell surface receptors to intracellular targets. In addition to stimulation of protein tyrosine phosphorylation, activation of growth factor receptors having protein tyrosine kinase activity leads to dramatic alterations in the levels of protein serine/threonine phosphorylation. Several growth factor-stimulated serine/threonine-specific kinases have been identified as potential mediators of such signalling. MAP (microtubule-associated protein) kinase has emerged as a very interesting member of this group, because it activates a separate kinase, pp90rsk, which is also growth factor-stimulated. MAP kinase itself appears to be regulated by protein phosphorylation, because it can be inactivated by protein phosphatases. We have identified two 60 kDa proteins that promote the phosphorylation and full activation of MAP kinase in a manner paralleling its activation by growth factors in intact cells. These 'MAP kinase activators' are themselves stimulated by growth factors, suggesting that they function as intermediates between the MAP kinase and cell surface receptors in a growth factor-stimulated kinase cascade. Identification of the components of this protein kinase cascade reveals a mechanism by which at least some of the effects of receptor tyrosine kinases can be mediated through serine/threonine phosphorylation.
Collapse
Affiliation(s)
- N G Ahn
- Department of Biochemistry, University of Washington, Seattle 98185
| | | | | | | |
Collapse
|
3
|
Deeble PD, Cox ME, Frierson HF, Sikes RA, Palmer JB, Davidson RJ, Casarez EV, Amorino GP, Parsons SJ. Androgen-independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA-differentiated neuroendocrine cells. Cancer Res 2007; 67:3663-72. [PMID: 17440078 DOI: 10.1158/0008-5472.can-06-2616] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuroendocrine status of prostatic adenocarcinomas is considered a prognostic indicator for development of aggressive, androgen-independent disease. Neuroendocrine-like cells are thought to function by providing growth and survival signals to surrounding tumor cells, particularly following androgen ablation therapy. To test this hypothesis directly, LNCaP cells were engineered to inducibly express a constitutively activated form of the cyclic AMP-dependent protein kinase A catalytic subunit (caPKA), which was previously found upon transient transfection to be sufficient for acquisition of neuroendocrine-like characteristics and loss of mitotic activity. Clonal cells that inducibly expressed caPKA enhanced the growth of prostate tumor cells in anchorage-dependent and anchorage-independent in vitro assays as well as the growth of prostate tumor xenografts in vivo, with the greatest effects seen under conditions of androgen deprivation. These results suggest that neuroendocrine-like cells of prostatic tumors have the potential to enhance androgen-independent tumor growth in a paracrine manner, thereby contributing to progression of the disease.
Collapse
Affiliation(s)
- Paul D Deeble
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang K, Hackett JT, Cox ME, Van Hoek M, Lindstrom JM, Parsons SJ. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases. J Biol Chem 2003; 279:8779-86. [PMID: 14679211 DOI: 10.1074/jbc.m309652200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.
Collapse
Affiliation(s)
- Kan Wang
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
5
|
Mendoza IE, Schmachtenberg O, Tonk E, Fuentealba J, Díaz-Raya P, Lagos VL, García AG, Cárdenas AM. Depolarization-induced ERK phosphorylation depends on the cytosolic Ca2+ level rather than on the Ca2+ channel subtype of chromaffin cells. J Neurochem 2003; 86:1477-86. [PMID: 12950456 DOI: 10.1046/j.1471-4159.2003.01965.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.
Collapse
Affiliation(s)
- Isabel E Mendoza
- Centro de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The great majority of the sustained secretory response of adrenal chromaffin cells to histamine is due to extracellular Ca(2+) influx through voltage-operated Ca(2+) channels (VOCCs). This is likely to be true also for other G protein-coupled receptor (GPCR) agonists that evoke catecholamine secretion from these cells. However, the mechanism by which these GPCRs activate VOCCs is not yet clear. A substantial amount of data have established that histamine acts on H(1) receptors to activate phospholipase C via a Pertussis toxin-resistant G protein, causing the production of inositol 1,4,5-trisphosphate and the mobilisation of store Ca(2+); however, the molecular events that lead to the activation of the VOCCs remain undefined. This review will summarise the known actions of histamine on cellular signalling pathways in adrenal chromaffin cells and relate them to the activation of extracellular Ca(2+) influx through voltage-operated channels, which evokes catecholamine secretion. These actions provide insight into how other GPCRs might activate Ca(2+) influx in many excitable and non-excitable cells.
Collapse
Affiliation(s)
- Philip D Marley
- Department of Pharmacology, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
|
8
|
Caohuy H, Pollard HB. Protein kinase C and guanosine triphosphate combine to potentiate calcium-dependent membrane fusion driven by annexin 7. J Biol Chem 2002; 277:25217-25. [PMID: 11994295 DOI: 10.1074/jbc.m202452200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exocytotic secretion is promoted by the concerted action of calcium, guanine nucleotide, and protein kinase C. We now show that the calcium-dependent membrane fusion activity of annexin 7 in vitro is further potentiated by the combined addition of guanine nucleotide and protein kinase C. The observed increment involves the simultaneous activation of annexin 7 by these two effectors. Guanosine triphosphate (GTP) and its non-hydrolyzable analogues optimally enhance the phosphorylation of annexin 7 by protein kinase C in vitro. Reciprocally, phosphorylation by protein kinase C significantly potentiates the binding and hydrolysis of GTP by annexin 7. Only protein kinase C-dependent phosphorylation has a significant positive effect on annexin 7 GTPase, although other protein kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, and pp60(c-)(src), have been shown to label the protein with high efficiency. In vivo, the ratio of bound GDP/GTP and phosphorylation of annexin 7 change in direct proportion to the extent of catecholamine release from chromaffin cells in response to stimulation by carbachol, or to inhibition by various protein kinase C inhibitors. These results thus lead us to hypothesize that annexin 7 may serve as a common site of action for calcium, guanine nucleotide, and protein kinase C in the exocytotic membrane fusion process in chromaffin cells.
Collapse
Affiliation(s)
- Hung Caohuy
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
9
|
Bieger S, Morinville A, Maysinger D. Bisperoxovanadium complex promotes dopamine exocytosis in PC12 cells. Neurochem Int 2002; 40:307-14. [PMID: 11792460 DOI: 10.1016/s0197-0186(01)00093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of the peroxovanadium complex potassium bisperoxo(1,10-phenanthroline)-oxovanadate (bpV[phen]) have been studied on dopamine (DA) exocytosis in PC12 cells. Bisperoxo(1,10-phenanthroline)-oxovanadate does not elicit dopamine secretion in PC12 cells. However, treatment of PC12 cells with 30 microM bpV[phen] for 20 min significantly enhances the secretion induced by the Ca(2+)-ionophore A23187. The effects appear to be irreversible, and strikingly different from the transient and suppressing effects of orthovanadate, which, like bpV[phen], is also a protein tyrosine phosphatase inhibitor. Contrastingly, the short-lived peroxovanadates, formed in situ by the addition of hydrogen peroxide and orthovanadate, are relatively ineffective. The Ca(2+) chelating agent EGTA abolishes bpV[phen]-enhanced dopamine release. The extracellular-regulated protein kinases (ERK) and synaptophysin, proteins implicated in exocytosis, are both tyrosine-phosphorylated by bpV[phen] in a dose- and time-dependent manner, with a maximal effect at 30 microM. Pre-treatment of cells with PD98059 significantly reduced dopamine release (P<0.05). These results suggest that this peroxovanadium complex enhances dopamine exocytosis, at least in part, by ERK-mediated signaling pathway and synaptophysin-associated phosphatase(s).
