1
|
Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer MP, van Woerden GM, Besnard T, Papendorf JJ, Studencka-Turski M, Wang T, Hsieh TC, Golnik R, Baldridge D, Forster C, de Konink C, Teurlings SM, Vignard V, van Jaarsveld RH, Ades L, Cogné B, Mignot C, Deb W, Jongmans MC, Sessions Cole F, van den Boogaard MJH, Wambach JA, Wegner DJ, Yang S, Hannig V, Brault JA, Zadeh N, Bennetts B, Keren B, Gélineau AC, Powis Z, Towne M, Bachman K, Seeley A, Beck AE, Morrison J, Westman R, Averill K, Brunet T, Haasters J, Carter MT, Osmond M, Wheeler PG, Forzano F, Mohammed S, Trakadis Y, Accogli A, Harrison R, Guo Y, Hakonarson H, Rondeau S, Baujat G, Barcia G, Feichtinger RG, Mayr JA, Preisel M, Laumonnier F, Kallinich T, Knaus A, Isidor B, Krawitz P, Völker U, Hammer E, Droit A, Eichler EE, Elgersma Y, Hildebrand PW, Bolduc F, Krüger E, Bézieau S. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med 2023; 15:eabo3189. [PMID: 37256937 PMCID: PMC10506367 DOI: 10.1126/scitranslmed.abo3189] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Victoria Most
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
| | | | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Richard Golnik
- Klinik für Pädiatrie I, Universitätsklinikum Halle (Saale), 06120 Halle (Saale)
| | - Dustin Baldridge
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Cara Forster
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Charlotte de Konink
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Selina M.W. Teurlings
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | | | - Lesley Ades
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», 75013 Paris, France
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, 75013, Paris, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Marjolijn C.J. Jongmans
- Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - F. Sessions Cole
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | | | - Jennifer A. Wambach
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Daniel J. Wegner
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Sandra Yang
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Vickie Hannig
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Ann Brault
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neda Zadeh
- Genetics Center, Orange, CA 92868, USA; Division of Medical Genetics, Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Bruce Bennetts
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Anne-Claire Gélineau
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Zöe Powis
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Meghan Towne
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | - Andrea Seeley
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Anita E. Beck
- Department of Pediatrics, Division of Genetic Medicine, University of Washington & Seattle Children’s Hospital, Seattle, WA 98195-6320, USA
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Rachel Westman
- Division of Genetics, St. Luke’s Clinic, Boise, ID 83712, USA
| | - Kelly Averill
- Department of Pediatrics, Division of Pediatric Neurology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Judith Haasters
- Klinikum der Universität München, Integriertes Sozial- pädiatrisches Zentrum, 80337 Munich, Germany
| | - Melissa T. Carter
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Francesca Forzano
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Shehla Mohammed
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Yannis Trakadis
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Andrea Accogli
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Rachel Harrison
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, City Hospital Campus, The Gables, Gate 3, Hucknall Road, Nottingham NG5 1PB, UK
| | - Yiran Guo
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - René Günther Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes Adalbert Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37032 Tours, France
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin; 13353 Berlin, Germany
- Deutsches Rheumaforschungszentrum, An Institute of the Leibniz Association, Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Uwe Völker
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Elke Hammer
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Arnaud Droit
- Research Center of Quebec CHU-Université Laval, Québec, QC PQ G1E6W2, Canada
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - François Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
2
|
Meehan SD, Abdelrahman L, Arcuri J, Park KK, Samarah M, Bhattacharya SK. Proteomics and systems biology in optic nerve regeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:249-270. [PMID: 34340769 DOI: 10.1016/bs.apcsb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.
Collapse
Affiliation(s)
- Sean D Meehan
- Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Kevin K Park
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States; Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | | | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States.
| |
Collapse
|
3
|
Ji YR, Homaeigohar S, Wang YH, Lin C, Su TY, Cheng CC, Yang SH, Young TH. Selective Regulation of Neurons, Glial Cells, and Neural Stem/Precursor Cells by Poly(allylguanidine)-Coated Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48381-48392. [PMID: 31845571 DOI: 10.1021/acsami.9b17143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(allylguanidine) (PAG) was synthesized and characterized as a polycationic coating material for culturing neurons, glial cells, and neural stem/precursor cells (NSPCs) to apply PAG for neural tissue engineering. For comparison, poly-d-lysine (PDL), the golden benchmark of the neuron cell culture system, was also used in this study. When PAG was subjected to a mixed culture of neurons and glial cells, cell adhesion and neurite extension of neuronal cells were clearly observed but only few glial cells could be found alongside the neurons. Compared to PDL, the significantly lower density of the glial fibrillary acidic protein-positive cells implied that PAG suppressed the glial cell development. Likewise, PAG was demonstrated to dominate the differentiation of NSPCs principally into neurons. To investigate whether the different effects of PAG and PDL on neuron and glial cell behaviors resulted from the difference of guanidinium cations and ammonium cations, poly-l-arginine (PLA) was included and compared in this study. Similar to PDL, PLA supported high neuron and glial cell viability simultaneously. Consequently, glial cell growth and viability restrained on PAG was not only affected by the side-chain guanidino groups but also by the backbone structure property. The absence of the peptide structure in the backbone of PAG and the conformation of coated PAG on tissue culture polystyrene possibly determined the polycationic biomaterial to limit the growth of glial cells.
Collapse
Affiliation(s)
- You-Ren Ji
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Shahin Homaeigohar
- Nanochemistry and Nanoengineering, School of Chemical Engineering, Department of Chemistry and Materials Science , Aalto University , Kemistintie 1 , 00076 Aalto , Finland
| | - Yu-Hsin Wang
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Chen Lin
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering , Yuan-Ze University , Taoyuan 320 , Taiwan
| | - Ching-Chia Cheng
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| | | | - Tai-Horng Young
- Department of Biomedical Engineering , National Taiwan University , Taipei 100 , Taiwan
| |
Collapse
|
4
|
