1
|
A Nuclear Belt Fastens on Neural Cell Fate. Cells 2022; 11:cells11111761. [PMID: 35681456 PMCID: PMC9179901 DOI: 10.3390/cells11111761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/22/2022] Open
Abstract
Successful embryonic and adult neurogenesis require proliferating neural stem and progenitor cells that are intrinsically and extrinsically guided into a neuronal fate. In turn, migration of new-born neurons underlies the complex cytoarchitecture of the brain. Proliferation and migration are therefore essential for brain development, homeostasis and function in adulthood. Among several tightly regulated processes involved in brain formation and function, recent evidence points to the nuclear envelope (NE) and NE-associated components as critical new contributors. Classically, the NE was thought to merely represent a barrier mediating selective exchange between the cytoplasm and nucleoplasm. However, research over the past two decades has highlighted more sophisticated and diverse roles for NE components in progenitor fate choice and migration of their progeny by tuning gene expression via interactions with chromatin, transcription factors and epigenetic factors. Defects in NE components lead to neurodevelopmental impairments, whereas age-related changes in NE components are proposed to influence neurodegenerative diseases. Thus, understanding the roles of NE components in brain development, maintenance and aging is likely to reveal new pathophysiological mechanisms for intervention. Here, we review recent findings for the previously underrepresented contribution of the NE in neuronal commitment and migration, and envision future avenues for investigation.
Collapse
|
2
|
Zheng M, Jin G, Zhou Z. Post-Translational Modification of Lamins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:864191. [PMID: 35656549 PMCID: PMC9152177 DOI: 10.3389/fcell.2022.864191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Lamins are the ancient type V intermediate filament proteins contributing to diverse biological functions, such as the maintenance of nuclear morphology, stabilization of chromatin architecture, regulation of cell cycle progression, regulation of spatial-temporal gene expressions, and transduction of mechano-signaling. Deregulation of lamins is associated with abnormal nuclear morphology and chromatin disorganization, leading to a variety of diseases such as laminopathy and premature aging, and might also play a role in cancer. Accumulating evidence indicates that lamins are functionally regulated by post-translational modifications (PTMs) including farnesylation, phosphorylation, acetylation, SUMOylation, methylation, ubiquitination, and O-GlcNAcylation that affect protein stabilization and the association with chromatin or associated proteins. The mechanisms by which these PTMs are modified and the relevant functionality become increasingly appreciated as understanding of these changes provides new insights into the molecular mechanisms underlying the laminopathies concerned and novel strategies for the management. In this review, we discussed a range of lamin PTMs and their roles in both physiological and pathological processes, as well as potential therapeutic strategies by targeting lamin PTMs.
Collapse
Affiliation(s)
- Mingyue Zheng
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Nuclear Lamins: Key Proteins for Embryonic Development. BIOLOGY 2022; 11:biology11020198. [PMID: 35205065 PMCID: PMC8869099 DOI: 10.3390/biology11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary The biology of a multicellular organism is extremely complex, leaving behind a realm of compound yet systematic mechanisms still to be unraveled. The nucleus is a vital cellular organelle adapted to storing and regulating the hereditary genetic information. Dysregulation of the nucleus can have profound effects on the physiology and viability of cells. This becomes extremely significant in the context of development, where the whole organism arises from a single cell, the zygote. Therefore, even a mild aberration at this stage can have profound effects on the whole organism. However, studying the function of individual nuclear components at this point is exceptionally complicated because this phase is inherently under the control of maternal factors stored in the female germ cell, the egg. Here, we focus on the lamins, as essential nuclear components, and summarize the current knowledge of their role in development. Although scientists encounter challenges working with these miniscule yet key proteins, the demand to know more is increasing gradually due to the mutations caused in lamins leading to irreversible phenotypic conditions in humans. Abstract Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.
Collapse
|
4
|
Ryan SM, Almassey M, Burch AM, Ngo G, Martin JM, Myers D, Compton D, Archie S, Cross M, Naeger L, Salzman A, Virola‐Iarussi A, Barbee SA, Mortimer NT, Sanyal S, Vrailas‐Mortimer AD. Drosophila p38 MAPK interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. Aging Cell 2021; 20:e13481. [PMID: 34674371 PMCID: PMC8590102 DOI: 10.1111/acel.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
Collapse
Affiliation(s)
- Sarah M. Ryan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Michael Almassey
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Gia Ngo
- Department of Biological Sciences University of Denver Denver CO USA
| | - Julia M. Martin
- School of Biological Sciences Illinois State University Normal IL USA
| | - David Myers
- School of Biological Sciences Illinois State University Normal IL USA
| | - Devin Compton
- School of Biological Sciences Illinois State University Normal IL USA
| | - Shira Archie
- School of Biological Sciences Illinois State University Normal IL USA
| | - Megan Cross
- School of Biological Sciences Illinois State University Normal IL USA
| | - Lauren Naeger
- School of Biological Sciences Illinois State University Normal IL USA
| | - Ashley Salzman
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Scott A. Barbee
- Department of Biological Sciences University of Denver Denver CO USA
| | | | - Subhabrata Sanyal
- Department of Cell Biology Emory University Atlanta GA USA
- Calico San Francisco CA USA
| | - Alysia D. Vrailas‐Mortimer
- Department of Biological Sciences University of Denver Denver CO USA
- School of Biological Sciences Illinois State University Normal IL USA
- Department of Cell Biology Emory University Atlanta GA USA
| |
Collapse
|
5
|
Patil S, Sengupta K. Role of A- and B-type lamins in nuclear structure-function relationships. Biol Cell 2021; 113:295-310. [PMID: 33638183 DOI: 10.1111/boc.202000160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Nuclear lamins are type V intermediate filament proteins that form a filamentous meshwork beneath the inner nuclear membrane. Additionally, a sub-population of A- and B-type lamins localizes in the nuclear interior. The nuclear lamina protects the nucleus from mechanical stress and mediates nucleo-cytoskeletal coupling. Lamins form a scaffold that partially tethers chromatin at the nuclear envelope. The nuclear lamina also stabilises protein-protein interactions involved in gene regulation and DNA repair. The lamin-based protein sub-complexes are implicated in both nuclear and cytoskeletal organisation, the mechanical stability of the nucleus, genome organisation, transcriptional regulation, genome stability and cellular differentiation. Here, we review recent research on nuclear lamins and unique roles of A- and B-type lamins in modulating various nuclear processes and their impact on cell function.
