1
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
2
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
3
|
Presslauer C, Bizuayehu TT, Razmi K, Fernandes JMO, Babiak I. See-Thru-Gonad zebrafish line: developmental and functional validation. Reproduction 2016; 152:507-17. [DOI: 10.1530/rep-16-0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Zebrafish are an important model species in developmental biology. However, their potential in reproductive biology research has yet to be realized. In this study, we established See-Thru-Gonad zebrafish, a transparent line with fluorescently labeled germ cells visible throughout the life cycle, validated its gonadal development features, and demonstrated its applicability by performing a targeted gene knockdown experiment using vivo-morpholinos (VMOs). To establish the line, we crossed the zf45Tg and mitfaw2/w2; mpv17b18/b18 zebrafish lines. We documented the in vivo visibility of the germline-specific fluorescent signal throughout development, from gametes through embryonic and juvenile stages up to sexual maturity, and validated gonadal development with histology. We performed targeted gene knockdown of the microRNA (miRNA) miR-92a-3p through injection of VMOs directly to maturing ovaries. After the treatment, zebrafish were bred naturally. Embryos from miR-92a-3p knockdown ovaries had a significant reduction in relative miR-92a-3p expression and a higher percentage of developmental arrest at the 1-cell stage as compared with 5-base mismatch-treated controls. The experiment demonstrates that See-Thru-Gonad line can be successfully used for vertical transmission of the effects of targeted gene knockdown in ovaries into their offspring.
Collapse
|
4
|
Cragle C, MacNicol AM. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2. J Biol Chem 2014; 289:14239-51. [PMID: 24644291 DOI: 10.1074/jbc.m114.548271] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mRNA-binding protein, Musashi, has been shown to regulate translation of select mRNAs and to control cellular identity in both stem cells and cancer cells. Within the mammalian cells, Musashi has traditionally been characterized as a repressor of translation. However, we have demonstrated that Musashi is an activator of translation in progesterone-stimulated oocytes of the frog Xenopus laevis, and recent evidence has revealed Musashi's capability to function as an activator of translation in mammalian systems. The molecular mechanism by which Musashi directs activation of target mRNAs has not been elucidated. Here, we report a specific association of Musashi with the noncanonical poly(A) polymerase germ line development defective-2 (GLD2) and map the association domain to 31 amino acids within the C-terminal domain of Musashi. We show that loss of GLD2 interaction through deletion of the binding domain or treatment with antisense oligonucleotides compromises Musashi function. Additionally, we demonstrate that overexpression of both Musashi and GLD2 significantly enhances Musashi function. Finally, we report a similar co-association also occurs between murine Musashi and GLD2 orthologs, suggesting that coupling of Musashi to the polyadenylation apparatus is a conserved mechanism to promote target mRNA translation.
Collapse
Affiliation(s)
- Chad Cragle
- From the Interdiciplinary Biomedical Sciences, Departments of Neurobiology and Developmental Sciences
| | - Angus M MacNicol
- Departments of Neurobiology and Developmental Sciences, Physiology and Biophysics, and Genetics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| |
Collapse
|
5
|
Grossman D, Kalo D, Gendelman M, Roth Z. Effect of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate on in vitro developmental competence of bovine oocytes. Cell Biol Toxicol 2012; 28:383-96. [PMID: 22956148 DOI: 10.1007/s10565-012-9230-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
In the last decade, potential exposure of humans and animals to industrial chemicals and pesticides has been a growing concern. In the present study, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) were used to model the effects of endocrine-disrupting compounds and their risk in relation to early embryonic losses. Exposure of cumulus oocyte complexes during maturation to 50 μM MEHP reduced the proportion of oocytes that underwent nuclear maturation (p < 0.05) and increased the proportion of apoptotic oocytes (p < 0.05). Furthermore, phthalates reduced cleavage rate in the MEHP-treated group (p < 0.05) and the proportion of embryos developing to the blastocyst stage in both DEHP- and MEHP-treated groups (p < 0.05). The total cell count for blastocysts developing from MEHP-treated oocytes was lower than in controls (p < 0.05). Exposure of oocytes to MEHP during maturation reduced (p < 0.05) the expression of ASAH1 (an anti-apoptotic factor), CCNA2 (involved in cell cycle control), and POU5F1 (responsible for pluripotency) in matured oocytes. Furthermore, the reduced mRNA expression of POU5F1 and ASAH1 lasted into two-cell stage embryos (p < 0.05). Phthalate-induced alterations in POU5F1, ASAH1, and CCNA2 expression might explain in part the reduced developmental competence of MEHP-treated oocytes.