Chen H, Streifel KM, Singh V, Yang D, Mangini L, Wulff H, Lein PJ. From the Cover: BDE-47 and BDE-49 Inhibit Axonal Growth in Primary Rat Hippocampal Neuron-Glia Co-Cultures via Ryanodine Receptor-Dependent Mechanisms. Toxicol Sci 2018; 156:375-386. [PMID: 28003438 DOI: 10.1093/toxsci/kfw259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread environmental contaminants associated with adverse neurodevelopmental outcomes in children and preclinical models; however, the mechanisms by which PBDEs cause developmental neurotoxicity remain speculative. The structural similarity between PBDEs and nondioxin-like (NDL) polychlorinated biphenyls (PCBs) suggests shared toxicological properties. Consistent with this, both NDL PCBs and PBDEs have been shown to stabilize ryanodine receptors (RyRs) in the open configuration. NDL PCB effects on RyR activity are causally linked to increased dendritic arborization, but whether PBDEs similarly enhance dendritic growth is not known. In this study, we quantified the effects of individual PBDE congeners on not only dendritic but also axonal growth since both are regulated by RyR-dependent mechanisms, and both are critical determinants of neuronal connectivity. Neuronal-glial co-cultures dissociated from the neonatal rat hippocampus were exposed to BDE-47 or BDE-49 in the culture medium. At concentrations ranging from 20 pM to 2 µM, neither PBDE congener altered dendritic arborization. In contrast, at concentrations ≥ 200 pM, both congeners delayed neuronal polarization resulting in significant inhibition of axonal outgrowth during the first few days in vitro. The axon inhibitory effects of these PBDE congeners occurred independent of cytotoxicity, and were blocked by pharmacological antagonism of RyR or siRNA knockdown of RyR2. These results demonstrate that the molecular and cellular mechanisms by which PBDEs interfere with neurodevelopment overlap with but are distinct from those of NDL PCBs, and suggest that altered patterns of neuronal connectivity may contribute to the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Karin M Streifel
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Dongren Yang
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Linley Mangini
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine
| |
Collapse
|
5
|
Islam MA, Sharif SR, Lee H, Moon IS. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells 2015; 38:876-85. [PMID: 26467288 PMCID: PMC4625069 DOI: 10.14348/molcells.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| |
Collapse
|
6
|
Cho Y, Cha MJ, Choi EK, Oh IY, Oh S. Effects of low-intensity autonomic nerve stimulation on atrial electrophysiology. Korean Circ J 2014; 44:243-9. [PMID: 25089136 PMCID: PMC4117845 DOI: 10.4070/kcj.2014.44.4.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives The cardiac autonomic nervous system is an emerging target for therapeutic control of atrial fibrillation (AF). We evaluated the effects of low-intensity autonomic nerve stimulation (LI-ANS) on atrial electrophysiology, AF vulnerability, and neural remodeling. Subjects and Methods Fourteen dogs were subjected to 3 hours rapid atrial pacing (RAP, 5 Hz) and concomitant high frequency LI-ANS (20 Hz, at voltages 40% below the threshold) as follows: no autonomic stimulation (control, n=3); or right cervical vagus nerve (RVN, n=6), anterior right ganglionated plexi (ARGP, n=3), and superior left ganglionated plexi (SLGP, n=2) stimulation. Programmed and burst atrial pacing were performed at baseline and at the end of each hour to determine atrial effective refractory period (ERP), window of vulnerability (WOV), and inducibility of sustained AF. Results Atrial ERP was significantly shortened by 3 hours RAP (in control group, ΔERP=-47.9±8.9%, p=0.032), and RAP-induced ERP shortening was attenuated by LI-ANS (in LI-ANS group, ΔERP=-15.4±5.9%, p=0.019; vs. control, p=0.035). Neither WOV for AF nor AF inducibility changed significantly during 3 hours RAP with simultaneous LI-ANS. There was no significant difference between the control and LI-ANS group in nerve density and sprouting evaluated by anti-tyrosine hydroxylase and anti-growth associated protein-43 staining. Among the various sites for LI-ANS, the ARGP-stimulation group showed marginally lower ΔWOV (p=0.077) and lower nerve sprouting (p=0.065) compared to the RVN-stimulation group. Conclusion Low-intensity autonomic nerve stimulation significantly attenuated the shortening of atrial ERP caused by RAP. ARGP may be a better target for LI-ANS than RVN for the purpose of suppressing atrial remodeling in AF.
Collapse
Affiliation(s)
- Youngjin Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Myung-Jin Cha
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Il-Young Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
7
|
The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth. J Neurosci 2014; 34:5342-54. [PMID: 24719112 DOI: 10.1523/jneurosci.2728-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis. Accordingly, Ndr2 associates with integrin-positive early and recycling endosomes in primary hippocampal neurons and the surface expression of activated β1-integrins is reduced on dendrites of Ndr2-deficient neurons. The role of Ndr2 in dendritic differentiation is also evident in vivo, because Ndr2-null mutant mice show arbor-specific alterations of dendritic complexity in the hippocampus. This indicates a role of Ndr2 in the fine regulation of dendritic growth; in fact, treatment of primary neurons with Semaphorin 3A rescues Ndr2 knock-down-induced dendritic growth deficits but fails to enhance growth beyond control level. Correspondingly, Ndr2-null mutant mice show a Semaphorin 3A(-/-)-like phenotype of premature dendritic branching in the hippocampus. The results of this study show that Ndr2-mediated integrin trafficking and activation are crucial for neurite growth and guidance signals during neuronal development.
Collapse
|
8
|
Lee H, Cho SJ, Moon IS. The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol Cells 2014; 37:248-56. [PMID: 24625575 PMCID: PMC3969046 DOI: 10.14348/molcells.2014.2354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/29/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.
Collapse
Affiliation(s)
- HyunSook Lee
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Sun-Jung Cho
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
9
|
Ambjørn M, Dubreuil V, Miozzo F, Nigon F, Møller B, Issazadeh-Navikas S, Berg J, Lees M, Sap J. A loss-of-function screen for phosphatases that regulate neurite outgrowth identifies PTPN12 as a negative regulator of TrkB tyrosine phosphorylation. PLoS One 2013; 8:e65371. [PMID: 23785422 PMCID: PMC3681791 DOI: 10.1371/journal.pone.0065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/30/2013] [Indexed: 11/28/2022] Open
Abstract
Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the relevance of considering all phosphatase families when mining for potentially druggable targets.
Collapse
Affiliation(s)
- Malene Ambjørn
- Department of Biomedical Sciences and Biotechnology Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Véronique Dubreuil
- Epigenetics and Cell Fate, University of Paris, Sorbonne Paris Cité, Paris, France
| | - Federico Miozzo
- Epigenetics and Cell Fate, University of Paris, Sorbonne Paris Cité, Paris, France
| | - Fabienne Nigon
- Epigenetics and Cell Fate, University of Paris, Sorbonne Paris Cité, Paris, France
| | - Bente Møller
- Department of Biomedical Sciences and Biotechnology Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Department of Biomedical Sciences and Biotechnology Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Berg
- Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark
| | - Michael Lees
- Department of Biomedical Sciences and Biotechnology Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Sap
- Department of Biomedical Sciences and Biotechnology Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Epigenetics and Cell Fate, University of Paris, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Abstract
Numerous studies from the clinical and preclinical literature indicate that general anesthetic agents have toxic effects on the developing brain, but the mechanism of this toxicity is still unknown. Previous studies have focused on the effects of anesthetics on cell survival, dendrite elaboration, and synapse formation, but little attention has been paid to possible effects of anesthetics on the developing axon. Using dissociated mouse cortical neurons in culture, we found that isoflurane delays the acquisition of neuronal polarity by interfering with axon specification. The magnitude of this effect is dependent on isoflurane concentration and exposure time over clinically relevant ranges, and it is neither a precursor to nor the result of neuronal cell death. Propofol also seems to interfere with the acquisition of neuronal polarity, but the mechanism does not require activity at GABAA receptors. Rather, the delay in axon specification likely results from a slowing of the extension of prepolarized neurites. The effect is not unique to isoflurane as propofol also seems to interfere with the acquisition of neuronal polarity. These findings demonstrate that anesthetics may interfere with brain development through effects on axon growth and specification, thus introducing a new potential target in the search for mechanisms of pediatric anesthetic neurotoxicity.