Collapse
Affiliation(s)
- Shalaka Patil
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kundan Sengupta
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
6
|
Karoutas A, Akhtar A. Functional mechanisms and abnormalities of the nuclear lamina. Nat Cell Biol 2021; 23:116-126. [PMID: 33558730 DOI: 10.1038/s41556-020-00630-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Alterations in nuclear shape are present in human diseases and ageing. A compromised nuclear lamina is molecularly interlinked to altered chromatin functions and genomic instability. Whether these alterations are a cause or a consequence of the pathological state are important questions in biology. Here, we summarize the roles of nuclear envelope components in chromatin organization, phase separation and transcriptional and epigenetic regulation. Examining these functions in healthy backgrounds will guide us towards a better understanding of pathological alterations.
Collapse
Affiliation(s)
- Adam Karoutas
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Francis Crick Institute, London, UK
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
7
|
Lamango NS, Nkembo AT, Ntantie E, Tawfeeq N. Polyisoprenylated Cysteinyl Amide Inhibitors: A Novel Approach to Controlling Cancers with Hyperactive Growth Signaling. Curr Med Chem 2021; 28:3476-3489. [PMID: 33176634 PMCID: PMC9175089 DOI: 10.2174/0929867327666201111140825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Aberrant activation of monomeric G-protein signaling pathways drives some of the most aggressive cancers. Suppressing these hyperactivities has been the focus of efforts to obtain targeted therapies. Polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in various cancers. Its inhibition induces the death of cancer cells that harbor the constitutively active K-Ras proteins. Furthermore, the viability of cancer cells driven by factors upstream of K-Ras, such as overexpressed growth factors and their receptors or the mutationally-activated receptors, is also susceptible to PMPMEase inhibition. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were thus designed to target cancers with hyperactive signaling pathways involving the G-proteins. The PCAIs were, however, poor inhibitors of PMPMEase, with Ki values ranging from 3.7 to 20 μM. On the other hand, they inhibited cell viability, proliferation, colony formation, induced apoptosis in cells with mutant K-Ras and inhibited cell migration and invasion with EC50 values of 1 to 3 μM. HUVEC tube formation was inhibited at submicromolar concentrations through their disruption of actin filament organization. At the molecular level, the PCAIs at 2 to 5 μM depleted monomeric G-proteins such as K-Ras, RhoA, Cdc42 and Rac1. The PCAIs also deplete vinculin and fascin that are involved in actin organization and function while disrupting vinculin punctates in the process. These demonstrate a polyisoprenylation-dependent mechanism that explains the observed PCAIs' inhibition of the proliferative, invasive and angiogenic processes that promote both tumor growth and metastasis.
Collapse
Affiliation(s)
- Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Augustine T. Nkembo
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Elizabeth Ntantie
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Nada Tawfeeq
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| |
Collapse
|
8
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
9
|
Borini Etichetti CM, Arel Zalazar E, Cocordano N, Girardini J. Beyond the Mevalonate Pathway: Control of Post-Prenylation Processing by Mutant p53. Front Oncol 2020; 10:595034. [PMID: 33224889 PMCID: PMC7674641 DOI: 10.3389/fonc.2020.595034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene are among the most frequent alterations in human cancer. Consequently, many tumors show high expression of p53 point mutants, which may acquire novel activities that contribute to develop aggressive tumors. An unexpected aspect of mutant p53 function was uncovered by showing that some mutants can increase the malignant phenotype of tumor cells through alteration of the mevalonate pathway. Among metabolites generated through this pathway, isoprenoids are of particular interest, since they participate in a complex process of posttranslational modification known as prenylation. Recent evidence proposes that mutant p53 also enhances this process through transcriptional activation of ICMT, the gene encoding the methyl transferase responsible for the last step of protein prenylation. In this way, mutant p53 may act at different levels to promote prenylation of key proteins in tumorigenesis, including several members of the RAS and RHO families. Instead, wild type p53 acts in the opposite way, downregulating mevalonate pathway genes and ICMT. This oncogenic circuit also allows to establish potential connections with other metabolic pathways. The demand of acetyl-CoA for the mevalonate pathway may pose limitations in cell metabolism. Likewise, the dependence on S-adenosyl methionine for carboxymethylation, may expose cells to methionine stress. The involvement of protein prenylation in tumor progression offers a novel perspective to understand the antitumoral effects of mevalonate pathway inhibitors, such as statins, and to explore novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Evelyn Arel Zalazar
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Nabila Cocordano
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Javier Girardini
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| |
Collapse
|
10
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
11
|
Wang Q, Liu M, Zang Y, Xiao W. The C-terminal extension of Arabidopsis Uev1A/B with putative prenylation site plays critical roles in protein interaction, subcellular distribution and membrane association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110324. [PMID: 31928655 DOI: 10.1016/j.plantsci.2019.110324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Lysine (K) 63-linked polyubiquitination plays important roles in cellular processes including DNA-damage tolerance (DDT), NF-κB signaling and endocytosis. Compared to yeast and mammals, little is known about K63-linked polyubiquitination in plants. To date, a Uev-Ubc13 complex is the only known Ub-conjugating enzyme to catalyze K63-linked polyubiquitination, in which Uev serves as a regulatory subunit. The Arabidopsis thaliana genome contains four UEV1 genes that can be classified into two subfamilies (UEV1A/B and UEV1C/D), in which Uev1A/B have a C-terminal extension. Database analysis reveals that all higher plant genomes contain both subfamily UEV1s, which were evolved as early as angiosperm plants. Interestingly, all C-terminal tails in the Uev1A/B subfamily contain a putative prenylation motif, CaaX. Combined experimental results using AtUev1B demonstrated that it is most likely farnesylated and that its C-terminal tail, particularly the catalytic Cys residue in the CaaX motif, plays critical roles in protein-protein interaction, nuclear exclusion and membrane association. Using AtUev1B as bait for a yeast-two-hybrid screen, we identified 14 interaction proteins in a prenylation-dependent manner. These results collectively imply that prenylation of AtUev1A/B plays a critical role in its functional differentiation from AtUev1C/D.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Maoqing Liu
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
12
|
Non-senescent Hydra tolerates severe disturbances in the nuclear lamina. Aging (Albany NY) 2019; 10:951-972. [PMID: 29754147 PMCID: PMC5990382 DOI: 10.18632/aging.101440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.