Collapse
Affiliation(s)
- D Grossman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
6
|
HTLV-I tax increases genetic instability by inducing DNA double strand breaks during DNA replication and switching repair to NHEJ. PLoS One 2012; 7:e42226. [PMID: 22916124 PMCID: PMC3423393 DOI: 10.1371/journal.pone.0042226] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/02/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood. RESULTS Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway. CONCLUSIONS This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation.
Collapse
|
7
|
Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2009; 29:387-97. [PMID: 19959990 DOI: 10.1038/emboj.2009.337] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023] Open
Abstract
Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi-binding element (MBE) and the MBE-binding protein, Musashi. Our findings indicate that although the cyclin B5 3' UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3' UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE-dependant mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | |
Collapse
|
8
|
Ye YB, Lin JY, Chen Q, Liu F, Chen HJ, Li JY, Liu WQ, Garbay C, Vidal M. The cytotoxicity of a Grb2-SH3 inhibitor in Bcr-Abl positive K562 cells. Biochem Pharmacol 2008; 75:2080-91. [PMID: 18455151 DOI: 10.1016/j.bcp.2007.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 11/25/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Chronic myelogenous leukemia (CML) is characterized by the presence of Bcr-Abl oncoprotein. Gleevec has been designed to treat many CML patients by specifically targeting Bcr-Abl, but resistance to it is already apparent in many cases. In CML cells, Bcr-Abl activates several signaling pathways, including the Ras-dependent pathway, in which growth factor receptor binding 2 (Grb2) acts as an adaptor protein. A specific Grb2-SH3 inhibitor (denoted as peptidimer-c) that disrupts Grb2-Sos complex was designed and synthesized in our laboratory. In this study, we investigated the effect and the molecular mechanism of this inhibitor. Peptidimer-c was shown to bind to Grb2 in K562 cells, a cell line over-expressing Bcr-Abl oncoprotein. It caused cytotoxicity in the cells, and inhibited their ability of colony formation in the semi-solid medium. It was shown to induce apoptosis of K562 cells in a dose-dependent mode, the apoptotic effect of peptidimer-c being associated with caspase-3 activation. The effect of peptidimer-c on growth inhibition was also shown to be accompanied by S-phase arrest of cell cycle mediated by down-regulation of cyclin A and Cdk2, as well as phospho-Cdk2. The above results indicated that peptidimer-c may be another potential therapeutic agent for CML, which can induce S-phase arrest in the Bcr-Abl positive K562.
Collapse
Affiliation(s)
- Yun-Bin Ye
- Université Paris Descartes, Laboratoire de Pharmacochime Moléculaire et Cellulaire, INSERM U648, 45 Rue des Saints Peres, Paris 75006, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM. A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev Biol 2008; 317:454-66. [PMID: 18395197 DOI: 10.1016/j.ydbio.2008.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/16/2022]
Abstract
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3' UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3' UTR and the pericentriolar material-1 (Pcm-1) mRNA 3' UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3' UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3' UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.
Collapse
Affiliation(s)
- Yi Ying Wang
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lehner CF, Ried G, Stern B, Knoblich JA. Cyclins and cdc2 kinases in Drosophila: genetic analyses in a higher eukaryote. CIBA FOUNDATION SYMPOSIUM 2007; 170:97-109; discussion 110-4. [PMID: 1483353 DOI: 10.1002/9780470514320.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclin proteins and the kinases with which they associate are encoded by gene families in multicellular eukaryotes. A variety of cyclin/kinase complexes with different functions may exist. We have started a genetic dissection of this complexity in Drosophila. We have done experiments to investigate a potential functional overlap between two kinases (Dmcdc2 and Dmcdc2c) and two cyclins (cyclin A and cyclin B). No functional overlap was observed between the Dmcdc2 and the Dmcdc2c kinases. The phenotype resulting from mutations in Dmcdc2 was not affected by altering the level of Dmcdc2c. Our results concerning cyclin A and cyclin B strongly suggest that these two cyclins have largely overlapping functions. Cell proliferation was observed in the absence of either cyclin A or cyclin B, but not if both cyclins were absent. Cyclin A also has essential functions that cannot be taken over by cyclin B, but these functions appear to be required at defined developmental stages in specific tissues only.