Collapse
|
11
|
Patodia S, Raivich G. Downstream effector molecules in successful peripheral nerve regeneration. Cell Tissue Res 2012; 349:15-26. [PMID: 22580509 DOI: 10.1007/s00441-012-1416-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/16/2022]
Abstract
The robust axon regeneration that occurs following peripheral nerve injury is driven by transcriptional activation of the regeneration program and by the expression of a wide range of downstream effector molecules from neuropeptides and neurotrophic factors to adhesion molecules and cytoskeletal adaptor proteins. These regeneration-associated effector molecules regulate the actin-tubulin machinery of growth-cones, integrate intracellular signalling and stimulatory and inhibitory signals from the local environment and translate them into axon elongation. In addition to the neuronally derived molecules, an important transcriptional component is found in locally activated Schwann cells and macrophages, which release a number of cytokines, growth factors and neurotrophins that support neuronal survival and axonal regeneration and that might provide directional guidance cues towards appropriate peripheral targets. This review aims to provide a comprehensive up-to-date account of the transcriptional regulation and functional role of these effector molecules and of the information that they can give us with regard to the organisation of the regeneration program.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London, Chenies Mews 86-96, London, WC1E 6HX, UK
| | | |
Collapse
|
12
|
Role of autophagy inhibitors and inducers in modulating the toxicity of trimethyltin in neuronal cell cultures. J Neural Transm (Vienna) 2012; 119:1295-305. [PMID: 22415064 DOI: 10.1007/s00702-012-0785-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/26/2012] [Indexed: 01/21/2023]
Abstract
Trimethyltin (TMT) is a triorganotin compound which determines neurodegeneration of specific brain areas particularly damaging the limbic system. Earlier ultrastructural studies indicated the formation of autophagic vacuoles in neurons after TMT intoxication. However, no evaluation has been attempted to determine the role of the autophagic pathway in TMT neurotoxicity. To assess the contribution of autophagy to TMT-induced neuronal cell death, we checked the vulnerability of neuronal cultures to TMT after activation or inhibition of autophagy. Our results show that autophagy inhibitors (3-methyladenine and L-asparagine) greatly enhanced TMT neurotoxicity. Conversely, known activators of autophagy, such as lithium and rapamycin, displayed neuroprotection against this toxic compound. Due to its diverse targets, the action of lithium was complex. When lithium was administered according to a chronic treatment protocol (6 days pretreatment) it was able to rescue both hippocampal and cortical neurons from TMT (or from glutamate toxicity used as reference). This effect was accompanied by an increased phosphorylation of glycogen synthase kinase 3 which is a known target for lithium neuroprotection. If the pre-incubation time was reduced to 2 h (acute treatment protocol), lithium was still able to counteract TMT toxicity in hippocampal but not in cortical neurons. The neuroprotective effect of lithium acutely administered against TMT in hippocampal neurons can be completely reverted by an excess of inositol and is possibly related to the inactivation of inositol monophosphatase, a key regulator of autophagy. These data indicate that TMT neurotoxicity can be dramatically modified, at least in vitro, by lithium addition which seems to act through different mechanisms if acutely or chronically administered.
Collapse
|
13
|
Károly N, Mihály A, Dobó E. Comparative immunohistochemistry of synaptic markers in the rodent hippocampus in pilocarpine epilepsy. Acta Histochem 2011; 113:656-62. [PMID: 20846710 DOI: 10.1016/j.acthis.2010.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/26/2022]
Abstract
Pilocarpine-induced epileptic state (Status epilepticus) generates an aberrant sprouting of hippocampal mossy fibers, which alter the intrahippocampal circuits. The mechanisms of the synaptic plasticity remain to be determined. In our studies in mice and rats, pilocarpine-induced seizures were done in order to gain information on the process of synaptogenesis. After a 2-month survival period, changes in the levels of synaptic markers (GAP-43 and Syn-I) were examined in the hippocampus by means of semi-quantitative immunohistochemistry. Mossy fiber sprouting (MFS) was examined in each brain using Timm's sulphide-silver method. Despite the marked behavioral manifestations caused by pilocarpine treatment, only 40% of the rats and 56% of the mice showed MFS. Pilocarpine treatment significantly reduced the GAP-43 immunoreactivity in the inner molecular layer in both species, with some minor differences in the staining pattern. Syn-I immunohistochemistry revealed species differences in the sprouting process. The strong immunoreactive band of the inner molecular layer in rats corresponded to the Timm-positive ectopic mossy fibers. The staining intensity in this layer, representing the ectopic mossy fibers, was weak in the mouse. The Syn-I immunoreactivity decreased significantly in the hilum, where Timm's method also demonstrated enhanced sprouting. This proved that, while sprouted axons displayed strong Syn-I staining in rats, ectopic mossy fibers in mice did not express this synaptic marker. The species variability in the expression of synaptic markers in sprouted axons following pilocarpine treatment indicated different synaptic mechanisms of epileptogenesis.
Collapse
|
14
|
Sex Steroid Hormones Regulate the Expression of Growth-associated Protein 43, Microtubule-associated Protein 2, Synapsin 1 and Actin in the Ventromedial Nucleus of the Hypothalamus. J Mol Neurosci 2011; 46:622-30. [DOI: 10.1007/s12031-011-9650-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
15
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
16
|
Fei W, Aixi Y, Danmou X, Wusheng K, Zhengren P, Ting R. The mood stabilizer valproic acid induces proliferation and myelination of rat Schwann cells. Neurosci Res 2011; 70:383-90. [PMID: 21530595 DOI: 10.1016/j.neures.2011.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/26/2023]
Abstract
Schwann cells (SCs) within peripheral nerve respond robustly after exposure to neurotrophic factors. Recent results have revealed that valproic acid (VPA), at a clinically relevant therapeutic concentration, produces effects similar to neurotrophic factors, and promotes neurite growth and cell survival. We hypothesized that VPA could also induce Schwann cell response. In this study, we sought to determine how pure Schwann cells responded to VPA by evaluating for proliferation, expression of S-100, growth cone-associated protein 43 (GAP-43), myelin-associated glycoprotein (MAG), and myelin basic protein (MBP). Immunohistochemistry demonstrated that the Schwann cells were positive for S-100, GAP-43, MAG, and MBP greater than 99% of the experimental cells. The rate of proliferation was increased in experimental cells from MTT assay and Bromodeoxyuridine/DAPI double staining. Furthermore, Western blot showed an up-regulation in GAP-43, MAG and MBP protein expression in experimental cells, respectively. We also found that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2 pathway was involved in the enhanced cell proliferation of Schwann cells evoked by VPA. This study provides novel information regarding Schwann cell response to VPA, which might help the understanding of VPA-based treatment for peripheral nerve injury.
Collapse
Affiliation(s)
- Wu Fei
- Department of Hand Surgery & Microsurgery, Affiliated Pu Ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hu Bei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol 2010; 8:e1000283. [PMID: 20098723 PMCID: PMC2808209 DOI: 10.1371/journal.pbio.1000283] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/10/2009] [Indexed: 12/23/2022] Open
Abstract
The neuronal protein GRASP-1 is shown to be a key molecule controlling endosomal trafficking and thereby regulating synapse integrity and synaptic plasticity. The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. Neurons communicate with each other through specialized structures called synapses, and proper synapse function is fundamental for information processing and memory storage. The endosomal membrane trafficking pathway is crucial for the structure and function of synapses; however, the components of the neuronal endosomal transport machinery are poorly characterized. In this paper, we report that a protein called GRASP-1 is required for neurotransmitter receptor recycling through endosomes and back to the cell surface, as well as for the normal morphology of dendritic spines—the projections that form synapses—and for synaptic plasticity. We show that GRASP-1 coordinates coupling between early and later steps of the endocytic recycling pathway by binding to Rab4, a regulator of early endosomes, and to another endosomal protein found later in the pathway called syntaxin 13—a so-called SNARE protein involved in membrane fusion. GRASP-1 binds Rab4 with its N terminus and syntaxin 13 with its C terminus, suggesting that these interactions could structurally and functionally link early endosomes to those later in the recycling pathway. We propose a model in which GRASP-1 forms a molecular bridge between different endosomal membranes and the SNARE fusion machinery. Our study thus provides new mechanistic information about endosome function in neurons and highlights GRASP-1 as a key molecule that controls membrane receptor sorting and recycling during synaptic plasticity.
Collapse
|
18
|
Role of the growth-associated protein GAP-43 in NCAM-mediated neurite outgrowth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:169-82. [PMID: 20017022 DOI: 10.1007/978-1-4419-1170-4_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009; 10:319-32. [PMID: 19377501 DOI: 10.1038/nrn2631] [Citation(s) in RCA: 771] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the past decade enormous advances have been made in our understanding of the basic molecular machinery that is involved in the development of neuronal polarity. Far from being mere structural elements, microtubules are emerging as key determinants of neuronal polarity. Here we review the current understanding of the regulation of microtubule assembly, organization and dynamics in axons and dendrites. These studies provide new insight into microtubules' function in neuronal development and their potential contribution to plasticity.