Collapse
Affiliation(s)
- S Bieger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada H3G 1Y6
| | | | | |
Collapse
|
10
|
Deeble PD, Murphy DJ, Parsons SJ, Cox ME. Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol 2001; 21:8471-82. [PMID: 11713282 PMCID: PMC100010 DOI: 10.1128/mcb.21.24.8471-8482.2001] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuroendocrine (NE) differentiation in prostatic adenocarcinomas has been reported to be an early marker for development of androgen independence. Secretion of mitogenic peptides from nondividing NE cells is thought to contribute to a more aggressive disease by promoting the proliferation of surrounding tumor cells. We undertook studies to determine whether the prostate cancer cell line LNCaP could be induced to acquire NE characteristics by treatment with agents that are found in the complex environment in which progression of prostate cancer towards androgen independence occurs. We found that cotreatment of LNCaP cells with agents that signal through cyclic AMP-dependent protein kinase (PKA), such as epinephrine and forskolin, and with the cytokine interleukin-6 (IL-6) promoted the acquisition of an NE morphological phenotype above that seen with single agents. Convergent IL-6 and PKA signaling also resulted in potentiated mitogen-activated protein kinase (MAPK) activation without affecting the level of signal transducer and activator of transcription or PKA activation observed with these agents alone. Cotreatment with epinephrine and IL-6 synergistically increased c-fos transcription as well as transcription from the beta4 nicotinic acetylcholine receptor subunit promoter. Potentiated transcription from these elements was shown to be dependent on the MAPK pathway. Most importantly, cotreatment with PKA activators and IL-6 resulted in increased secretion of mitogenic neuropeptides. These results indicate that PKA and IL-6 signaling participates in gene transcriptional changes that reflect acquisition of an NE phenotype by LNCaP cells and suggest that similar signaling mechanisms, particularly at sites of metastasis, may be responsible for the increased NE content of many advanced prostate carcinomas.
Collapse
Affiliation(s)
- P D Deeble
- Department of Microbiology and Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
11
|
Weiss JL, Burgoyne RD. Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 2001; 276:44804-11. [PMID: 11583988 DOI: 10.1074/jbc.m103262200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In common with many neurons, adrenal chromaffin cells possess distinct voltage-dependent and voltage-independent pathways for Ca(2+) channel regulation. In this study, the voltage-independent pathway was revealed by addition of naloxone and suramin to remove tonic blockade of Ca(2+) currents via opioid and purinergic receptors due to autocrine feedback inhibition. This pathway requires the Ca(2+)-binding protein neuronal calcium sensor-1 (NCS-1). The voltage-dependent pathway was pertussis toxin-sensitive, whereas the voltage-independent pathway was largely pertussis toxin-insensitive. Characterization of the voltage-independent inhibition of Ca(2+) currents revealed that it did not involve protein kinase C-dependent signaling pathways but did require the activity of a Src family tyrosine kinase. Two structurally distinct Src kinase inhibitors, 4-amino-5-(4-methylphenyl)7-(t-butyl)pyrazolo[3,4-d] pyrimidine (PP1) and a Src inhibitory peptide, increased the Ca(2+) currents, and no further increase in Ca(2+) currents was elicited by addition of naloxone and suramin. In addition, the Src-like kinase appeared to act in the same pathway as NCS-1. In contrast, addition of PP1 did not prevent a voltage-dependent facilitation elicited by a strong pre-pulse depolarization indicating that this pathway was independent of Src kinase activity. PPI no longer increased Ca(2+) currents after addition of the P/Q-type channel blocker omega-agatoxin TK. The alpha(1A) subunit of P/Q-type Ca(2+) channels was immunoprecipitated from chromaffin cell extracts and found to be phosphorylated in a PP1-sensitive manner by endogenous kinases in the immunoprecipitate. A high molecular mass (around 220 kDa) form of the alpha(1A) subunit was detected by anti-phosphotyrosine, suggesting a possible target for Src family kinase action. These data demonstrate a voltage-independent mechanism for autocrine inhibition of P/Q-type Ca(2+) channel currents in chromaffin cells that requires Src family kinase activity and suggests that this may be a widely distributed pathway for Ca(2+) channel regulation.
Collapse
Affiliation(s)
- J L Weiss
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | |
Collapse
|
12
|
Bobrovskaya L, Odell A, Leal RB, Dunkley PR. Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of MAPKs after angiotensin II stimulation. J Neurochem 2001; 78:490-8. [PMID: 11483651 DOI: 10.1046/j.1471-4159.2001.00445.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin II (AII, 100 nM) stimulation of bovine adrenal chromaffin cells (BACCs) produced angiotensin II receptor subtype 1 (AT1)-mediated increases in extracellular regulated protein kinase 1/2 (ERK1/2) and stress-activated p38MAPK (p38 kinase) phosphorylation over a period of 10 min. ERK1/2 and p38 kinase phosphorylation preceded Ser31 phosphorylation on tyrosine hydroxylase (TOH). The inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2) activation, PD98059 (0.1-50 microM) and UO126 (0.1-10 microM), dose-dependently inhibited both ERK2 and Ser31 phosphorylation on TOH in response to AII, suggesting MEK1/2 involvement. The p38 kinase inhibitor SB203580 (20 microM, 30 min) abolished Ser31 and Ser19 phosphorylation on TOH and partially inhibited ERK2 phosphorylation produced by AII. In contrast, 1 microM SB203580 did not affect AII-stimulated TOH phosphorylation, but fully inhibited heat shock protein 27 (HSP27) phosphorylation produced by AII. Also, 1 microM SB203580 fully inhibited Ser19 phosphorylation on TOH and HSP27 phosphorylation in response to anisomycin (30 min, 10 microg/mL). The results suggest that ERKs mediate Ser31 phosphorylation on TOH in response to AII, but p38 kinase is not involved. Previous studies suggesting a role for p38 kinase in the phosphorylation of Ser31 are explained by the non-specific effects of 20 microM SB203580 in BACCs. The p38 kinase pathway is able to phosphorylate Ser19 on TOH in response to anisomycin, but does not do so in response to AII.
Collapse
Affiliation(s)
- L Bobrovskaya
- The Neuroscience Group, Discipline of Medical Biochemistry, Faculty of Medicine and Health Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | |
Collapse
|
13
|
Abstract
Annexin 7, a Ca(2+)/GTP-activated membrane fusion protein, is preferentially phosphorylated in intact chromaffin cells, and the levels of annexin 7 phosphorylation increase quantitatively in proportion to the extent of catecholamine secretion. Consistently, various protein kinase C inhibitors proportionately reduce both secretion and phosphorylation of annexin 7 in these cells. In vitro, annexin 7 is quantitatively phosphorylated by protein kinase C to a mole ratio of 2.0, and phosphorylation is extraordinarily sensitive to variables such as pH, calcium, phospholipid, phorbol ester, and annexin 7 concentration. Phosphorylation of annexin 7 by protein kinase C significantly potentiates the ability of the protein to fuse phospholipid vesicles and lowers the half-maximal concentration of calcium needed for this fusion process. Furthermore, other protein kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, and protein-tyrosine kinase pp60(c-)(src), also label annexin 7 with high efficiency but do not have this effect on membrane fusion. In the case of pp60(c-)(src), we note that this kinase, if anything, modestly suppresses the membrane fusion activity of annexin 7. These results thus lead us to hypothesize that annexin 7 may be a positive mediator for protein kinase C action in the exocytotic membrane fusion reaction in chromaffin cells.