Collapse
|
13
|
Kang SM, Yoon MH, Park BJ. Laminopathies; Mutations on single gene and various human genetic diseases. BMB Rep 2018; 51:327-337. [PMID: 29764566 PMCID: PMC6089866 DOI: 10.5483/bmbrep.2018.51.7.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
Lamin A and its alternative splicing product Lamin C are the key intermediate filaments (IFs) of the inner nuclear membrane intermediate filament. Lamin A/C forms the inner nuclear mesh with Lamin B and works as a frame with a nuclear shape. In addition to supporting the function of nucleus, nuclear lamins perform important roles such as holding the nuclear pore complex and chromatin. However, mutations on the Lamin A or Lamin B related proteins induce various types of human genetic disorders and diseases including premature aging syndromes, muscular dystrophy, lipodystrophy and neuropathy. In this review, we briefly overview the relevance of genetic mutations of Lamin A, human disorders and laminopathies. We also discuss a mouse model for genetic diseases. Finally, we describe the current treatment for laminopathies. [BMB Reports 2018; 51(7): 327-337].
Collapse
Affiliation(s)
- So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| |
Collapse
|
14
|
Masuko K, Furuhashi H, Komaba K, Numao E, Nakajima R, Fuse N, Kurata S. Nuclear Lamin is required for Winged Eye-mediated transdetermination of Drosophila imaginal disc. Genes Cells 2018; 23:724-731. [PMID: 29968323 DOI: 10.1111/gtc.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
Drosophila imaginal discs often change their cell fate under stress conditions, and this phenomenon, called transdetermination (TD), has long been a useful model for studying cell fate plasticity during regeneration. We previously identified a chromatin-associated protein, Winged Eye (Wge), which induces eye-to-wing TD upon its over-expression in eye imaginal discs. However, the molecular mechanism of Wge-mediated TD remains obscure. Here, we analyzed Wge-interacting proteins and found that several heterochromatin-related proteins, including a nuclear lamina protein, Lamin (Lam), were associated with Wge protein in cultured cells. Knockdown experiments revealed that Lam is indeed required for Wge-mediated eye-to-wing TD. Moreover, Wge over-expression altered the spatial organization of genomic DNA inside the cell nuclei. Accordingly, we suggest that Wge interacts with Lam to link some genomic regions with the nuclear periphery and regulates chromatin dynamics in imaginal disc TD.
Collapse
Affiliation(s)
- Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hirofumi Furuhashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Komaba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Eriko Numao
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rumi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Perovanovic J, Hoffman EP. Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiol Genomics 2018; 50:694-704. [PMID: 29750601 PMCID: PMC6335092 DOI: 10.1152/physiolgenomics.00128.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the lamin A/C (LMNA) gene cause a broad range of clinical syndromes that show tissue-restricted abnormalities of post mitotic tissues, such as muscle, nerve, heart, and adipose tissue. Mutations in other nuclear envelope proteins cause clinically overlapping disorders. The majority of mutations are dominant single amino acid changes (toxic protein produced by the single mutant gene), and patients are heterozygous with both normal and abnormal proteins. Experimental support has been provided for different models of cellular pathogenesis in nuclear envelope diseases, including changes in heterochromatin formation at the nuclear membrane (epigenomics), changes in the timing of steps during terminal differentiation of cells, and structural abnormalities of the nuclear membrane. These models are not mutually exclusive and may be important in different cells at different times of development. Recent experiments using fusion proteins of normal and mutant lamin A/C proteins fused to a bacterial adenine methyltransferase (DamID) provided compelling evidence of mutation-specific perturbation of epigenomic imprinting during terminal differentiation. These gain-of-function properties include lineage-specific ineffective genomic silencing during exit from the cell cycle (heterochromatinization), as well as promiscuous initiation of silencing at incorrect places in the genome. To date, these findings have been limited to a few muscular dystrophy and lipodystrophy LMNA mutations but seem shared with a distinct nuclear envelope disease, emerin-deficient muscular dystrophy. The dominant-negative structural model and gain-of-function epigenomic models for distinct LMNA mutations are not mutually exclusive, and it is likely that both models contribute to aspects of the many complex clinical phenotypes observed.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton New York
| |
Collapse
|
16
|
Blanden MJ, Suazo KF, Hildebrandt ER, Hardgrove DS, Patel M, Saunders WP, Distefano MD, Schmidt WK, Hougland JL. Efficient farnesylation of an extended C-terminal C( x) 3X sequence motif expands the scope of the prenylated proteome. J Biol Chem 2017; 293:2770-2785. [PMID: 29282289 DOI: 10.1074/jbc.m117.805770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid CAAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical CAAX sequence, specifically C(x)3X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C(x)3X sequences. As the search to identify physiologically relevant C(x)3X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function.