Collapse
|
20
|
Abstract
The formation of axons and dendrites and maintenance of the neuron's vastly expanded surface require the continuous addition of new membrane. This is achieved by membrane synthesis through the secretory pathway followed by regulated vesicle fusion with the plasma membrane, typically in the distal neurite. However, it is far from simple: multiple distinct membrane carriers are used to target specific membrane domains, dendrites seem to operate semi-autonomously from the rest of the neuron, and exocytosis for membrane expansion is different from that for release of synaptic vesicles. Current knowledge of this process and its implications for neuronal development, function and repair are reviewed.
Collapse
|
21
|
Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I, Siciliano G, Di Bella D, Taroni F, Bassi MT, Cappelletti G, Rugarli EI. Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem 2009; 108:1277-88. [PMID: 19141076 DOI: 10.1111/j.1471-4159.2009.05875.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary spastic paraplegia (HSP) is characterized by weakness and spasticity of the lower limbs, owing to degeneration of corticospinal axons. The most common form is due to heterozygous mutations in the SPG4 gene, encoding spastin, a microtubule (MT)-severing protein. Here, we show that neurite growth in immortalized and primary neurons responds in pleiotropic ways to changes in spastin levels. Spastin depletion alters the development of primary hippocampal neurons leading to abnormal neuron morphology, dystrophic neurites, and axonal growth defects. By live imaging with End-Binding Protein 3-Fluorescent Green Protein (EB3-GFP), a MT plus-end tracking protein, we ascertained that the assembly rate of MTs is reduced when spastin is down-regulated. Spastin over-expression at high levels strongly suppresses neurite maintenance, while slight spastin up-regulation using an endogenous promoter enhances neurite branching and elongation. Spastin severing activity is exerted preferentially on stable acetylated and detyrosinated MTs. We further show that SPG4 nonsense or splice site mutations found in hereditary spastic paraplegia patients result in reduced spastin levels, supporting haploinsufficiency as the molecular cause of the disease. Our study reveals that SPG4 is a dosage-sensitive gene, and broadens the understanding of the role of spastin in neurite growth and MT dynamics.
Collapse
Affiliation(s)
- Elena Riano
- Division of Biochemistry and Genetics, Istituto Neurologico "C. Besta", Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Korshunova I, Mosevitsky M. Role of the Growth-associated Protein GAP-43 in NCAM-mediated Neurite Outgrowth. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Association of Gap-43 (neuromodulin) with microtubule-associated protein MAP-2 in neuronal cells. Biochem Biophys Res Commun 2008; 371:679-83. [PMID: 18455509 DOI: 10.1016/j.bbrc.2008.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/19/2008] [Indexed: 11/21/2022]
Abstract
Gap-43 (B-50, neuromodulin) is a presynaptic protein implicated in axonal growth, neuronal differentiation, plasticity, and regeneration. Its activities are regulated by its dynamic interactions with various neuronal proteins, including actin and brain spectrin. Recently we have shown that Gap-43 co-localizes with an axonal protein DPYSL-3 in primary cortical neurons. In the present study we provide evidence that Gap-43 co-localizes and potentially interacts with microtubule-associated protein MAP-2 in adult and fetal rat brain, as well as in primary neuronal cultures. Our studies suggest that this interaction may be developmentally regulated.
Collapse
|
24
|
Wang P, Jeng CJ, Chien CL, Wang SM. Signaling mechanisms of daidzein-induced axonal outgrowth in hippocampal neurons. Biochem Biophys Res Commun 2008; 366:393-400. [DOI: 10.1016/j.bbrc.2007.11.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/22/2007] [Indexed: 11/24/2022]
|
25
|
Kishi M. Axon or dendrite? cell biology and molecular pathways for neuronal cell asymmetry. J Neurosci Res 2008; 86:490-5. [PMID: 17680674 DOI: 10.1002/jnr.21457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Young neurons polarize by specializing axons and dendrites from immature neurites. After synapse formations, they transmit electrical activity along the axon-dendrite axis, thereby working as functional units of the neural circuits. This axon-dendrite asymmetry is referred to as neuronal polarity. Although a great number of cell biological studies in vitro had been performed, little was known about the molecular events that establish the polarity. In the last several years, rapid advancement in molecular and genetic studies has unraveled the multiple signaling pathways. This paper summarizes current perspectives on the cell and molecular biological mechanisms of the neuronal polarization, to clarify future directions in this growing research field.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
26
|
Capone C, Fabrizi C, Piovesan P, Principato MC, Marzorati P, Ghirardi O, Fumagalli L, Carminati P, De Simoni MG. 2-Aminotetraline derivative protects from ischemia/reperfusion brain injury with a broad therapeutic window. Neuropsychopharmacology 2007; 32:1302-11. [PMID: 17119539 DOI: 10.1038/sj.npp.1301255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of ST1942, a 2-aminotetraline derivative with anti-inflammatory properties, was evaluated in ischemia/reperfusion injury in CD1 and C57BL/6 mice. ST1942 or saline were injected intraperitoneally 30 min and 6, 24, 36 h after ischemia. Forty-eight hours after ischemia, ST1942 (25 mg/kg) reduced the infarct volume by 50% in CD1 and 61% in C57BL/6 mice. All subsequent data were obtained from the latter strain. The ischemic lesion was significantly reduced by 30% when the first injection was administered 6 h after ischemia, revealing a broad effective window. Degenerating neurons in striatum, cortex and hippocampus of ischemic mice were markedly decreased by ST1942. Also examined was the effect of ST1942 on general and focal neurological deficits for 4 days after ischemia. Mice receiving the drug twice daily showed constantly reduced deficits. We then investigated the cortical mRNA expression of some inflammatory and apoptotic genes by real-time PCR. Forty-eight hours after ischemia ST1942 treatment significantly counteracted ischemia-induced activation of IL-1beta, TNFalpha, and Bax, and enhanced the expression of the antiapoptotic gene, Bcl-2, showing in vivo anti-inflammatory and antiapoptotic actions. The microglial activation/macrophage recruitment in the ischemic lesion was strongly prevented in mice receiving ST1942. In neuron-microglia cocultures, ST1942 significantly counteracted LPS-induced cytotoxicity. Binding data and experiments on microglial cell cultures indicate that the anti-inflammatory effect of ST1942 may be due to its action on 5-HT2B receptors, thus highlighting the possibility that this 5-HT receptor subtype may represent a novel target for neuroprotective drugs in ischemic injury.
Collapse
Affiliation(s)
- Carmen Capone
- Department of Neuroscience, Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases of the lithium–pilocarpine model in the immature and adult rat. Exp Neurol 2007; 204:720-32. [PMID: 17292888 DOI: 10.1016/j.expneurol.2007.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/18/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022]
Abstract
RATIONALE Lithium-pilocarpine-induced status epilepticus (SE) generates neuronal lesions in the limbic forebrain, cerebral cortex and thalamus that lead to circuit reorganization and spontaneous recurrent seizures. The process of reorganization in regions with neuronal damage is not fully clarified. METHODS In the present study, we evaluated by immunohistochemistry the early reorganization during the latent period with two neuronal markers, synaptophysin and growth-associated protein 43 (GAP-43) in rats subjected to SE at PN21 and as adults. RESULTS Synaptophysin immunoreactivity increased between 24 h and 3 weeks post-SE in regions with severe and rapidly occurring neuronal loss, namely thalamus, amygdala, piriform and entorhinal cortices. GAP-43 expression decreased at 1 and 3 weeks in the same regions. The immunoreactivity of synaptophysin and GAP-43 increased in the inner molecular layer of dentate gyrus from 24 h after SE, and decreased in the outer molecular layer from 72 h after SE. These changes likely result from the death of hilar neurons and the reduction of the input from the entorhinal cortex. In 21-day-old rats that experience less SE-induced neuronal loss, increased immunoreactivity of synaptophysin was only found in piriform and entorhinal cortex while no changes occurred in GAP-43 expression. CONCLUSION These findings suggest that there is an age-related relation between the extent and rapidity of the process of neuronal death and the expression of these markers. Synaptophysin appears to be a more sensitive marker of plasticity induced by SE than GAP-43.