Collapse
Affiliation(s)
- H Caohuy
- Department of Anatomy and Cell Biology, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
14
|
Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci 2001. [PMID: 11160424 DOI: 10.1523/jneurosci.21-02-00434.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the extracellular signal-regulated kinase 1 (ERK1) and ERK2 by neurotrophins, neuronal activity, or cAMP has been strongly implicated in differentiation, survival, and adaptive responses of neurons during development and in the adult brain. Recently, a new member of the mitogen-activated protein (MAP) kinase family, ERK5, was discovered. Like ERK1 and ERK2, ERK5 is expressed in neurons, and ERK5 stimulation by epidermal growth factor is blocked by the MAP kinase/ERK kinase 1 (MEK1) inhibitors PD98059 and U0126. This suggests the interesting possibility that some of the functions attributed to ERK1/2 may be mediated by ERK5. However, the regulatory properties of ERK5 in primary cultured neurons have not been reported. Here we examined the regulation of ERK5 signaling in primary cultured cortical neurons. Our data demonstrate that, similar to ERK1/2, ERK5 is activated by neurotrophins including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4. BDNF stimulation of ERK5 required the activity of MEK5. Surprisingly, ERK5 was not stimulated by cAMP or neuronal activity induced by glutamate or membrane depolarization. In contrast to ERK1/2, ERK5 strongly activated the transcriptional activity of myocyte enhancer factor 2C (MEF2C) in pheochromocytoma 12 (PC12) cells and was required for neurotrophin stimulation of MEF2C transcription in both PC12 cells and cortical neurons. Furthermore, ERK1/2, but not ERK5, induced transcription from Elk1 and the cAMP/ Ca(2+) response element in PC12 cells. Our data suggest that mechanisms for regulation of ERK5 and downstream transcriptional pathways regulated by ERK5 are distinct from those of ERK1/2 in neurons. Furthermore, ERK5 is the first MAP kinase identified whose activity is stimulated by neurotrophins but not by neuronal activity.
Collapse
|
15
|
Cavanaugh JE, Ham J, Hetman M, Poser S, Yan C, Xia Z. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci 2001; 21:434-43. [PMID: 11160424 PMCID: PMC6763829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Activation of the extracellular signal-regulated kinase 1 (ERK1) and ERK2 by neurotrophins, neuronal activity, or cAMP has been strongly implicated in differentiation, survival, and adaptive responses of neurons during development and in the adult brain. Recently, a new member of the mitogen-activated protein (MAP) kinase family, ERK5, was discovered. Like ERK1 and ERK2, ERK5 is expressed in neurons, and ERK5 stimulation by epidermal growth factor is blocked by the MAP kinase/ERK kinase 1 (MEK1) inhibitors PD98059 and U0126. This suggests the interesting possibility that some of the functions attributed to ERK1/2 may be mediated by ERK5. However, the regulatory properties of ERK5 in primary cultured neurons have not been reported. Here we examined the regulation of ERK5 signaling in primary cultured cortical neurons. Our data demonstrate that, similar to ERK1/2, ERK5 is activated by neurotrophins including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4. BDNF stimulation of ERK5 required the activity of MEK5. Surprisingly, ERK5 was not stimulated by cAMP or neuronal activity induced by glutamate or membrane depolarization. In contrast to ERK1/2, ERK5 strongly activated the transcriptional activity of myocyte enhancer factor 2C (MEF2C) in pheochromocytoma 12 (PC12) cells and was required for neurotrophin stimulation of MEF2C transcription in both PC12 cells and cortical neurons. Furthermore, ERK1/2, but not ERK5, induced transcription from Elk1 and the cAMP/ Ca(2+) response element in PC12 cells. Our data suggest that mechanisms for regulation of ERK5 and downstream transcriptional pathways regulated by ERK5 are distinct from those of ERK1/2 in neurons. Furthermore, ERK5 is the first MAP kinase identified whose activity is stimulated by neurotrophins but not by neuronal activity.
Collapse
Affiliation(s)
- J E Cavanaugh
- Departments of Environmental Health and Pharmacology, University of Washington, Seattle, Washington 98195-7234, USA
| | | | | | | | | | | |
Collapse
|
16
|
Cox ME, Deeble PD, Bissonette EA, Parsons SJ. Activated 3',5'-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrine-like differentiation of the LNCaP prostate tumor cell line. J Biol Chem 2000; 275:13812-8. [PMID: 10788503 DOI: 10.1074/jbc.275.18.13812] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine (NE) differentiation within prostate tumors is proposed to be a contributing factor in disease progression. However, the cellular origin and molecular mechanism controlling differentiation of prostatic NE cells are unresolved. The prostate tumor cell line, LNCaP, can reversibly acquire many NE characteristics in response to treatment with beta-adrenergic receptor agonists and activators of adenylate cyclase. In this study, we demonstrate that these treatments induce protein kinase A (PKA) activation in LNCaP cells and that ectopic expression of a constitutively activated form of the PKA catalytic subunit, CIalpha, results in acquisition of NE characteristics, including the extension of neuritic processes, cessation of mitotic activity, and production of neuron-specific enolase. Forskolin-, epinephrine-, and isoproterenol-dependent NE differentiation of LNCaP cells was significantly inhibited by expressing a dominant negative mutant of the PKA regulatory subunit, RIalpha. These results demonstrate that prostatic NE differentiation in response to these agents depends on PKA activation, and this signaling pathway may provide a therapeutic target for treating advanced forms of prostate cancer.
Collapse
Affiliation(s)
- M E Cox
- Department of Microbiology, University of Virginia School of Medicine, University of Virginia Health Systems, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Quantitative sandwich enzyme immunoassay (EIA) systems, that can distinguish between active-form subtypes of mitogen-activated protein kinases (p44 and p42 MAP kinase, also called ERK1 and ERK2), were developed employing subtype-specific antibodies as a solid phase and an antibody specific for the phosphorylated region of MAP kinases as the detector. Using these systems, we investigated the dynamic changes in the activity of ERK1 and ERK2 in platelet-derived growth factor (PDGF)-treated rat mesangial cells and nerve growth factor (NGF)-treated PC12. Both ERK1 and ERK2 were activated immediately after stimulation, and the activity reached a maximum at 5-10 min. The total activity of both subtypes correlated well with that obtained using the conventional method. Compared with the usual methods, these systems should have a higher specificity and be more convenient and suitable for experiments with multiple samples. Moreover, as these EIA systems can be applied not only to rat MAP kinases but also to human, mouse and rabbit MAP kinases, they are potentially very useful for a range of investigations.