Collapse
Affiliation(s)
- Melanie J Blanden
- Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Daniel S Hardgrove
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Meet Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William P Saunders
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
17
|
Barghetti A, Sjögren L, Floris M, Paredes EB, Wenkel S, Brodersen P. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes Dev 2017; 31:2282-2295. [PMID: 29269486 PMCID: PMC5769771 DOI: 10.1101/gad.301242.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
In this study, Barghetti et al. investigate the functions of protein farnesylation in plants. They show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.
Collapse
Affiliation(s)
- Andrea Barghetti
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars Sjögren
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Maïna Floris
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg Paredes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Stephan Wenkel
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
18
|
Bentley SJ, Boshoff A. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. PLoS One 2017; 12:e0183858. [PMID: 28902917 PMCID: PMC5597180 DOI: 10.1371/journal.pone.0183858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.
Collapse
Affiliation(s)
- Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- * E-mail:
| |
Collapse
|
19
|
Machowska M, Piekarowicz K, Rzepecki R. Regulation of lamin properties and functions: does phosphorylation do it all? Open Biol 2016; 5:rsob.150094. [PMID: 26581574 PMCID: PMC4680568 DOI: 10.1098/rsob.150094] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The main functions of lamins are their mechanical and structural roles as major building blocks of the karyoskeleton. They are also involved in chromatin structure regulation, gene expression, intracellular signalling pathway modulation and development. All essential lamin functions seem to depend on their capacity for assembly or disassembly after the receipt of specific signals, and after specific, selective and precisely regulated interactions through their various domains. Reversible phosphorylation of lamins is crucial for their functions, so it is important to understand how lamin polymerization and interactions are modulated, and which sequences may undergo such modifications. This review combines experimental data with results of our in silico analyses focused on lamin phosphorylation in model organisms to show the presence of evolutionarily conserved sequences and to indicate specific in vivo phosphorylations that affect particular functions.
Collapse
Affiliation(s)
- Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
20
|
Uchino R, Sugiyama S, Katagiri M, Chuman Y, Furukawa K. Non-farnesylated B-type lamin can tether chromatin inside the nucleus and its chromatin interaction requires the Ig-fold region. Chromosoma 2016; 126:125-144. [PMID: 26892013 DOI: 10.1007/s00412-016-0581-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
Lamins are thought to direct heterochromatin to the nuclear lamina (NL); however, this function of lamin has not been clearly demonstrated in vivo. To address this, we analyzed polytene chromosome morphology when artificial lamin variants were expressed in Drosophila endoreplicating cells. We found that the CaaX-motif-deleted B-type lamin Dm0, but not A-type lamin C, was able to form a nuclear envelope-independent layer that was closely associated with chromatin. Other nuclear envelope proteins were not detected in this "ectopic lamina," and the associated chromatin showed a repressive histone modification maker but not a permissive histone modification marker nor RNA polymerase II proteins. Furthermore, deletion of the C-terminal lamin-Ig-fold domain prevents chromatin association with this ectopic lamina. Thus, non-farnesylated B-type lamin Dm0 can form an ectopic lamina and induce changes to chromatin structure and status inside the interphase nucleus.
Collapse
Affiliation(s)
- Ryo Uchino
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Shin Sugiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motoi Katagiri
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
21
|
Rodriguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov 2016; 11:307-20. [DOI: 10.1517/17460441.2016.1143814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Hering L, Bouameur JE, Reichelt J, Magin TM, Mayer G. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. eLife 2016; 5:e11117. [PMID: 26840051 PMCID: PMC4829535 DOI: 10.7554/elife.11117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians. DOI:http://dx.doi.org/10.7554/eLife.11117.001 Different proteins exist to support the stability of animal cells. The intermediate filament proteins are an important example. One type – called lamins – stabilizes the nucleus (the structure within an animal cell that stores most of its DNA), while another forms scaffold-like structures in the rest of cell. The second type, referred to as “cytoplasmic” intermediate filaments, are not found in many hard-bodied creatures including insects and their closest relatives. This is probably because these animals, which are collectively known as arthropods, are instead supported by their tough external skeleton. The soft-bodied animals called tardigrades (also known as water bears or moss piglets) are closely related to the arthropods. These microscopic animals can endure extreme environmental conditions such as freezing. The tardigrade’s endurance is likely to require some way to stabilize the animal’s cells. This might involve cytoplasmic intermediate filaments, but nothing was known about these proteins in tardigrades. Now, Hering, Bouameur, Reichelt et al. have investigated if, and where, intermediate filaments are found in the cells of tardigrades. First, the complete set of active genes was analyzed for a species of tardigrade called Hypsibius dujardini; this revealed that three genes for intermediate filament proteins were active. Staining tissue slices or whole tardigrades with a marker that binds to intermediate filament proteins revealed that two of the three proteins were lamins and located within the nucleus. The third protein, which has been named "cytotardin", was found outside of the nucleus. However, unlike well-known cytoplasmic intermediate filaments, this protein did not form scaffold-like structures throughout the cell. Instead, cytotardin formed belt-like filaments that encircled each cell in the skin of the tardigrades. Hering, Bouameur, Reichelt et al. then discovered that cytotardin seems to be more closely related to lamins than it is to cytoplasmic intermediate filaments. This suggests that cytotardin actually evolved from a tardigrade lamin and then acquired a new role in building filaments outside of the nucleus. The fact that cytotardin is only found in the skin of the tardigrade and in those tissues that experience mechanical stress (for example, the mouth and legs) hints that it might help stabilize these cells. This could mean that the protein also helps these animals to resist extreme conditions. Further studies should focus on clarifying cytotardin’s role in stabilizing cells, in particular if it is required for the tardigrades' tolerance to environmental stress. DOI:http://dx.doi.org/10.7554/eLife.11117.002
Collapse
Affiliation(s)
- Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.,Animal Evolution and Development, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Julian Reichelt
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.,Animal Evolution and Development, Institute of Biology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Casasola A, Scalzo D, Nandakumar V, Halow J, Recillas-Targa F, Groudine M, Rincón-Arano H. Prelamin A processing, accumulation and distribution in normal cells and laminopathy disorders. Nucleus 2016; 7:84-102. [PMID: 26900797 PMCID: PMC4916894 DOI: 10.1080/19491034.2016.1150397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 12/21/2022] Open
Abstract
Lamin A is part of a complex structural meshwork located beneath the nuclear envelope and is involved in both structural support and the regulation of gene expression. Lamin A is initially expressed as prelamin A, which contains an extended carboxyl terminus that undergoes a series of post-translational modifications and subsequent cleavage by the endopeptidase ZMPSTE24 to generate lamin A. To facilitate investigations of the role of this cleavage in normal and disease states, we developed a monoclonal antibody (PL-1C7) that specifically recognizes prelamin A at the intact ZMPSTE24 cleavage site, ensuring prelamin A detection exclusively. Importantly, PL-1C7 can be used to determine prelamin A localization and accumulation in cells where lamin A is highly expressed without the use of exogenous fusion proteins. Our results show that unlike mature lamin A, prelamin A accumulates as discrete and localized foci at the nuclear periphery. Furthermore, whereas treatment with farnesylation inhibitors of cells overexpressing a GFP-prelamin A fusion protein results in the formation of large nucleoplasmic clumps, these aggregates are not observed upon similar treatment of cells expressing endogenous prelamin A or in cells lacking ZMPSTE24 expression and/or activity. Finally, we show that specific laminopathy-associated mutations exhibit both positive and negative effects on prelamin A accumulation, indicating that these mutations affect prelamin A processing efficiency in different manners.
Collapse
Affiliation(s)
- Andrea Casasola
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Instituto Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David Scalzo
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vivek Nandakumar
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jessica Halow
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Félix Recillas-Targa
- Instituto Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark Groudine
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Radiation Oncology, University Washington School of Medicine, Seattle, WA, USA
| | - Héctor Rincón-Arano
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
24
|
Jevtić P, Edens LJ, Li X, Nguyen T, Chen P, Levy DL. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem 2015; 290:27557-71. [PMID: 26429910 DOI: 10.1074/jbc.m115.673798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/17/2022] Open
Abstract
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change.
Collapse
Affiliation(s)
- Predrag Jevtić
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Lisa J Edens
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Xiaoyang Li
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Thang Nguyen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Pan Chen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Daniel L Levy
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
25
|
Abstract
A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.
Collapse
Affiliation(s)
- Aaron A Mehus
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ruthellen H Anderson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
26
|
Moudgil DK, Westcott N, Famulski JK, Patel K, Macdonald D, Hang H, Chan GKT. A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly, to kinetochores. ACTA ACUST UNITED AC 2015; 208:881-96. [PMID: 25825516 PMCID: PMC4384735 DOI: 10.1083/jcb.201412085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mitotic checkpoint protein Spindly is farnesylated in vivo and this modification is required for its interaction with the RZZ complex and its localization to kinetochores. Kinetochore (KT) localization of mitotic checkpoint proteins is essential for their function during mitosis. hSpindly KT localization is dependent on the RZZ complex and hSpindly recruits the dynein–dynactin complex to KTs during mitosis, but the mechanism of hSpindly KT recruitment is unknown. Through domain-mapping studies we characterized the KT localization domain of hSpindly and discovered it undergoes farnesylation at the C-terminal cysteine residue. The N-terminal 293 residues of hSpindly are dispensable for its KT localization. Inhibition of farnesylation using a farnesyl transferase inhibitor (FTI) abrogated hSpindly KT localization without affecting RZZ complex, CENP-E, and CENP-F KT localization. We showed that hSpindly is farnesylated in vivo and farnesylation is essential for its interaction with the RZZ complex and hence KT localization. FTI treatment and hSpindly knockdown displayed the same mitotic phenotypes, indicating that hSpindly is a key FTI target in mitosis. Our data show a novel role of lipidation in targeting a checkpoint protein to KTs through protein–protein interaction.
Collapse
Affiliation(s)
| | - Nathan Westcott
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Jakub K Famulski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Kinjal Patel
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Dawn Macdonald
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Howard Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Gordon K T Chan
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| |
Collapse
|
27
|
Brauchle M, Hansen S, Caussinus E, Lenard A, Ochoa-Espinosa A, Scholz O, Sprecher SG, Plückthun A, Affolter M. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry. Biol Open 2014; 3:1252-61. [PMID: 25416061 PMCID: PMC4265764 DOI: 10.1242/bio.201410041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein–protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications. Here we used the Designed Ankyrin Repeat Protein (DARPin) scaffold to generate binders to fluorescent proteins and used them to modify biological systems directly at the protein level. DARPins binding to GFP or mCherry were selected by ribosome display. For GFP, binders with KD as low as 160 pM were obtained, while for mCherry the best affinity was 6 nM. We then verified in cell culture their specific binding in a complex cellular environment and found an affinity cut-off in the mid-nanomolar region, above which binding is no longer detectable in the cell. Next, their binding properties were employed to change the localization of the respective fluorescent proteins within cells. Finally, we performed experiments in Drosophila melanogaster and Danio rerio and utilized these DARPins to either degrade or delocalize fluorescently tagged fusion proteins in developing organisms, and to phenocopy loss-of-function mutations. Specific protein binders can thus be selected in vitro and used to reprogram developmental systems in vivo directly at the protein level, thereby bypassing some limitations of approaches that function at the DNA or the RNA level.