Collapse
Affiliation(s)
- Ryosuke Hanaya
- INSERM U405, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
28
|
Korshunova I, Novitskaya V, Kiryushko D, Pedersen N, Kolkova K, Kropotova E, Mosevitsky M, Rayko M, Morrow JS, Ginzburg I, Berezin V, Bock E. GAP-43 regulates NCAM-180-mediated neurite outgrowth. J Neurochem 2006; 100:1599-612. [PMID: 17212696 DOI: 10.1111/j.1471-4159.2006.04316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.
Collapse
Affiliation(s)
- Irina Korshunova
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Toriyama M, Shimada T, Kim KB, Mitsuba M, Nomura E, Katsuta K, Sakumura Y, Roepstorff P, Inagaki N. Shootin1: A protein involved in the organization of an asymmetric signal for neuronal polarization. ACTA ACUST UNITED AC 2006; 175:147-57. [PMID: 17030985 PMCID: PMC2064506 DOI: 10.1083/jcb.200604160] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurons have the remarkable ability to polarize even in symmetrical in vitro environments. Although recent studies have shown that asymmetric intracellular signals can induce neuronal polarization, it remains unclear how these polarized signals are organized without asymmetric cues. We describe a novel protein, named shootin1, that became up-regulated during polarization of hippocampal neurons and began fluctuating accumulation among multiple neurites. Eventually, shootin1 accumulated asymmetrically in a single neurite, which led to axon induction for polarization. Disturbing the asymmetric organization of shootin1 by excess shootin1 disrupted polarization, whereas repressing shootin1 expression inhibited polarization. Overexpression and RNA interference data suggest that shootin1 is required for spatially localized phosphoinositide-3-kinase activity. Shootin1 was transported anterogradely to the growth cones and diffused back to the soma; inhibiting this transport prevented its asymmetric accumulation in neurons. We propose that shootin1 is involved in the generation of internal asymmetric signals required for neuronal polarization.
Collapse
Affiliation(s)
- Michinori Toriyama
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leterrier C, Lainé J, Darmon M, Boudin H, Rossier J, Lenkei Z. Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 2006; 26:3141-53. [PMID: 16554465 PMCID: PMC6674101 DOI: 10.1523/jneurosci.5437-05.2006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type 1 cannabinoid receptor (CB1R) is one of the most abundant G-protein-coupled receptors (GPCRs) in the brain, predominantly localized to axons of GABAergic neurons. Like several other neuronal GPCRs, CB1R displays significant in vitro constitutive activity (i.e., spontaneous activation in the absence of ligand). However, a clear biological role for constitutive GPCR activity is still lacking. This question was addressed by studying the consequences of constitutive activation on the intracellular trafficking of endogenous or transfected CB1Rs in cultured hippocampal neurons using optical and electron microscopy. We found that constitutive activity results in a permanent cycle of endocytosis and recycling, which is restricted to the somatodendritic compartment. Thus, CB1Rs are continuously removed by endocytosis from the plasma membrane in the somatodendritic compartment but not in axons, where CB1Rs accumulate on surface. Blocking constitutive activity by short-term incubation with inverse agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM281) results in sequestration of recycled CB1Rs on the somatodendritic plasma membrane. Long-term inhibition of endocytosis by cotransfection of dominant-negative proteins results in impaired axonal polarization of surface-bound CB1Rs. Kinetic analysis shows that the majority of newly synthesized CB1Rs arrive first to the somatodendritic plasma membrane, from where they are rapidly removed by AM281-sensitive constitutive endocytosis before being delivered to axons. Thus, constitutive-activity driven somatodendritic endocytosis is required for the proper axonal targeting of CB1R, representing a novel, conformation-dependent targeting mechanism for axonal GPCRs.
Collapse
|
31
|
Park SY, Ferreira A. The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci 2006; 25:5365-75. [PMID: 15930385 PMCID: PMC1352316 DOI: 10.1523/jneurosci.1125-05.2005] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, we have shown that the microtubule-associated protein tau is essential for beta-amyloid (Abeta)-induced neurotoxicity in hippocampal neurons. However, the mechanisms by which tau mediates Abeta-induced neurite degeneration remain poorly understood. In the present study, we analyzed whether tau cleavage played a role in these events. Our results showed that pre-aggregated Abeta induced the generation of a 17 kDa tau fragment in cultured hippocampal neurons. The generation of this fragment was preceded by the activation of calpain-1. Conversely, inhibitors of this protease, but not of caspases, completely prevented tau proteolysis leading to the generation of the 17 kDa fragment and significantly reduced Abeta-induced neuronal death. Furthermore, the expression of this fragment in cultured hippocampal neurons induced the formation of numerous varicosity-bearing tortuous processes, as well as the complete degeneration of some of those neurite processes. These results suggest that Abeta-induced neurotoxicity may be mediated, at least in part, through the calpain-mediated generation of a toxic 17 kDa tau fragment. Collectively, these results provide insight into a novel mechanism by which tau could mediate Abeta-induced neurotoxicity.
Collapse
Affiliation(s)
- So-Young Park
- Department of Cell and Molecular Biology, Feinberg School of Medicine, and Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
32
|
Wu T, Ding XS, Wang W, Wu J. MCI-186 (3-Methyl-1-phenyl-2-pyrazolin-5-one) Attenuated Simulated Ischemia/Reperfusion Injury in Cultured Rat Hippocampal Cells. Biol Pharm Bull 2006; 29:1613-7. [PMID: 16880614 DOI: 10.1248/bpb.29.1613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reactive oxygen species and Ca2+ overload play a critical role in ischemia/reperfusion (I/R) injury. MCI-186 has potent effects in the brain as a free radical scavenger in ischemia-reperfusion. Acute glucose-oxygen deprivation and subsequent reoxygenation were used to model ischemia/reperfusion injury in cultured hippocampal cells. MCI-186 reduced malondialdehyde level and raised the SOD activity when applied upon reoxygenation in a dose-dependent manner compared with the untreated group. The peak neuroprotective effects occurred at 100 and 300 microM. Intracellular free calcium concentration ([Ca2+]i) was significantly reduced in the 100 microM MCI-186-treated group compared to the untreated group (32.5+/-4.0 versus 50.2+/-3.6, p<0.01). Treatment with 100 microM MCI-186 significantly inhibited the decrease of mitochondria membrane potential after simulated ischemia/reperfusion (204+/-11.6% compared with the untreated group, p<0.01). Cell apoptotic rate was significantly decreased following MCI-186 treatment from 33.7+/-2.3% (untreated group) to 16.6+/-1.4% (100 microM MCI-186 treated group). There was no significantly protective difference between 100 and 300 microM MCI-186. MCI-186 effectively protects neuron injury after simulated ischemia/reperfusion by inhibiting lipid peroxidation, reducing Ca2+ overload, elevating mitochondria membrane potential, and decreasing apoptosis.