Collapse
Affiliation(s)
- A Tani
- Discovery Research Laboratories III, Takeda Chemical Industries Ltd., 2-17-85 Juso-honmachi, Yodogawa-ku, Osaka, Japan.
| | | | | |
Collapse
|
18
|
White MK, Strayer DS. Surfactant protein A regulates pulmonary surfactant secretion via activation of phosphatidylinositol 3-kinase in type II alveolar cells. Exp Cell Res 2000; 255:67-76. [PMID: 10666335 DOI: 10.1006/excr.1999.4764] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is secreted by the type II alveolar cells of the lung, and this secretion is induced by secretagogues of several types (e.g., ionomycin, phorbol esters, and terbutaline). Secretagogue-induced secretion is inhibited by surfactant-associated protein A (SP-A), which binds to a specific receptor (SPAR) on the surface of type II cells. The mechanism of SP-A-activated SPAR signaling is completely unknown. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued surfactant secretion from inhibition by SP-A. In order to directly demonstrate a role for PI3K in SPAR signaling, PI3K activity was immunoprecipitated from type II cell extracts. PI3K activity increased rapidly after SP-A addition to type II cells. Since many receptors that activate PI3K do so through tyrosine-specific protein phosphorylation, antisera to phosphotyrosine, insulin-receptor substrate-1 (IRS-1), or SPAR were also examined. These antisera coimmunoprecipitated PI3K activity that was stimulated by SP-A. In addition, the tyrosine-specific protein kinase inhibitors genistein and herbimycin A blocked the action of SP-A on surfactant secretion. We conclude that SP-A signals to regulate surfactant secretion through SPAR, via pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of PI3K. This activation leads to inhibition of secretagogue-induced secretion of pulmonary surfactant.
Collapse
Affiliation(s)
- M K White
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
19
|
Malaguti C, Yasumoto T, Paolo Rossini G. Transient Ca2+-dependent activation of ERK1 and ERK2 in cytotoxic responses induced by maitotoxin in breast cancer cells. FEBS Lett 1999; 458:137-40. [PMID: 10481052 DOI: 10.1016/s0014-5793(99)01145-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Treatment of MCF-7 breast cancer cells with the marine toxin maitotoxin (MTX) induces cell death. The cytotoxic effects are clearly detectable within 2-4 h after cell treatment with 10(-10)-10(-9) M concentrations of MTX. The response was found to depend on extracellular Ca2+, inasmuch as cell death was prevented when culture dishes received MTX, following addition of EGTA. MTX caused transient phosphorylation of extracellular signal-regulated kinase isoforms 1 and 2 (ERK1 and ERK2) mitogen-activated protein kinase isoforms in MCF-7 cells, which was maximal 15 min after toxin addition to culture vessels. The effect was dependent on influx of extracellular Ca2+, as it was abolished by EGTA, and was induced by ionophores, such as A23187 and ionomycin. Our findings show that signaling pathways involving Ca2+ ions may cause activation of ERK1 and ERK2 in cell death responses.
Collapse
Affiliation(s)
- C Malaguti
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Italy
| | | | | |
Collapse
|
20
|
Fischer LJ, Wagner MA, Madhukar BV. Potential involvement of calcium, CaM kinase II, and MAP kinases in PCB-stimulated insulin release from RINm5F cells. Toxicol Appl Pharmacol 1999; 159:194-203. [PMID: 10486306 DOI: 10.1006/taap.1999.8728] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that induce release of insulin in rat insulinoma cells, RINm5F (Fischer et al., Life Sci. (1996) 59, 2041-2049). In the present study the mechanisms of this effect were investigated using noncytotoxic concentrations (10 microg/ml) of a PCB mixture, Aroclor-1254, and the pure PCB congeners 2,2',4,4'-tetrachlorobiphenyl and 2,2',4,4',5, 5'-hexachlorobiphenyl. Treatment of RINm5F cells with each of these agents resulted in a rapid increase in intracellular free calcium. The presence of extracellular calcium was required for PCB-induced insulin release because removal of calcium from the medium attenuated the effect. In addition, pretreatment of RINm5F cells with the calcium channel blocker verapamil also blocked PCB-induced insulin release. To determine whether PCB-related insulin release could be associated with the enzyme, calcium/calmodulin-dependent kinase II (CaM kinase II), RINm5F cells were pretreated with the CaM kinase II inhibitor KN-93. PCB-induced insulin release was completely blocked by KN-93. Under similar treatment conditions, PCBs also induced the activity of mitogen-activated protein kinases (MAPK) 1 and 2. However, inhibition of MAPK activation by a specific inhibitor, PD-98059 (10.0 microM) did not prevent insulin release induced by PCBs. The results of the present investigation suggest a role for calcium and CaM kinase II in PCB-induced insulin release. Furthermore, the results suggest that insulin release by PCBs is independent of the activation of MAPKs.
Collapse
Affiliation(s)
- L J Fischer
- Department of Pharmacology and Toxicology and Institute for Environmental Toxicology, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | | |
Collapse
|
21
|
Zwick E, Wallasch C, Daub H, Ullrich A. Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells. J Biol Chem 1999; 274:20989-96. [PMID: 10409647 DOI: 10.1074/jbc.274.30.20989] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we have demonstrated that in PC12 cells activation of the Ras/extracellular signal-regulated kinase pathway in response to membrane depolarization or bradykinin is mediated by calcium-dependent transactivation of the epidermal growth factor receptor (EGFR). Here we address the question whether Ca(2+)-calmodulin-dependent protein kinase (CaM kinase) has a role in the EGFR transactivation signal. Using compounds that selectively interfere with either CaM kinase activity or calmodulin function, we show that KCl-mediated membrane depolarization-triggered, but not bradykinin-mediated signals involve CaM kinase function upstream of the EGFR. Although both depolarization-induced calcium influx and bradykinin stimulation of PC12 cells were found to induce c-fos transcription through EGFR activation, the former signal is CaM kinase-dependent and the latter was shown to be independent. As PYK2 is also activated upon elevation of intracellular calcium, we investigated the potential involvement of this cytoplasmic tyrosine kinase in EGFR transactivation. Interestingly, we observed that inhibition of CaM kinase activity in PC12 cells abrogated tyrosine phosphorylation of PYK2 upon KCl but not bradykinin treatment. Nevertheless, PYK2 activation in response to both stimuli appeared to be mediated by pathways parallel to EGFR transactivation. Our data demonstrate the existence of two distinct calcium-dependent mechanisms leading either to EGFR-mediated extracellular signal-regulated activation or to PYK2 tyrosine phosphorylation. Both pathways either in concert or independently might contribute to the definition of biological responses in neuronal cell types.
Collapse
Affiliation(s)
- E Zwick
- Department of Molecular Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
22
|
Li BS, Grant P, Pant HC. Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:84-91. [PMID: 10381546 DOI: 10.1016/s0169-328x(99)00142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Signals activating the kinases that phosphorylate neurofilament proteins in the axon remain unknown. In a previous study, we have demonstrated that a constitutively active form of MEK1 activates Erk1 and Erk2 kinases, which phosphorylate co-transfected NF-M in NIH 3T3 cells. In this study, we report the activation of endogenous Erk1 and Erk2 by membrane depolarization and calcium influx through L-type calcium channels, which resulted in phosphorylation of the NF-M tail domain in PC12 cells. This phosphorylation was inhibited in the presence of nifedipine, an L-type calcium channel inhibitor, and PD98059, a specific MEK1 inhibitor. Our data suggest a mechanism linking calcium influx through voltage-gated calcium channels with the MAP kinase pathway and NF-M tail domain phosphorylation in cell body and neurite. These findings may provide significant new insights into mechanisms involved in some neurological diseases.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, NINDS, NIH, Bldg. 36, Rm. 4D20, 9000 Rockville Pike, Bethesda, MD 20892-4130, USA
| | | | | |
Collapse
|
23
|
Abstract
MAP kinases help to mediate diverse processes ranging from transcription of protooncogenes to programmed cell death. More than a dozen mammalian MAP kinase family members have been discovered and include, among others, the well studied ERKs and several stress-sensitive enzymes. MAP kinases lie within protein kinase cascades. Each cascade consists of no fewer than three enzymes that are activated in series. Cascades convey information to effectors, coordinates incoming information from other signaling pathways, amplify signals, and allow for a variety of response patterns. Subcellular localization of enzymes in the cascades is an important aspect of their mechanisms of action and contributes to cell-type and ligand-specific responses. Recent findings on these properties of MAP kinase cascades are the major focus of this review.