Collapse
Affiliation(s)
- Michael Brauchle
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Department of Zoology, University of Fribourg, Chemi du Musée 10, 1700 Fribourg, Switzerland
| | - Simon Hansen
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Emmanuel Caussinus
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Anna Lenard
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Oliver Scholz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon G Sprecher
- Department of Zoology, University of Fribourg, Chemi du Musée 10, 1700 Fribourg, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Jahn D, Schramm S, Benavente R, Alsheimer M. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 2014. [DOI: 10.4161/nucl.11800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol 2014; 34:4534-44. [PMID: 25312645 DOI: 10.1128/mcb.00997-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a "fence" and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.
Collapse
|
30
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Kimura Y, Fujino K, Ogawa K, Masuda K. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain. FRONTIERS IN PLANT SCIENCE 2014; 5:62. [PMID: 24616728 PMCID: PMC3935212 DOI: 10.3389/fpls.2014.00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS) motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1) and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1.
Collapse
Affiliation(s)
- Yuta Kimura
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kana Ogawa
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kiyoshi Masuda
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| |
Collapse
|
32
|
Nuclear Envelope Regulation of Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:187-206. [DOI: 10.1007/978-1-4899-8032-8_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Abstract
In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
Collapse
|
34
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
35
|
Abstract
Lamin proteins are the major constituents of the nuclear lamina, a proteinaceous network that lines the inner nuclear membrane. Primarily, the nuclear lamina provides structural support for the nucleus and the nuclear envelope; however, lamins and their associated proteins are also involved in most of the nuclear processes, including DNA replication and repair, regulation of gene expression, and signaling. Mutations in human lamin A and associated proteins were found to cause a large number of diseases, termed 'laminopathies.' These diseases include muscular dystrophies, lipodystrophies, neuropathies, and premature aging syndromes. Despite the growing number of studies on lamins and their associated proteins, the molecular organization of lamins in health and disease is still elusive. Likewise, there is no comprehensive view how mutations in lamins result in a plethora of diseases, selectively affecting different tissues. Here, we discuss some of the structural aspects of lamins and the nuclear lamina organization, in light of recent results.
Collapse
|
36
|
Jung HJ, Nobumori C, Goulbourne CN, Tu Y, Lee JM, Tatar A, Wu D, Yoshinaga Y, de Jong PJ, Coffinier C, Fong LG, Young SG. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci U S A 2013; 110:E1923-32. [PMID: 23650370 PMCID: PMC3666708 DOI: 10.1073/pnas.1303916110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left "naked" (free from the nuclear lamina). Thus, farnesylation of lamin B1--but not lamin B2--is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuko Yoshinaga
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | | | | | | | - Stephen G. Young
- Molecular Biology Institute
- Department of Medicine, and
- Department of Human Genetics, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
37
|
Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 2013; 4:142-50. [PMID: 23475125 PMCID: PMC3621746 DOI: 10.4161/nucl.24089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lamin A and the B-type lamins, lamin B1 and lamin B2, are translated as pre-proteins that are modified at a carboxyl terminal CAAX motif by farnesylation, proteolysis and carboxymethylation. Lamin A is further processed by proteolysis to remove the farnesyl, but B-type lamins remain permanently farnesylated. Two childhood diseases, Hutchinson Gilford Progeria Syndrome and restrictive dermopathy are caused by defects in the processing of lamin A, resulting in permanent farnesylation of the protein. Farnesyltransferase inhibitors, originally developed to target oncogenic Ras, have recently been used in clinical trials to treat children with Hutchinson Gilford Progeria Syndrome. Lamin B1 and lamin B2 play important roles in cell proliferation and organ development, but little is known about the role of farnesylation in their functions. Treating normal human fibroblasts with farnesyltransferase inhibitors causes the accumulation of unprocessed lamin B2 and lamin A and a decrease in mature lamin B1. Normally, lamins are concentrated at the nuclear envelope/lamina, but when farnesylation is inhibited, the peripheral localization of lamin B2 decreases as its nucleoplasmic levels increase. Unprocessed prelamin A distributes into both the nuclear envelope/lamina and nucleoplasm. Farnesyltransferase inhibitors also cause a rapid cell cycle arrest leading to cellular senescence. This study suggests that the long-term inhibition of protein farnesylation could have unforeseen consequences on nuclear functions.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
38
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
|
40
|
Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 2012; 21:4966-79. [PMID: 22899650 PMCID: PMC3709196 DOI: 10.1093/hmg/dds342] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a frequent cause of Parkinson's disease (PD). Nonetheless, the physiological role of LRRK2 remains unclear. Here, we demonstrate that LRRK2 participates in canonical Wnt signaling as a scaffold. LRRK2 interacts with key Wnt signaling proteins of the β-catenin destruction complex and dishevelled proteins in vivo and is recruited to membranes following Wnt stimulation, where it binds to the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) in cellular models. LRRK2, therefore, bridges membrane and cytosolic components of Wnt signaling. Changes in LRRK2 expression affects pathway activity, while pathogenic LRRK2 mutants reduce both signal strength and the LRRK2–LRP6 interaction. Thus, decreased LRRK2-mediated Wnt signaling caused by reduced binding to LRP6 may underlie the neurodegeneration observed in PD. Finally, a newly developed LRRK2 kinase inhibitor disrupted Wnt signaling to a similar extent as pathogenic LRRK2 mutations. The use of LRRK2 kinase inhibition to treat PD may therefore need reconsideration.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