Collapse
Affiliation(s)
- Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, China
| | | | | | | |
Collapse
|
33
|
Morgan JL, Dhingra A, Vardi N, Wong ROL. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci 2005; 9:85-92. [PMID: 16341211 DOI: 10.1038/nn1615] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/16/2005] [Indexed: 11/09/2022]
Abstract
The cellular mechanisms underlying axogenesis and dendritogenesis are not completely understood. The axons and dendrites of retinal bipolar cells, which contact their synaptic partners within specific laminae in the inner and outer retina, provide a good system for exploring these issues. Using transgenic mice expressing enhanced green fluorescent protein (GFP) in a subset of bipolar cells, we determined that axonal and dendritic arbors of these interneurons develop directly from apical and basal processes attached to the outer and inner limiting membranes, respectively. Selective stabilization of processes contributed to stratification of axonal and dendritic arbors within the appropriate synaptic layer. This unusual mode of axogenesis and dendritogenesis from neuroepithelial-like processes may act to preserve neighbor-neighbor relationships in synaptic wiring between the outer and inner retina.
Collapse
Affiliation(s)
- Josh L Morgan
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
34
|
Bacsi A, Stanton GJ, Hughes TK, Kruze M, Boldogh I. Colostrinin-driven neurite outgrowth requires p53 activation in PC12 cells. Cell Mol Neurobiol 2005; 25:1123-39. [PMID: 16392041 DOI: 10.1007/s10571-005-8222-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
1. Colostrinin (CLN) induces maturation and differentiation of murine thymocytes, promotes proliferation of peripheral blood leukocytes, induces immunomodulator cytokines, and ameliorates oxidative stress-mediated activation of c-Jun NH2-terminal kinases. 2. Here we report that upon treatment with CLN, medullary pheochromocytoma (PC12) cells ceased to proliferate and extend neurites. 3. The arrest of CLN-treated PC12 cells in the G1 phase of the cell cycle was due to an increase in the phosphorylation of p53 at serine(15) (p53ser15) and expression of p21WAF1. PC12 cells treated with inhibitory oligonucleotides to p53 lacked p53ser15 and p21WAF1 expression, and did not show morphological changes after CLN exposure. Transfection with inhibitory oligonucleotides to p21WAF1 had no effect on p53 activation; however, cells failed to arrest or extend neurites. An oligonucleotide inhibiting luciferase expression had no effect on CLN-mediated p53 activation, p21WAF1 expression, growth arrest, or neurite outgrowth. 4. We conclude that CLN induces delicate cassettes of signaling pathways common to cell proliferation and differentiation, and mediates activities that are similar to those of hormones and neurotrophins, leading to neurite outgrowth.
Collapse
Affiliation(s)
- Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
35
|
Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR. Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev 2005; 14:29-43. [PMID: 15725742 DOI: 10.1089/scd.2005.14.29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a rapidly moving field with new cells, cell lines, and tissue-engineered constructs being developed globally. As these novel cells are further developed for transplantation studies, it is important to understand their safety profiles both prior to and posttransplantation in animals and humans. Embryonic carcinoma-derived cells are considered an important alternative to stem cells. The NTera2/D1 teratocarcinoma cell-line (or NT2-N cells) gives rise to neuron-like cells called hNT neurons after exposure to retinoic acid. NT2 cells form tumors upon transplantation into the rodent. However, when the NT2 cells are treated with retinoic acid to produce hNT cells, they terminally differentiate into post-mitotic neurons with no sign of tumorigenicity. Preliminary human transplantation studies in the brain of stroke patients also demonstrated a lack of tumorigenicity of these cells. This review focuses on the use of hNT neurons in cell transplantation for the treatment in central nervous system (CNS) diseases, disorders, or injuries and on the mechanism involved in retinoic acid exposure, final differentiation state, and subsequent tumorigenicity issues that must be considered prior to widespread clinical use.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Fl 33612, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI, Burry RW. GAP-43 mRNA in growth cones is associated with HuD and ribosomes. ACTA ACUST UNITED AC 2005; 61:222-35. [PMID: 15389607 DOI: 10.1002/neu.20038] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuron-specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP-43 mRNA in developing neurons, and leads to increased levels of GAP-43 protein. As GAP-43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP-43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP-43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP-43 mRNA granules in the central domain, consistent with a role in the control of GAP-43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP-43 mRNA translation/stabilization are present within growth cones.
Collapse
Affiliation(s)
- Catherine L Smith
- Department of Neuroscience, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210-1239, USA
| | | | | | | | | | | |
Collapse
|
37
|
Van Ooyen A. Competition in neurite outgrowth and the development of nerve connections. PROGRESS IN BRAIN RESEARCH 2005; 147:81-99. [PMID: 15581699 DOI: 10.1016/s0079-6123(04)47007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
During the development of the nervous system, neurons form their characteristic morphologies and become assembled into synaptically connected networks. In both neuronal morphogenesis and the development of nerve connections, competition plays an important role. Although the notion of competition is commonly used in neurobiology, there is little understanding of the nature of the competitive process and the underlying molecular and cellular mechanisms. In this chapter, we review a model of competition between outgrowing neurites, as well as various models of competition that have been proposed for the refinement of connections that takes place in the development of the neuromuscular and visual systems. We describe in detail a model that links competition in the development of nerve connections with the underlying actions and biochemistry of neurotrophic factors.
Collapse
Affiliation(s)
- Arjen Van Ooyen
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Novarino G, Fabrizi C, Tonini R, Denti MA, Malchiodi-Albedi F, Lauro GM, Sacchetti B, Paradisi S, Ferroni A, Curmi PM, Breit SN, Mazzanti M. Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. J Neurosci 2004; 24:5322-30. [PMID: 15190104 PMCID: PMC6729296 DOI: 10.1523/jneurosci.1170-04.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is widely believed that the inflammatory events mediated by microglial activation contribute to several neurodegenerative processes. Alzheimer's disease, for example, is characterized by an accumulation of beta-amyloid protein (Abeta) in neuritic plaques that are infiltrated by reactive microglia and astrocytes. Although Abeta and its fragment 25-35 exert a direct toxic effect on neurons, they also activate microglia. Microglial activation is accompanied by morphological changes, cell proliferation, and release of various cytokines and growth factors. A number of scientific reports suggest that the increased proliferation of microglial cells is dependent on ionic membrane currents and in particular on chloride conductances. An unusual chloride ion channel known to be associated with macrophage activation is the chloride intracellular channel-1 (CLIC1). Here we show that Abeta stimulation of neonatal rat microglia specifically leads to the increase in CLIC1 protein and to the functional expression of CLIC1 chloride conductance, both barely detectable on the plasma membrane of quiescent cells. CLIC1 protein expression in microglia increases after 24 hr of incubation with Abeta, simultaneously with the production of reactive nitrogen intermediates and of tumor necrosis factor-alpha (TNF-alpha). We demonstrate that reducing CLIC1 chloride conductance by a specific blocker [IAA-94 (R(+)-[(6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] prevents neuronal apoptosis in neurons cocultured with Abeta-treated microglia. Furthermore, we show that small interfering RNAs used to knock down CLIC1 expression prevent TNF-alpha release induced by Abeta stimulation. These results provide a direct link between Abeta-induced microglial activation and CLIC1 functional expression.