Collapse
Affiliation(s)
- M H Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX 75235-9041, USA
| |
Collapse
|
24
|
Abstract
We have isolated and characterized cellular kinases which associate with the transactivation domain of c-Myc and phosphorylate Ser-62. We demonstrate that cellular Map kinases associate with c-Myc under stringent conditions and phosphorylate Ser-62. We also find that TPA stimulates the activity of the Myc-associated Map kinase to phosphorylate Ser-62. However, we do not observe an increase in Ser-62 phosphorylation in endogenous c-Myc after TPA treatment of cells. Since the regulation of the c-Myc-associated Map kinases does not correlate with the in vivo regulation of Ser-62 phosphorylation in c-Myc, we conclude that Map kinases are not the in vivo kinases for Ser-62. Although Ser-62 phosphorylation was not affected by TPA, phosphorylation at a different serine residue was significantly upregulated by TPA.
Collapse
Affiliation(s)
- B Lutterbach
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | |
Collapse
|
25
|
Burns CJ, Howell SL, Jones PM, Persaud SJ. The p38 mitogen-activated protein kinase cascade is not required for the stimulation of insulin secretion from rat islets of Langerhans. Mol Cell Endocrinol 1999; 148:29-35. [PMID: 10221768 DOI: 10.1016/s0303-7207(98)00239-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression of the p38 subfamily of mitogen-activated protein kinases (MAPKs) was examined in rat islets of Langerhans and pancreatic beta-cell lines, and its involvement in the regulation of insulin secretion was investigated. Rat islets and several rodent beta-cell lines were shown to express p38 MAPK by Western blotting. The cellular stress agents sodium arsenite and hyperosmotic sorbitol significantly stimulated p38 MAPK activity, as did the tyrosine phosphatase inhibitor sodium pervanadate and the serine/threonine phosphatase inhibitor okadaic acid. Increases in p38 MAPK activity were not consistently correlated with increases in insulin secretion, and the dissociation between p38 MAPK activity and the regulation of insulin secretion was further demonstrated in studies using the specific p38 MAPK inhibitor SB203580, which was without significant effect on the stimulation of insulin secretion by glucose, 4beta phorbol myristate acetate and forskolin. These studies indicate that although p38 MAPK is expressed in pancreatic beta-cells and can be activated pharmacologically, its activity can be dissociated from the exocytotic release of insulin from rat islets of Langerhans.
Collapse
Affiliation(s)
- C J Burns
- Endocrinology and Reproduction Research Group, School of Biomedical Sciences, Kings College London, UK.
| | | | | | | |
Collapse
|
26
|
Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta-cells. Endocr Rev 1998; 19:429-61. [PMID: 9715374 DOI: 10.1210/edrv.19.4.0339] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P M Jones
- Biomedical Sciences Division, King's College London, United Kingdom.
| | | |
Collapse
|
27
|
Burns CJ, Howell SL, Jones PM, Persaud SJ. Glucose-stimulated insulin secretion from rat islets of Langerhans is independent of mitogen-activated protein kinase activation. Biochem Biophys Res Commun 1997; 239:447-50. [PMID: 9344849 DOI: 10.1006/bbrc.1997.7486] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role played by mitogen-activated protein kinases (MAPKs) in the regulation of insulin secretion from adult rat islets of Langerhans was investigated by examining the effects of glucose, forskolin and 4beta phorbol myristate acetate (PMA) on islet MAPK activity and by measuring insulin secretion from islets in response to these agonists after inhibition of MAPK by PD 098059 (PD). Glucose (20mM) had a small (<2-fold) stimulatory effect on MAPK activity in isolated islets, and this was potentiated by forskolin (10 microM) and PMA (500nM), which also significantly stimulated MAPK activity at 2mM glucose. Pretreatment of islets with 50 microM PD inhibited MAPK activity, but had no effect on secretory responses to glucose, forskolin and PMA. These results suggest that although MAPK may be activated by insulin secretagogues in adult rodent islets, this can be dissociated from the exocytotic release of insulin.
Collapse
Affiliation(s)
- C J Burns
- Biomedical Sciences Division, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Sue-A-Quan AK, Fialkow L, Vlahos CJ, Schelm JA, Grinstein S, Butler J, Downey GP. Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol 1997; 172:94-108. [PMID: 9207930 DOI: 10.1002/(sici)1097-4652(199707)172:1<94::aid-jcp11>3.0.co;2-o] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exposure of neutrophils to a variety of agonists including soluble chemoattractant peptides and cytokines results in degranulation and activation of the oxidative burst (effector functions) that are required for bacterial killing. At present, the signaling pathways regulating these important functions are incompletely characterized. Mitogen-activated protein (MAP) kinases (MAPK) as well as members of a family of "renaturable kinases" are rapidly activated in neutrophils in response to diverse physiological agonists, suggesting that they may regulate cell activation. Antagonists of phosphatidyl inositol-3-(OH) kinase (PI3-kinase) such as wortmannin (Wtmn) inhibit these effector responses as well as certain of the above-mentioned kinases, leading to the suggestion that these enzymes lie downstream of PI3-kinase in the pathway regulating the oxidative burst and granule secretion. However, an apparent discrepancy exists in that, while virtually obliterating activity of PI3-kinase and the oxidase at low concentrations (ID50 < 20 nM), Wtmn has only variable inhibitory effects on MAPK even at substantially higher concentrations (75-100 nM). This raises the possibility that the inhibitory effects of Wtmn are mediated via other enzyme systems. The purpose of the current study was therefore to compare the effects of Wtmn on PI3-kinase activity and on the chemoattractant-activated kinases, and to determine the potential relationship of these pathways to microbicidal responses. In human neutrophils, both the oxidative burst and granule secretion induced by fMLP were inhibited by Wtmn but at markedly different concentrations: the oxidative burst was inhibited with an ID50 of < 5 nM while granule secretion was only partially inhibited at concentrations exceeding 75 nM. Activation of both MEK-1 and MAPK in response to fMLP was only partially inhibited by high doses of Wtmn (ID50 of > 100 nM and approximately 75 nM, respectively). In contrast, Wtmn potently inhibited fMLP-induced activation of the 63 and 69 kDa renaturable kinases (ID50 approximately 5-10 nM). We speculate that the renaturable kinases may be involved in the regulation of the oxidative burst, whereas the MAPK pathway may play a role in other neutrophil functions such as granule secretion.
Collapse
Affiliation(s)
- A K Sue-A-Quan
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Khoo S, Cobb MH. Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Natl Acad Sci U S A 1997; 94:5599-604. [PMID: 9159118 PMCID: PMC20824 DOI: 10.1073/pnas.94.11.5599] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the insulinoma cell line INS-1, a model system for glucose-regulated insulin secretion, the mitogen-activating protein (MAP) kinases/extracellular signal-regulated protein kinases, ERK1 and ERK2 are activated up to 15-fold by physiological concentrations of glucose, in the range of 3-12 mM. The related MAP kinase family members, the c-Jun-N-terminal kinases/stress-activated protein kinases are insensitive to glucose, while the p38 MAP kinase is slightly glucose responsive (1.5-fold). ERK activation is dependent on glucose metabolism and the subsequent increase in calcium influx. Inhibiting activation of ERK1 and ERK2 with the MEK1/2 inhibitor PD98059 has no effect on insulin secretion, indicating that ERK activity is not necessary for secretion under these conditions. Glucose activates ERK1 and ERK2 in cytosolic and purified nuclear fractions of INS-1 cells and more of each is found in nuclei from glucose-treated cells. These findings suggest that some of the glucose-dependent actions of ERKs will be exerted in the nucleus.