Collapse
Affiliation(s)
- C F Lehner
- Friedrich-Miescher-Laboratorium Max-Planck-Gesellschaft, Tübingen, Germany
| | | | | | | |
Collapse
|
11
|
LaChapelle AM, Ruygrok ML, Toomer M, Oost JJ, Monnie ML, Swenson JA, Compton AA, Stebbins-Boaz B. The hormonal herbicide, 2,4-dichlorophenoxyacetic acid, inhibits Xenopus oocyte maturation by targeting translational and post-translational mechanisms. Reprod Toxicol 2007; 23:20-31. [PMID: 17055699 DOI: 10.1016/j.reprotox.2006.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/21/2006] [Accepted: 08/22/2006] [Indexed: 11/16/2022]
Abstract
The widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid, blocks meiotic maturation in vitro and is thus a potential environmental endocrine disruptor with early reproductive effects. To test whether maturation inhibition was dependent on protein kinase A, an endogenous maturation inhibitor, oocytes were microinjected with PKI, a specific PKA inhibitor, and exposed to 2,4-D. Oocytes failed to mature, suggesting that 2,4-D is not dependent on PKA activity and likely acts on a downstream target, such as Mos. De novo synthesis of Mos, which is triggered by mRNA poly(A) elongation, was examined. Oocytes were microinjected with radiolabelled in vitro transcripts of Mos RNA and exposed to progesterone and 2,4-D. RNA analysis showed progesterone-induced polyadenylation as expected but none with 2,4-D. 2,4-D-activated MAPK was determined to be cytoplasmic in localization studies but poorly induced Rsk2 phosphorylation and activation. In addition to inhibition of the G2/M transition, 2,4-D caused abrupt reduction of H1 kinase activity in MII phase oocytes. Attempts to rescue maturation in oocytes transiently exposed to 2,4-D failed, suggesting that 2,4-D induces irreversible dysfunction of the meiotic signaling mechanism.
Collapse
|
12
|
Abstract
Early in vertebrate development, endodermal signals act on mesoderm to induce cardiogenesis. The F-type SOXs SOX7 and SOX18beta are expressed in the cardiogenic region of the early Xenopus embryo. Injection of RNAs encoding SOX7 or SOX18beta, but not the related F-type SOX, SOX17, leads to the nodal-dependent expression of markers of cardiogenesis in animal cap explants. Injection of morpholinos directed against either SOX7 or SOX18mRNAs lead to a partial inhibition of cardiogenesis in vivo, while co-injection of SOX7 and SOX18 morpholinos strongly inhibited cardiogenesis. SOX7 RNA rescued the effects of the SOX18 morpholino and visa versa, indicating that the proteins have redundant functions. In animal cap explants, it appears that SOX7 and SOX18 act indirectly through Xnr2 to induce mesodermal (Eomesodermin, Snail, Wnt11), organizer (Cerberus) and endodermal (endodermin, Hex) tissues, which then interact to initiate cardiogenesis. Versions of SOX7 and SOX18 with their C-terminal, beta-catenin interaction domains replaced by a transcriptional activator domain failed to antagonize beta-catenin activation of Siamois, but still induced cardiogenesis. These observations identify SOX7 and SOX18 as important, and previously unsuspected, regulators of cardiogenesis in Xenopus.
Collapse
|
13
|
Yue J, Xiong W, Ferrell JE. B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. Oncogene 2006; 25:3307-15. [PMID: 16434971 DOI: 10.1038/sj.onc.1209354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During mitosis, a select pool of MEK1 and p42/p44 MAPK becomes activated at the kinetochores and spindle poles, without substantial activation of the bulk of the cytoplasmic p42/p44 MAPK. Recently, we set out to identify the MAP kinase kinase kinase (MAPKKK) responsible for this mitotic activation, using cyclin-treated Xenopus egg extracts as a model system, and presented evidence that Mos was the relevant MAPKKK . However, a second MAPKKK distinct from Mos was readily detectable as well. Here, we partially purify this second MAPKKK and identify it as B-Raf. No changes in the activity of B-Raf were detectable during progesterone-induced oocyte maturation, after egg fertilization, or during the early embryonic cell cycle, arguing against a role for B-Raf in the mitotic activation of MEK1 and p42 MAPK. Ras proteins can bring about activation of MEK1 and p42 MAPK in extracts, and Ras may contribute to signaling from the classical progesterone receptor during oocyte maturation and from receptor tyrosine kinases during early embryogenesis. We found that both B-Raf and C-Raf, but not Mos, are required for Ras-induced MEK1 and p42 MAPK activation. These data indicate that two upstream stimuli, active Ras and active Cdc2, utilize different MAPKKKs to activate MEK1 and p42 MAPK.