Collapse
Affiliation(s)
- Gaia Novarino
- Dipartimenti di Biologia Cellulare e dello Sviluppo, Universita La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bisaglia M, Venezia V, Piccioli P, Stanzione S, Porcile C, Russo C, Mancini F, Milanese C, Schettini G. Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation. Neurochem Int 2002; 41:43-54. [PMID: 11918971 DOI: 10.1016/s0197-0186(01)00136-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present findings show that an atypical non-steroidal anti-inflammatory drug, such as acetaminophen, retains the ability to recover amyloid beta-peptides driven neuronal apoptosis through the impairment of oxidative stress. Moreover, this compound reduces the increased NF-kappaB binding activity, which occurs in these degenerative conditions. Therapeutic interventions aimed at reducing the inflammatory response in Alzheimer's disease (AD) recently suggested the application of non-steroidal anti-inflammatory drugs. Although the anti-inflammatory properties of acetaminophen are controversial, it emerged that in an amyloid-driven astrocytoma cell degeneration model acetaminophen proved to be effective. On these bases, we analyzed the role of acetaminophen against the toxicity exerted by different Abeta-peptides on rat primary hippocampal neurons and on a rat pheochromocytoma cell line. We found a consistent protection from amyloid beta-fragments 1-40 and 1-42-induced impairment of mitochondrial redox activity on both cell cultures, associated with a marked reduction of apoptotic nuclear fragmentation. An antioxidant component of the protective activity emerged from the analysis of the reduction of phospholipid peroxidation, and also from a significant reduction of cytoplasmic accumulation of peroxides in the pheochromocytoma cell line. Moreover, activation of NF-kappaB by amyloid-derived peptides was greatly impaired by acetaminophen pre-treatment in hippocampal cells. This evidence points out antioxidant and anti-transcriptional properties of acetaminophen besides the known capability to interfere with inflammation within the central nervous system, and suggests that it can be exploited as a possible therapeutic approach against AD.
Collapse
Affiliation(s)
- M Bisaglia
- Pharmacology and Neuroscience, National Cancer Research Institute c/o Advanced Biotechnology Centre, L.go R. Benzi 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, Salinas PC. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 2002; 20:257-70. [PMID: 12093158 DOI: 10.1006/mcne.2002.1117] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.
Collapse
Affiliation(s)
- Anita C Hall
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY
| | | | | | | | | | | | | |
Collapse
|
41
|
Bradke F, Dotti CG. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr Opin Neurobiol 2000; 10:574-81. [PMID: 11084319 DOI: 10.1016/s0959-4388(00)00124-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years we have learned a great deal about the molecular mechanisms underlying axonal elongation and navigation and the manner in which extracellular signals modify a growth cone's course of action. Yet, the mechanisms responsible for the earlier events of axonal and dendritic generation are just beginning to be understood. The recent advances in this exciting field highlight the importance of studies of cell migration and axonal elongation for our current understanding of the establishment of neuronal polarity.
Collapse
Affiliation(s)
- F Bradke
- Departments of Anatomy and of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, CA 94143-0452, USA.
| | | |
Collapse
|
42
|
Kashihara M, Miyata S, Kumanogoh H, Funatsu N, Matsunaga W, Kiyohara T, Sokawa Y, Maekawa S. Changes in the localization of NAP-22, a calmodulin binding membrane protein, during the development of neuronal polarity. Neurosci Res 2000; 37:315-25. [PMID: 10958980 DOI: 10.1016/s0168-0102(00)00132-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NAP-22, a neuronal tissue-enriched acidic membrane protein, is a Ca(2+)-dependent calmodulin binding protein and has similar biochemical characteristics to GAP-43 (neuromodulin). Recent biochemical studies have demonstrated that NAP-22 localizes in the membrane raft domain with a cholesterol-dependent manner. Since the raft domain is assumed to be important to establish and/or to maintain the cell polarity, we have investigated the changes in the localization of NAP-22 during the development of the neuronal polarity in vitro and in vivo, using cultured hippocampal neurons and developing cerebellum neurons, respectively. Cultured hippocampal neurons initially extended several short processes, and at this stage NAP-22 was distributed more or less evenly among them. During the maturation of neuronal cells, NAP-22 was sorted preferentially into the axon. Throughout the developmental stages of hippocampal neurons, the localization change of NAP-22 was quite similar to that of tau, an axonal marker protein, but not to that of microtubule-associated protein-2 (MAP-2), a dendritic marker protein. Further confocal microscopic observation demonstrated the colocalization of NAP-22 and either tau or vesicle-associated protein-2 (VAMP-2). A comparison of the time course of the axonal localization of NAP-22 and GAP-43 showed that NAP-22 localization was much later than that of GAP-43. The correlation between the expression of NAP-22 and synaptogenesis in the cerebellar granular layer, particularly in the synaptic glomeruli, was also investigated. There existed many VAMP-2 positive synapses but no NAP-22 positive ones in 1-week-old cerebellum. On sections of 2-week-old cerebellum, accumulation of NAP-22 to the synaptic glomeruli was clearly observed and this accumulation became clearer during the maturation of the synaptic structure. The present results suggest the possibility that NAP-22 plays an important role in the maturation and/or the maintenance of synapses rather than in the process of the axonal outgrowth, by controlling cholesterol-dependent membrane dynamics.
Collapse
Affiliation(s)
- M Kashihara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Volberg T, Bershadsky AD, Elbaum M, Gazit A, Levitzki A, Geiger B. Disruption of microtubules in living cells by tyrphostin AG-1714. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:223-34. [PMID: 10706777 DOI: 10.1002/(sici)1097-0169(200003)45:3<223::aid-cm5>3.0.co;2-q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tyrphostin AG-1714 and several related molecules with the general structure of nitro-benzene malononitrile (BMN) disrupt microtubules in a large variety of cultured cells. This process can be inhibited by the stabilization of microtubules with taxol or by pretreatment of the cells with pervanadate, which inhibits tyrosine phosphatases and increases the overall levels of phosphotyrosine in cells. Unlike other microtubule-disrupting drugs such as nocodazole or colchicine, tyrphostin AG-1714 does not interfere with microtubule polymerization or stability in vitro, suggesting that the effect of this tyrphostin on microtubules is indirect. These results imply an involvement of protein tyrosine phosphorylation in the regulation of overall microtubule dynamics. Tyrphostins of AG-1714 type could thus be powerful tools for the identification of such microtubule regulatory pathways.
Collapse
Affiliation(s)
- T Volberg
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Matsuzawa M, Tabata T, Knoll W, Kano M. Formation of hippocampal synapses on patterned substrates of a laminin-derived synthetic peptide. Eur J Neurosci 2000; 12:903-10. [PMID: 10762320 DOI: 10.1046/j.1460-9568.2000.00977.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We created a new culture system which provides simple, stereotyped neuronal circuitries suitable for investigating synaptic events between mammalian central neurons. We used surface chemistry and laser-lithography to produce geometrical patterns of neuron-compatible substrate spaced by less neuron-compatible surfaces. The patterned substrates were composed of a laminin-derived synthetic peptide, PA22-2, and the spacing surfaces of either decyldimethylsilane (DDMS) or trimethylsilane (TMS). Dissociated rat hippocampal neurons survived on the patterned substrates for several days without the aid of glia and extended their neurites along the substrates. The TMS spacing surfaces appeared more favourable for the excitability development and axonal differentiation of the hippocampal neurons, but less favourable for the development of the resting conductance than the DDMS spacing surfaces. Furthermore, neurons grown on the patterned substrates frequently made synaptophysin-positive contacts with one another. Spontaneous post-synaptic currents recorded from such neurons suggest that these contacts were indeed functional synapses. When hippocampal neurons were plated at a very low density, they often formed circuitries consisting of only two neurons on the patterned substrate. Such a simple circuitry allowed us to analyse synaptic transmission in a single neuronal pair without the influence of the third neurons. With the clarity of analysis and the readiness of manipulation, our culture system would offer a powerful tool for studying development and functions of mammalian central synapses.