Collapse
Affiliation(s)
- S Khoo
- University of Texas Southwestern Medical Center, Department of Pharmacology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
30
|
Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberle-Bors E, Huskisson NS, Hirt H. Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway. THE PLANT CELL 1997; 9:75-83. [PMID: 12237344 PMCID: PMC156902 DOI: 10.1105/tpc.9.1.75] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mechanical injury in plants induces responses that are involved not only in healing but also in defense against a potential pathogen. To understand the intracellular signaling mechanism of wounding, we have investigated the involvement of protein kinases. Using specific antibodies, we showed that wounding alfalfa leaves specifically induces the transient activation of the p44MMK4 kinase, which belongs to the family of mitogen-activated protein kinases. Whereas activation of the MMK4 pathway is a post-translational process and was not blocked by [alpha]-amanitin and cycloheximide, inactivation depends on de novo transcription and translation of a protein factor(s). After wound-induced activation, the MMK4 pathway was subject to a refractory period of 25 min, during which time restimulation was not possible, indicating that the inactivation mechanism is only transiently active. After activation of the p44MMK4 kinase by wounding, transcript levels of the MMK4 gene increased, suggesting that the MMK4 gene may be a direct target of the MMK4 pathway. In contrast, transcripts of the wound-inducible MsWIP gene, encoding a putative proteinase inhibitor, were detected only several hours after wounding. Abscisic acid, methyl jasmonic acid, and electrical activity are known to mediate wound signaling in plants. However, none of these factors was able to activate the p44MMK4 kinase in the absence of wounding, suggesting that the MMK4 pathway acts independently of these signals.
Collapse
Affiliation(s)
- L. Bogre
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Jacobowitz DM, Winsky L, Detera-Wadleigh SD. Cellular expression of MAP 2 kinase in rat brain. Histochem Cell Biol 1996; 106:303-10. [PMID: 8897071 DOI: 10.1007/bf02473240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular localization of microtubule-associated protein (MAP) 2 kinase mRNA in rat brain was examined by in situ hybridization histochemistry using a synthetic oligonucleotide probe. MAP 2 kinase was expressed in both neuronal and non-neuronal cells. Areas of high density of mRNA label by the MAP 2 kinase probe appeared to be associated with high cellular packing density. Thus, MAP 2 kinase expression was particularly high in regions such as the locus coeruleus, the piriform cortex, the dentate gyrus granule cell layer, pyramidal cells of the hippocampus, the mitral cells of the olfactory bulb, and the large motor neurons of the V and VII nerves. This apparent ubiquitous distribution suggests an important role of MAP 2 kinase in the cellular functions in most cells of the adult brain.
Collapse
Affiliation(s)
- D M Jacobowitz
- Laboratory of Clinical Science, NIMH, Bethesda, MD 20892-1266, USA
| | | | | |
Collapse
|
32
|
Wheeler-Jones CP, May MJ, Houliston RA, Pearson JD. Inhibition of MAP kinase kinase (MEK) blocks endothelial PGI2 release but has no effect on von Willebrand factor secretion or E-selectin expression. FEBS Lett 1996; 388:180-4. [PMID: 8690082 DOI: 10.1016/0014-5793(96)00547-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined the potential role of MAP kinase in the regulation of endothelial cell PG12 synthesis, vWF secretion and E-selectin expression using the specific MEK inhibitor PD98059. PD98059 dose-dependently attenuated the tyrosine phosphorylation and activation of p42 mapk in response to thrombin or inflammatory cytokines. Inhibition of thrombin-induced p42 mapk activation was paralleled by an inhibitory effect of PD98059 on thrombin-driven PG12 generation but not on vWF secretion or IL-1 alpha/TNF alpha-induced E-selectin expression. These results provide evidence for a key role for p42 mapk in the acute regulation of PG12 synthesis in human endothelial cells and suggest that activation of the MAP kinase cascade is not obligatory for cytokine-stimulated E-selectin expression.
Collapse
|
33
|
Abstract
Adrenal medullary chromaffin cells derive from the neural crest during embryogenesis and differentiate into dedicated secretory cells that release catecholamines in response to acetylcholine in vivo or nicotinic agonists in vitro. Previous studies have indicated that tyrosine kinases participate in early secretagogue-induced events in these cells and are required for exocytosis. Abundant levels of the cytoplasmic tyrosine kinases, c-Src and c-Yes, have been detected in chromaffin cells, thereby implicating them as kinases relevant to these events. However, c-Src has been found to undergo a decrease in activity following secretagogue-stimulation, and c-Yes appears to exist in a constituitively low activity state, suggesting that other tyrosine kinases are involved. Furthermore, other members of the Src family of tyrosine kinases have been implicated as playing roles in secretion in a variety of cell types. Therefore, we sought to determine if other Src family members were present in chromaffin cells, and if so, to examine them for subcellular localization and changes in activity following treatment with nicotinic agonists. To this end, antibodies for Fyn, Lck, Lyn, and Fgr were assembled and used in immunoprecipitation, in vitro autokinase, and Western immunoblotting assays. Of these four kinases, only Fyn was found to be expressed at detectable levels. Differential centrifugation studies revealed that Fyn resides predominantly (> 95%) in the crude plasma membrane fraction and undergoes nicotinic-and carbachol-induced activation. This activation is reduced by the nicotinic antagonist, mecamylamine, is not elicited by muscarine, and is dependent upon the presence of extracellular Ca2+. These results suggest that Fyn is involved in signalling through the nicotinic receptor and may be one of the relevant kinases responsible for at least some of the tyrosine phosphorylations detected after stimulation.
Collapse
Affiliation(s)
- C M Allen
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
34
|
Rosen LB, Greenberg ME. Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels. Proc Natl Acad Sci U S A 1996; 93:1113-8. [PMID: 8577724 PMCID: PMC40040 DOI: 10.1073/pnas.93.3.1113] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.
Collapse
Affiliation(s)
- L B Rosen
- Department of Neurology, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- S Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile 36688-0002, USA
| |
Collapse
|
36
|
Persaud SJ, Wheeler-Jones CP, Jones PM. The mitogen-activated protein kinase pathway in rat islets of Langerhans: studies on the regulation of insulin secretion. Biochem J 1996; 313 ( Pt 1):119-24. [PMID: 8546672 PMCID: PMC1216871 DOI: 10.1042/bj3130119] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of mitogen-activated protein kinases (MAPKs) and MAPK kinases (MEKs) in rat islets of Langerhans and the involvement of MAPKs in regulated insulin secretion were examined. Two major isoforms of both MEK (45 and 46 kDa) and MAPK (42 and 44 kDa) were detected in rat islets and shown to be localized to insulin-secreting beta cells by detection of their expression in the beta cell line MIN6. The tyrosine phosphatase inhibitor sodium pervanadate, and, to a lesser extent, the serine/threonine phosphatase inhibitor okadaic acid, stimulated MAPK phosphorylation, as assessed by a shift in its electrophoretic mobility and by increased phosphotyrosine immunoreactivity of immunoprecipitated MAPK. The increase in MAPK phosphorylation stimulated by sodium pervanadate was not coupled to an increase in MAPK activity, but okadaic acid, either alone or in the presence of sodium pervanadate, caused an increase in myelin basic protein phosphorylation by MAPK. Neither okadaic acid nor sodium pervanadate, either individually or combined, stimulated insulin secretion. 4 beta-phorbol myristate acetate stimulated an increase in phosphorylation of the 42 kDa isoform of MAPK (erk2) in human umbilical vein endothelial cells, but neither it nor glucose affected either the phosphorylation state of islet erk2 or the activities of immunoprecipitated islet MAPKs. These results provide evidence for the presence of a regulated MAPK pathway in adult rat islets, but our data suggest that MAPK activation alone is not a sufficient stimulus for insulin secretion.