41
|
Miller BT, Ueta CB, Lau V, Jacomino KG, Wasserman LM, Kim BW. Statins and downstream inhibitors of the isoprenylation pathway increase type 2 iodothyronine deiodinase activity. Endocrinology 2012; 153:4039-48. [PMID: 22719054 DOI: 10.1210/en.2012-1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type 2 iodothyronine selenodeiodinase (D2) is a critical determinant of local thyroid signaling, converting T(4) to the active form T(3) at the cytoplasmic face of the endoplasmic reticulum, thus supplying the nucleus with T(3) without immediately affecting circulating thyroid hormone levels. Although inhibitors of the cholesterol synthesis/isoprenylation pathway, such as hydroxy-methyl-glutaryl-coenzyme A reductase inhibitors (statins) have been to shown to down-regulate selenoproteins via interruption of normal selenocysteine incorporation, little is known about the effect of statins on D2. Here, we report that statins and prenyl transferase inhibitors actually increase D2 activity in cells with endogenous D2 expression. Although we confirmed that lovastatin (LVS) decreases the activity of transiently expressed D2 in HEK-293 cells, the prenyl transferase inhibitors increase activity in this system as well. LVS treatment increases endogenous Dio2 mRNA in MSTO-211H cells but does not alter transiently expressed Dio2 mRNA in HEK-293 cells. The prenyl transferase inhibitors do not increase Dio2 mRNA in either system, indicating that a posttranscriptional mechanism must exist. Cotreatment with LVS or the prenyl transferase inhibitors with the proteasome inhibitor MG-132 did not lead to additive increases in D2 activity, indirectly implicating the ubiquitin-proteasomal system in the mechanism. Finally, C57BL/6J mice treated with LVS or farnesyl transferase inhibitor-277 for 24 h exhibited increased D2 activity in their brown adipose tissue. These data indicate that statins and downstream inhibitors of the isoprenylation pathway may increase thyroid signaling via stimulation of D2 activity.
Collapse
Affiliation(s)
- B T Miller
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
42
|
Goulbourne CN, Malhas AN, Vaux DJ. The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-α. J Cell Sci 2011; 124:4253-66. [PMID: 22223883 PMCID: PMC3258109 DOI: 10.1242/jcs.091009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 12/24/2022] Open
Abstract
Farnesylated prelamin A accumulates when the final endoproteolytic maturation of the protein fails to occur and causes a dysmorphic nuclear phenotype; however, the morphology and mechanisms of biogenesis of these changes remain unclear. We show here that acute prelamin A accumulation after reduction in the activity of the ZMPSTE24 endoprotease by short interfering RNA knockdown, results in the generation of a complex nucleoplasmic reticulum that depends for its formation on the enzyme CTP:phosphocholine-cytidylyltransferase-α (CCT-α, also known as choline-phosphate cytidylyltransferase A). This structure can form during interphase, confirming that it is independent of mitosis and therefore not a consequence of disordered nuclear envelope assembly. Serial-section dual-axis electron tomography reveals that these invaginations can take two forms: one in which the inner nuclear membrane infolds alone with an inter membrane space interior, and the other in which an invagination of both nuclear membranes occurs, enclosing a cytoplasmic core. Both types of invagination can co-exist in one nucleus and both are frequently studded with nuclear pore complexes (NPC), which reduces NPC abundance on the nuclear surface.
Collapse
Affiliation(s)
- Chris N. Goulbourne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ashraf N. Malhas
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - David J. Vaux
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
43
|
Abstract
Protein farnesylation and geranylgeranylation, together referred to as prenylation, are lipid post-translational modifications that are required for the transforming activity of many oncogenic proteins, including some RAS family members. This observation prompted the development of inhibitors of farnesyltransferase (FT) and geranylgeranyl-transferase 1 (GGT1) as potential anticancer drugs. In this Review, we discuss the mechanisms by which FT and GGT1 inhibitors (FTIs and GGTIs, respectively) affect signal transduction pathways, cell cycle progression, proliferation and cell survival. In contrast to their preclinical efficacy, only a small subset of patients responds to FTIs. Identifying tumours that depend on farnesylation for survival remains a challenge, and strategies to overcome this are discussed. One GGTI has recently entered the clinic, and the safety and efficacy of GGTIs await results from clinical trials.
Collapse
Affiliation(s)
- Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Andrew D. Hamilton
- University of Oxford, Vice-Chancellor’s Office, Wellington Square, Oxford OX1 2JD, UK
| | - Saïd M. Sebti
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
- Departments of Oncologic Sciences and Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| |
Collapse
|
44
|
Polychronidou M, Hellwig A, Grosshans J. Farnesylated nuclear proteins Kugelkern and lamin Dm0 affect nuclear morphology by directly interacting with the nuclear membrane. Mol Biol Cell 2010; 21:3409-20. [PMID: 20685963 PMCID: PMC2947476 DOI: 10.1091/mbc.e10-03-0230] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear shape changes are observed during a variety of developmental processes, pathological conditions and ageing. Here, the molecular mechanism is analyzed how the farnesylated nuclear proteins interact with the nuclear envelope and deform the phospholipid bilayer. Nuclear shape changes are observed during a variety of developmental processes, pathological conditions, and ageing. The mechanisms underlying nuclear shape changes in the above-mentioned situations have mostly remained unclear. To address the molecular mechanism behind nuclear shape changes, we analyzed how the farnesylated nuclear envelope proteins Kugelkern and lamin Dm0 affect the structure of the nuclear membrane. We found that Kugelkern and lamin Dm0 affect nuclear shape without requiring filament formation or the presence of a classical nuclear lamina. We also could show that the two proteins do not depend on a group of selected inner nuclear membrane proteins for their localization to the nuclear envelope. Surprisingly, we found that farnesylated Kugelkern and lamin Dm0 protein constructs change the morphology of protein-free liposomes. Based on these findings, we propose that farnesylated proteins of the nuclear membrane induce nuclear shape changes by being asymmetrically inserted into the phospholipid bilayer via their farnesylated C-terminal part.