Collapse
Affiliation(s)
- M Matsuzawa
- Laboratory for Exotic Nanomaterials, Frontier Research Program, RIKEN, Wako, Saitama 351-0198 Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Axons growing in the developing nervous system are guided by cues in the environment which act at the growth cone. So far, the initial cytoskeletal target of these cues has been found to be the network of actin filaments in the peripheral region of the growth cone. Laminins are constituents of the extracellular matrix which promote axonal growth. They exert effects on the actin network. Here, laminin 1 is shown to affect microtubules as well. Acute addition of laminin 1 to rat sympathetic neurons quickly caused the advance of microtubules and their bundling within the initial widely spread growth cone and then the outgrowth of thin, rapidly growing nascent axons. The bundling was pharmacologically separable from the advance of microtubules caused by laminin, as the former but not the latter was blocked by lithium. The bundling did not depend on the peripheral network of actin filaments, as it was unimpaired by the removal of this network with cytochalasin D. Thus, microtubules seem to be a direct cytoskeletal target for laminin 1 in the growth cone, with important consequences for axonal outgrowth.
Collapse
Affiliation(s)
- D Tang
- Department of Pharmacology and Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
46
|
Mani S, Schaefer J, Meiri KF. Targeted disruption of GAP-43 in P19 embryonal carcinoma cells inhibits neuronal differentiation. As well as acquisition of the morphological phenotype. Brain Res 2000; 853:384-95. [PMID: 10640639 DOI: 10.1016/s0006-8993(99)02042-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GAP-43 is expressed in proliferating neuroblasts in vivo and in vitro, but its role during early neurogenesis has not been investigated. Here we show that neuroectodermal differentiation stimulated by retinoic acid (RA) in the embryonal carcinoma (EC) line P19 is accompanied by upregulation of GAP-43 expression in neuroepithelial precursor cells. In contrast, when upregulation of GAP-43 expression was prevented in 3 independent P19 lines because of a targeted insertion into the gene, generation of neuroepithelial precursors was inhibited. Consequently, neuronal number was significantly decreased, neuronal morphology was abnormal and fewer than 20% of all neurons were able to initiate neuritogenesis. Extracellular matrix (ECM) was unable to rescue initiation of neuritogenesis in the mutant cells, however those neurites that were extended responded normally to ECM-stimulated neurite outgrowth-promoting signals. These data suggest that GAP-43 function is required for commitment to a neuronal phenotype as well as initiation of neurite extension. However, stimulation of neurite outgrowth by ECM in P19s occurs independently of GAP-43.
Collapse
Affiliation(s)
- S Mani
- Departments of Pharmacology and Program in Neuroscience, SUNY Health Science Center, 750, East Adams Street, Syracuse, NY, USA
| | | | | |
Collapse
|
47
|
Abstract
Neurons begin to polarize when one of the neurites becomes the axon. Hippocampal neurons in cell culture have a sharp transition between their unpolarized and polarized stage revealed by the rapid growth of the future axon. Recent progress shows that both a cytoplasmic membrane flow and actin dynamics govern axon formation, and thereby initial neuronal polarization. We here review these mechanisms, evaluate their physiological role, and show similarities to the transient polarization of migrating fibroblasts. Finally, we present a model how actin dynamics and vectorial membrane flow may interact to achieve axon formation.
Collapse
Affiliation(s)
- F Bradke
- Cell Biology Programme, EMBL, 69012 Heidelberg, Germany.
| | | |
Collapse
|
48
|
Abstract
The molecular mechanisms underlying the targeting and localization of glutamate receptors at postsynaptic sites is poorly understood. Recently, we have identified a PDZ domain-containing protein, glutamate receptor-interacting protein 1 (GRIP1), which specifically binds to the C termini of AMPA receptor subunits and may be involved in the synaptic targeting of these receptors. Here, we report the cloning of GRIP2, a homolog of GRIP1, and the characterization of the GRIP1 and GRIP2 proteins in the rat CNS. GRIP1 and GRIP2 are approximately 130 kDa proteins that are highly enriched in brain. GRIP1 and GRIP2 are widely expressed in brain, with the highest levels found in the cerebral cortex, hippocampus, and olfactory bulb. Biochemical studies show that GRIP1 and GRIP2 are enriched in synaptic plasma membrane and postsynaptic density fractions. GRIP1 is expressed early in embryonic development before the expression of AMPA receptors and peaks in expression at postnatal day 8-10. In contrast, GRIP2 is expressed relatively late in development and parallels the expression of AMPA receptors. Immunohistochemistry using the GRIP1 antibodies demonstrated that GRIP1 is expressed in neurons in a somatodendritic staining pattern. At the ultrastructural level, DAB and immunogold electromicroscopy studies showed that GRIP1 was enriched in dendritic spines near the postsynaptic density and was expressed in dendritic shafts and in peri-Golgi regions in the neuronal soma. GRIP1 appeared to be clustered at both glutamatergic and GABAergic synapses. These results suggest that GRIP1 and GRIP2 are AMPA receptor binding proteins potentially involved in the targeting of AMPA receptors to synapses. GRIP1 also may play functional roles at both excitatory and inhibitory synapses, as well as in early neuronal development.
Collapse
|
49
|
Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J Neurosci 1999. [PMID: 10414970 DOI: 10.1523/jneurosci.19-15-06417.1999] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon specification is a crucial, early step in neuronal development, but little is known about how this event is controlled in vivo. To test the hypothesis that local presentation of growth-promoting molecules can direct axon specification, we cultured hippocampal neurons on substrates patterned with stripes of poly-L-lysine and either laminin (LN) or the neuron-glia cell adhesion molecule (NgCAM). Although undifferentiated neurites contacted both substrates equally, axons formed preferentially on LN or NgCAM. Time-lapse studies revealed that changes in the growth pattern of a cell indicative of axon specification began almost immediately after the growth cone of one of the neurites of the cell contacted LN or NgCAM. When cells were plated on alternating stripes of LN and NgCAM, cells with their somata on LN usually formed axons on NgCAM, whereas those with somata on NgCAM preferentially formed axons on LN. This suggests that the change from one axon-promoting substrate to another also provides a signal sufficient to specify the axon. These results demonstrate that contact with preferred substrate molecules can govern which neurite becomes the axon and thus direct the development of neuronal polarity.
Collapse
|
50
|
Dong H, Zhang P, Song I, Petralia RS, Liao D, Huganir RL. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci 1999; 19:6930-41. [PMID: 10436050 PMCID: PMC6782851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
The molecular mechanisms underlying the targeting and localization of glutamate receptors at postsynaptic sites is poorly understood. Recently, we have identified a PDZ domain-containing protein, glutamate receptor-interacting protein 1 (GRIP1), which specifically binds to the C termini of AMPA receptor subunits and may be involved in the synaptic targeting of these receptors. Here, we report the cloning of GRIP2, a homolog of GRIP1, and the characterization of the GRIP1 and GRIP2 proteins in the rat CNS. GRIP1 and GRIP2 are approximately 130 kDa proteins that are highly enriched in brain. GRIP1 and GRIP2 are widely expressed in brain, with the highest levels found in the cerebral cortex, hippocampus, and olfactory bulb. Biochemical studies show that GRIP1 and GRIP2 are enriched in synaptic plasma membrane and postsynaptic density fractions. GRIP1 is expressed early in embryonic development before the expression of AMPA receptors and peaks in expression at postnatal day 8-10. In contrast, GRIP2 is expressed relatively late in development and parallels the expression of AMPA receptors. Immunohistochemistry using the GRIP1 antibodies demonstrated that GRIP1 is expressed in neurons in a somatodendritic staining pattern. At the ultrastructural level, DAB and immunogold electromicroscopy studies showed that GRIP1 was enriched in dendritic spines near the postsynaptic density and was expressed in dendritic shafts and in peri-Golgi regions in the neuronal soma. GRIP1 appeared to be clustered at both glutamatergic and GABAergic synapses. These results suggest that GRIP1 and GRIP2 are AMPA receptor binding proteins potentially involved in the targeting of AMPA receptors to synapses. GRIP1 also may play functional roles at both excitatory and inhibitory synapses, as well as in early neuronal development.
Collapse
Affiliation(s)
- H Dong
- Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|