Collapse
Affiliation(s)
- S J Persaud
- Cellular and Molecular Endocrinology Group, Biomedical Sciences Division, King's College London, UK
| | | | | |
Collapse
|
37
|
Jonak C, Kiegerl S, Lloyd C, Chan J, Hirt H. MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:686-94. [PMID: 7476871 DOI: 10.1007/bf02191708] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termed MMK2. The predicted amino acid sequence of MMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termed MMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness of MMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeast MPK1(SLT2) kinase by MMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
38
|
Sim PJ, Wolbers WB, Mitchell R. Activation of MAP kinase by the LHRH receptor through a dual mechanism involving protein kinase C and a pertussis toxin-sensitive G protein. Mol Cell Endocrinol 1995; 112:257-63. [PMID: 7489830 DOI: 10.1016/0303-7207(95)03616-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The LHRH receptor in alpha T3-1 gonadotrope cells was shown to bring about a marked and sustained activation of MAP kinase. This response was prevented by protein kinase C inhibition or down-regulation and could be partially mimicked by phorbol ester. Additional evidence for inhibition of this response by pertussis toxin and partial mimicry by mastoparan (in a pertussis toxin-sensitive manner) provides the first evidence for Gi/Go-mediated signal transduction by the LHRH receptor. This dual mechanism of MAP kinase activation appears to be exceptional amongst the G protein-linked receptors that have been investigated.
Collapse
Affiliation(s)
- P J Sim
- MRC Brain Metabolism Unit, University Department of Pharmacology, Edinburgh, UK
| | | | | |
Collapse
|
39
|
Marley PD, Thomson KA, Bralow RA. Protein kinase A and nicotinic activation of bovine adrenal tyrosine hydroxylase. Br J Pharmacol 1995; 114:1687-93. [PMID: 7599937 PMCID: PMC1510372 DOI: 10.1111/j.1476-5381.1995.tb14958.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Stimulation of nicotinic cholinoceptors on bovine chromaffin cells increases phosphorylation of three serine residues in tyrosine hydroxylase (TOH) and activates TOH. One of the serines is a target for protein kinase A phosphorylation, and phosphorylation of this serine is adequate alone to cause TOH activation. The role of protein kinase A in nicotinic activation of TOH was therefore investigated. 2. TOH activity was studied in situ in intact, cultured, bovine adrenal chromaffin cells, by measuring 14CO2 evolved following the hydroxylation and rapid decarboxylation of [14C]-tyrosine offered to the cells. 3. Nicotine (5 microM), forskolin (1 microM) and 8-bromo-cyclic AMP (8-Br-cyclic AMP, 1 mM) each increased TOH activity by up to 200% over 10 min. The effect of nicotine was completely abolished by removal of extracellular Ca2+. 4. TOH activation by all three drugs was blocked by H89 (3-20 microM), which inhibits protein kinase A by competing for the ATP binding site on the kinase. Adenosine 3':5'-cyclic monophosphorothioate Rp-diastereomer (Rp-cAMPS) (1 mM), an inhibitor of protein kinase A that competes with cyclic AMP for the regulatory subunit of the kinase, abolished the activation of TOH by nicotine, and reduced that by forskolin and 8-Br-cyclic AMP. Both H89 and Rp-cAMPS inhibited basal TOH activity by 50-80%. 5. A structural analogue of H89, H85 (3-20 microM), which lacks activity as a protein kinase A inhibitor, did not inhibit either the activation of TOH by nicotine (5 microM) or basal TOH activity. Neither sodium nitroprusside (0.3-1O microM) nor 8-Br-cyclic GMP (1 mM) increased TOH activity.6. In digitonin-permeabilized chromaffin cells, forskolin (3 microM), cyclic AMP (10 microM) and Ca2+ (approx.2 micro M free Ca2+) each increased TOH activity. The response to all three drugs was blocked by H89(10 microM), which also reduced basal TOH activity in the permeabilized cells.7. Maximal activation of TOH by forskolin was achieved with 10 micro M forskolin. This concentration was less than the EC50 for forskolin-induced cyclic AMP accumulation in these cells. The activations of TOH by forskolin (1O microM) and nicotine (5 microM) were additive.8. The results indicate that both basal TOH activity and nicotinic activation of TOH in bovine chromaffin cells require protein kinase A activity. However, it is unlikely that nicotinic activation of TOH is directly mediated by an activation of protein kinase A in response to elevated cyclic AMP levels.It is possible that protein kinase A plays a permissive role in allowing nicotinic cholinoceptors to activate TOH by another signalling pathway.
Collapse
Affiliation(s)
- P D Marley
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
40
|
Frödin M, Hannibal J, Wulff BS, Gammeltoft S, Fahrenkrug J. Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells. Neuroscience 1995; 65:599-608. [PMID: 7777172 DOI: 10.1016/0306-4522(94)00522-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chromaffin cells of the adult rat adrenal medulla are essentially growth arrested in situ, but can proliferate in vitro, suggesting the existence of growth inhibitory factors in the adrenal gland. We have investigated whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) could be involved in the growth arrest of adrenal chromaffin cells. In adult rat adrenal gland, PACAP38 was detected by radioimmunoassay and high-performance liquid chromatography and its concentration in the medulla was estimated as 24 nmol/kg wet tissue. Immunohistochemistry of the neonatal and adult rat adrenal medulla showed PACAP38 immunoreactivity in a widely distributed network of delicate nerve fibers surrounding the chromaffin cells. In a primary culture system, PACAP38 inhibited growth factor-stimulated DNA synthesis by 90% in neonatal and adult rat chromaffin cells with half-maximal inhibition at 4 and 0.5 nM, respectively, as demonstrated by bromodeoxyuridine pulse-labeling and immunocytochemical staining of cell nuclei. In comparison, corticosterone inhibited neonatal and adult chromaffin cell proliferation by 70% and 95%, respectively, with half-maximal effect at 100 nM. In neonatal chromaffin cells, 100 nM PACAP38 and 1 microM corticosterone added together abolished proliferation completely (99.8% inhibition). Finally, PACAP38 increased cell survival but showed little neurite-promoting activity in the chromaffin cells. Our data suggest that neurally derived PACAP38, in conjunction with glucocorticoids, may override growth factor mitogenic signals, leading to the postmitotic state of chromaffin cells in the adult adrenal medulla.