Collapse
Affiliation(s)
- J Yue
- Department of Molecular Pharmacology, Stanford University, CA 94305-5174, USA.
| | | | | |
Collapse
|
14
|
Woo SH, Park MJ, An S, Lee HC, Jin HO, Lee SJ, Gwak HS, Park IC, Hong SI, Rhee CH. Diarsenic and tetraarsenic oxide inhibit cell cycle progression and bFGF- and VEGF-induced proliferation of human endothelial cells. J Cell Biochem 2005; 95:120-30. [PMID: 15723287 DOI: 10.1002/jcb.20329] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (As2O3, diarsenic oxide) has recently been reported to induce apoptosis and inhibit the proliferation of various human cancer cells derived from solid tumors as well as hematopoietic malignancies. In this study, the in vitro effects of As2O3 and tetraasrsenic oxide (As4O6) on cell cycle regulation and basic fibroblast growth factor (bFGF)- or vascular endothelial growth factor (VEGF)-stimulated cell proliferation of human umbilical vein endothelial cells (HUVEC) were investigated. Significant dose-dependent inhibition of cell proliferation was observed when HUVEC were treated with either arsenical compound for 48 h, and flow cytometric analysis revealed that these two arsenical compounds induced cell cycle arrest at the G1 and G2/M phases--the increases in cell population at the G1 and G2/M phase were dominantly observed in As2O3- and As4O6-treated cells, respectively. In both arsenical compounds-treated cells, the protein levels of cyclin A and CDC25C were significantly reduced in a dose-dependent manner, concomitant to the reduced activities of CDK2- and CDC2-associated kinase. In G1-synchronized HUVEC, the arsenical compounds prevented the cell cycle progression from G1 to S phase, which was stimulated by bFGF or VEGF, through the inhibition of growth factor-dependent signaling. These results suggest that arsenical compounds inhibit the proliferation of HUVEC via G1 and G2/M phase arrest of the cell cycle. In addition, these inhibitory effects on bFGF- or VEGF-stimulated cell proliferation suggest antiangiogenic potential of these arsenical compounds.
Collapse
Affiliation(s)
- Sang Hyeok Woo
- Laboratory of Cell Biology, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiong W, Ferrell JE. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature 2003; 426:460-5. [PMID: 14647386 DOI: 10.1038/nature02089] [Citation(s) in RCA: 506] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 09/18/2003] [Indexed: 11/09/2022]
Abstract
The maturation of Xenopus oocytes can be thought of as a process of cell fate induction, with the immature oocyte representing the default fate and the mature oocyte representing the induced fate. Crucial mediators of Xenopus oocyte maturation, including the p42 mitogen-activated protein kinase (MAPK) and the cell-division cycle protein kinase Cdc2, are known to be organized into positive feedback loops. In principle, such positive feedback loops could produce an actively maintained 'memory' of a transient inductive stimulus and could explain the irreversibility of maturation. Here we show that the p42 MAPK and Cdc2 system normally generates an irreversible biochemical response from a transient stimulus, but the response becomes transient when positive feedback is blocked. Our results explain how a group of intrinsically reversible signal transducers can generate an irreversible response at a systems level, and show how a cell fate can be maintained by a self-sustaining pattern of protein kinase activation.
Collapse
Affiliation(s)
- Wen Xiong
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | |
Collapse
|
16
|
Cuddihy AR, O'Connell MJ. Cell-cycle responses to DNA damage in G2. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:99-140. [PMID: 12503848 DOI: 10.1016/s0074-7696(02)22013-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular reproduction, at its basic level, is simply the passing of genetic information from a single parent cell into two daughter cells. As the cellular genome encodes all the information that defines a cell, it is crucial that the genome be accurately replicated. Furthermore, the duplicated genome must be properly segregated so that each daughter cell contains the exact same information as the parent cell. The processes by which this occurs is known as the cell cycle. The failure of either duplication or segregation of the genome can have disastrous consequences for an organism, including cancer and death. This article discusses what is known about checkpoints, the surveillance mechanisms that monitor both the fidelity and accuracy of DNA replication and segregation. Specifically, we will focus on the G2 checkpoint that is responsible for ensuring proper segregation of the duplicated genome into the daughter cells and how this checkpoint functions to arrest entry into mitosis in response to DNA damage.