Collapse
Affiliation(s)
- Maria Polychronidou
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
45
|
Jahn D, Schramm S, Benavente R, Alsheimer M. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 2010; 1:273-83. [PMID: 21327075 DOI: 10.4161/nucl.1.3.11800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/19/2022] Open
Abstract
A hallmark of meiosis is the precise pairing and the stable physical connection (synapsis) of the homologous chromosomes. These processes are essential prerequisite for their proper segregation. Pairing of the homologs during meiotic prophase I critically depends on characteristic movements of chromosomes. These movements, in turn, require attachment of meiotic telomeres to the nuclear envelope and their subsequent dynamic repositioning. Dynamic repositioning of meiotic telomeres goes along with profound structural reorganization of the nuclear envelope. The short A-type lamin C2 is thought to play a critical role in this process due to its specific expression during meiotic prophase I and the unique localization surrounding telomere attachments. Consistent with this notion, here we provide compelling evidence that meiosis-specific lamin C2 features a significantly increased mobility compared to somatic lamins as revealed by photobleaching techniques. We show that this property can be clearly ascribed to the lack of the N-terminal head and the significantly shorter α-helical coil domain. Moreover, expression of lamin C2 in somatic cells induces nuclear deformations and alters the distribution of the endogenous nuclear envelope proteins lamin B1, LAP2, SUN1 and SUN2. Together, our data define lamin C2 as a "natural lamin deletion mutant" that confers unique properties to the nuclear envelope which would be essential for dynamic telomere repositioning during meiotic prophase I.
Collapse
Affiliation(s)
- Daniel Jahn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Germany
| | | | | | | |
Collapse
|
46
|
A proteomic approach to identify candidate substrates of human adenovirus E4orf6-E1B55K and other viral cullin-based E3 ubiquitin ligases. J Virol 2009; 83:12172-84. [PMID: 19759146 DOI: 10.1128/jvi.01169-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been known for some time that the human adenovirus serotype 5 (Ad5) E4orf6 and E1B55K proteins work in concert to degrade p53 and to regulate selective export of late viral mRNAs during productive infection. Both of these functions rely on the formation by the Ad5 E4orf6 protein of a cullin 5-based E3 ubiquitin ligase complex containing elongins B and C. E1B55K is believed to function as the substrate recognition module for the complex and, in addition to p53, Mre11 and DNA ligase IV have also been identified as substrates. To discover additional substrates we have taken a proteomic approach by using two-dimensional difference gel electrophoresis to detect cellular proteins that decrease significantly in amount in p53-null H1299 human lung carcinoma cells after expression of E1B55K and E4orf6 using adenovirus vectors. Several species were detected and identified by mass spectroscopy, and for one of these, integrin alpha3, we went on in a parallel study to confirm it as a bone fide substrate of the complex (F. Dallaire et al., J. Virol. 83:5329-5338, 2009). Although the system has some limitations, it may still be of some general use in identifying candidate substrates of any viral cullin-based E3 ubiquitin ligase complex, and we suggest a series of criteria for substrate validation.
Collapse
|
47
|
Abstract
Lamins are intermediate filament proteins that form a network lining the inner nuclear membrane. They provide mechanical strength to the nuclear envelope, but also appear to have many other functions as reflected in the array of diseases caused by lamin mutations. Unlike other intermediate filament proteins, they do not self-assemble into 10 nm filaments in vitro and their in vivo organization is uncertain. We have recently re-examined the organization of a simple B-type lamina in Xenopus oocytes [Goldberg, Huttenlauch, Hutchison and Stick (2008) J. Cell Sci. 121, 215-225] and shown that it consists of tightly packed 8-10 nm filaments with regular cross-connections, tightly opposed to the membrane. When lamin A is expressed in oocytes, it forms organized bundles on top of the B lamina. This has led to a new model for lamina organization which is discussed in the present paper.
Collapse
|
48
|
Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008; 30:226-36. [PMID: 18293361 DOI: 10.1002/bies.20720] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.
Collapse
Affiliation(s)
- Amy C Rowat
- Department of Physics/School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
49
|
The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett 2008; 582:2023-32. [PMID: 18474238 DOI: 10.1016/j.febslet.2008.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.
Collapse
|
50
|
Michaelson D, Abidi W, Guardavaccaro D, Zhou M, Ahearn I, Pagano M, Philips MR. Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. ACTA ACUST UNITED AC 2008; 181:485-96. [PMID: 18443222 PMCID: PMC2364699 DOI: 10.1083/jcb.200801047] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rac1 regulates a wide variety of cellular processes. The polybasic region of the Rac1 C terminus functions both as a plasma membrane–targeting motif and a nuclear localization sequence (NLS). We show that a triproline N-terminal to the polybasic region contributes to the NLS, which is cryptic in the sense that it is strongly inhibited by geranylgeranylation of the adjacent cysteine. Subcellular fractionation demonstrated endogenous Rac1 in the nucleus and Triton X-114 partition revealed that this pool is prenylated. Cell cycle–blocking agents, synchronization of cells stably expressing low levels of GFP-Rac1, and time-lapse microscopy of asynchronous cells revealed Rac1 accumulation in the nucleus in late G2 and exclusion in early G1. Although constitutively active Rac1 restricted to the cytoplasm inhibited cell division, activated Rac1 expressed constitutively in the nucleus increased the mitotic rate. These results show that Rac1 cycles in and out of the nucleus during the cell cycle and thereby plays a role in promoting cell division.
Collapse
Affiliation(s)
- David Michaelson
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|