Collapse
Affiliation(s)
- M Frödin
- Department of Clinical Chemistry, Glostrup Hospital, Denmark
| | | | | | | | | |
Collapse
|
41
|
Gotoh Y, Nishida E. The MAP kinase cascade: its role in Xenopus oocytes, eggs and embryos. PROGRESS IN CELL CYCLE RESEARCH 1995; 1:287-297. [PMID: 9552371 DOI: 10.1007/978-1-4615-1809-9_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine kinase that is activated by mitogens. Now MAPK and its activator, MAPK kinase (MAPKK), are thought to function in a wide variety of intracellular signalling pathways from yeast to vertebrate. We describe here a brief summary of the dissection of the MAPK cascade and its possible functions, especially in Xenopus oocytes and embryos.
Collapse
Affiliation(s)
- Y Gotoh
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | |
Collapse
|
42
|
Halloran SM, Vulliet PR. Microtubule-associated protein kinase-2 phosphorylates and activates tyrosine hydroxylase following depolarization of bovine adrenal chromaffin cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47375-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Catling AD, Reuter CW, Cox ME, Parsons SJ, Weber MJ. Partial purification of a mitogen-activated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43982-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Berruti G. Biochemical characterization of the boar sperm 42 kilodalton protein tyrosine kinase: its potential for tyrosine as well as serine phosphorylation towards microtubule-associated protein 2 and histone H 2B. Mol Reprod Dev 1994; 38:386-92. [PMID: 7980947 DOI: 10.1002/mrd.1080380406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The majority of cellular responses to changing environmental conditions is regulated by protein kinases. Spermatozoa have many special properties, including motility with demonstrated chemotaxis, the ability to undergo capacitation, and the acrosome reaction, which are in part controlled by extracellular signals and in which sperm kinases are considered to be involved. We have previously reported that there is a protein kinase activity, which phosphorylates the synthetic substrate poly-(Glu, Tyr) with a Km value of 2.3 microM, and is inhibited by the tyrosine kinase inhibitor tyrphostin, in the protein extract from boar spermatozoa (Berruti and Porzio, 1992: Biochim Biophys Acta 1118:149-154). Now we have demonstrated that the enzyme is cytosolic, is active as a monomer of M(r) 42,000, is stimulated by Mg2+ > Mn2+ but not by Ca2+, is renaturable, and can phosphorylate native protein substrates such as microtubule-associated protein 2 (MAP2) and histone H2B both on the tyrosine and serine residues. N-terminal sequence analysis suggests that it is a novel protein. These new findings imply that the boar sperm 42 kD kinase may be a novel member of the emerging class of dual-specificity protein kinases, and they raise the intriguing question of its function in the protein kinase network mediating signal transduction in mammalian spermatozoa.
Collapse
Affiliation(s)
- G Berruti
- Department of Biology, University of Milan, Italy
| |
Collapse
|
45
|
Pimplikar S, Simons K. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin-Darby canine kidney cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32273-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Ely CM, Tomiak WM, Allen CM, Thomas L, Thomas G, Parsons SJ. pp60c-src enhances the acetylcholine receptor-dependent catecholamine release in vaccinia virus-infected bovine adrenal chromaffin cells. J Neurochem 1994; 62:923-33. [PMID: 7509377 DOI: 10.1046/j.1471-4159.1994.62030923.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Secretion of catecholamines by adrenal chromaffin cells is a highly regulated process that involves serine/threonine and tyrosine phosphorylations. The nonreceptor tyrosine kinase pp60c-src is expressed at high levels and localized to plasma membranes and secretory vesicle membranes in these cells, suggesting an interaction of this enzyme with components of the secretory process. To test the hypothesis that pp60c-src is involved in exocytosis, we transiently expressed exogenous c-src cDNA using a vaccinia virus vector in primary cultures of bovine adrenomedullary chromaffin cells. Chromaffin cells infected with a c-src recombinant virus restored the diminished secretory activity accompanying infection by wild type virus alone or a control recombinant virus. The level of enhanced catecholamine release correlated directly with the time and level of exogenous c-src expression. These results could not be attributed to differences in cytopathic effects of wild type versus recombinant viruses as assessed by cell viability assays, nor to differences in norepinephrine uptake or basal release, suggesting that pp60c-src is involved in stimulus-secretion coupling in infected cells. Surprisingly, exogenous expression of an enzymatically inactive mutant c-src also restored catecholamine release, indicating that regions of the introduced c-src protein other than the kinase domain may affect catecholamine release. Secretory activity was elevated by both forms of c-src in response to either nicotine or carbachol (which activate the nicotinic and the nicotinic/muscarinic receptors, respectively). In contrast, release of catecholamines upon membrane depolarization (as elicited by 55 mM K+) or by treatment with the calcium ionophore A23187 was unaffected by either vaccinia infection or increased levels of pp60c-src. These results suggest that pp60c-src affects secretory processes in vaccinia-infected cells that are activated through ligand-gated, but not voltage-gated, ion channels.
Collapse
Affiliation(s)
- C M Ely
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
47
|
Jonak C, Heberle-Bors E, Hirt H. MAP kinases: universal multi-purpose signaling tools. PLANT MOLECULAR BIOLOGY 1994; 24:407-16. [PMID: 8123784 DOI: 10.1007/bf00024109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MAP (mitogen-activated protein) kinases are serine/threonine protein kinases and mediate intracellular phosphorylation events linking various extracellular signals to different cellular targets. MAP kinase, MAP kinase kinase and MAP kinase kinase kinase are functional protein kinase units that are conserved in several signal transduction pathways in animals and yeasts. Isolation of all three components was also shown in plants and suggests conservation of a protein kinase module in all eukaryotic cells. In plants, MAP kinase modules appear to be involved in ethylene signaling and auxin-induced cell proliferation. Therefore, coupling of different extracellular signals to different physiological responses is mediated by MAP kinase cascades and appears to have evolved from a single prototypical protein kinase module which has been adapted to the specific requirements of different organisms.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | |
Collapse
|
48
|
|
49
|
p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994. [PMID: 8264614 DOI: 10.1128/mcb.14.1.463] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.
Collapse
|
50
|
Wang W, Creutz CE. Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry 1994; 33:275-82. [PMID: 8286349 DOI: 10.1021/bi00167a036] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphorylation of the N-terminal tail by protein kinase C strongly inhibits the ability of bovine or human annexin I to aggregate chromaffin granules by increasing the calcium requirement 4-fold (Wang, W., & Creutz, C. E. (1992) Biochemistry 31, 9934-9936). In the present study three forms of human annexin I truncated in the amino terminus at residue Trp-12, Lys-26, or Lys-29 exhibit dramatic differences in their sensitivities to calcium in a chromaffin granule aggregation assay, while the [Ca2+](1/2)max values for binding of the truncated proteins to granule membranes are similar. Cleavage at Trp-12 causes a 3-fold decrease in calcium sensitivity in the membrane aggregation assay, while cleavage at Lys-26 causes a 4-fold enhancement of calcium sensitivity. In contrast, cleavage at Lys-29 results in virtually no change in calcium sensitivity. Mutagenic substitution with negatively charged amino acids of Ser-27, a site for phosphorylation by protein kinase C, or Tyr-21, a site for phosphorylation by the epidermal growth factor receptor kinase, mimics the inhibition of granule-aggregating activity seen with phosphorylation by protein kinase C. When bovine chromaffin cells are stimulated to secrete by nicotine, annexin I is phosphorylated in the amino terminus. Thr-24 and Ser-28, which are sites for phosphorylation by protein kinase C in vitro, are two of the sites phosphorylated in vivo in stimulated chromaffin cells. These data demonstrate that the ability of annexin I to promote membrane aggregation is highly sensitive to changes in the structure of the N-terminal domain of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Wang
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|