Collapse
Affiliation(s)
- Andrew R Cuddihy
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria 8006 Australia
| | | |
Collapse
|
17
|
Abstract
Several cyclins and cdks have been cloned in Xenopus, but their developmental expression has not been thoroughly examined. We have analyzed the temporal and spatial expression of cdk1, cdk2, cdk4 and cyclins D1, D2, E, A1, A2 and B1 by in situ hybridization. The transcripts of these cyclins and cdks exhibit striking tissue-restricted expression patterns very early in development that cannot be strictly correlated with proliferation. While the cdks and their activating cyclins are expressed in somewhat overlapping patterns, they are not precisely coincident. Additionally, maternal and zygotic cyclin forms demonstrate markedly different expression patterns.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
18
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
19
|
Xie J, Wen JJ, Yang ZA, Wang HY, Gui JF. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 295:1-16. [PMID: 12506399 DOI: 10.1002/jez.a.10209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Silver crucian carp (Carassius auratus gibelio) is a unique gynogenetic fish. Because of its specific genetic background and reproduction mode, it is an intriguing model system for understanding regulatory mechanism of oocyte maturation division. It keeps its chromosomal integrity by inhibiting the first meiotic division (no extrusion of the first pole body). The spindle behavior during oocyte maturation is significantly different from that in gonochoristic fish. The chromosomes are first arranged in a tripolar spindle, and then they turn around and are reunited mutually to form a normal bipolar spindle. A new member of the fish A-type cyclin gene, cyclin A2, has been isolated by suppression of subtractive hybridization on the basis of its differential transcription in fully-grown oocytes between the gynogenetic silver crucian carp and gonochoristic color crucian carp. There are 18 differing amino acids in the total 428 residues of cyclin A2 between the two forms of crucian carps. In addition, cDNAs of cyclin Al and cyclin B have also been cloned from them. Thus two members of A-type cyclins, cyclin Al and cyclin A2, are demonstrated to exist in fish, just as in frog, humans, and mouse. Northern blotting reveals that cyclin A2 mRNA is more than 20-fold and cyclin A1 mRNA is about 2-fold in fully grown oocytes of gynogenetic silver crucian carp compared to gonochoristic color crucian carp. However, cyclin B does not show such a difference between them. Western blot analysis also shows that the cyclin A2 protein stockpiled in fully grown oocytes of gynogenetic crucian carp is much more abundant than in gonochoristic crucian carp. Moreover, two different cyclin A2 expression patterns during oocyte maturation have been revealed in the two closely related crucian carps. For color crucian carp, cyclin A2 protein is translated only after hormone stimulation. For silver crucian carp, cyclin A2 protein can be detected throughout the process of maturation division. The different expression of cyclin A2 may be a clue to understanding the special maturation division of gynogenetic silver crucian carp.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
20
|
Whitmire E, Khan B, Coué M. Cdc6 synthesis regulates replication competence in Xenopus oocytes. Nature 2002; 419:722-5. [PMID: 12384699 DOI: 10.1038/nature01032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 07/22/2002] [Indexed: 02/03/2023]
Abstract
The early division cycles of an embryo rely on the oocyte's ability to replicate DNA. During meiosis, oocytes temporarily lose this ability. After a single round of pre-meiotic S-phase, oocytes enter meiosis and rapidly arrest at prophase of meiosis I (G2). Upon hormonal stimulation, arrested oocytes resume meiosis, re-establish DNA replication competence in meiosis I shortly after germinal vesicle breakdown (GVBD), but repress replication until fertilization. How oocytes lose and regain replication competence during meiosis are important questions underlying the production of functional gametes. Here we show that the inability of immature Xenopus oocytes to replicate is linked to the absence of the Cdc6 protein and the cytoplasmic localization of other initiation proteins. Injection of Cdc6 protein into immature oocytes does not induce DNA replication. However, injection of Cdc6 into oocytes undergoing GVBD is sufficient to induce DNA replication in the absence of protein synthesis. Our results show that GVBD and Cdc6 synthesis are the only events that limit the establishment of the oocyte's replication competence during meiosis.
Collapse
Affiliation(s)
- Elizabeth Whitmire
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
21
|
Abstract
The past decade of cell cycle investigations has identified many roads not taken. The kinase that drives mitosis can be modulated by cyclins, by activating phosphorylation, by inhibitory phosphorylation and by binding of inhibitors, but one of these regulatory options controls the transition from G2 phase to mitosis in most circumstances. A switch-like mechanism integrates signals of cellular status and commits the cell to mitosis by abruptly removing inhibitory phosphate from preformed cyclin:Cdk1 complexes. The pathways that flip this switch alter the balance of modifying reactions to favor dephosphorylation, thereby generating a flood of mitotic kinase.
Collapse
Affiliation(s)
- P H O'Farrell
- Dept of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-0448, USA.
| |
Collapse
|
22
|
Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Bréchot C, Sobczak-Thépot J, Jessus C. Membrane-anchored cyclin A2 triggers Cdc2 activation in Xenopus oocyte. FEBS Lett 2001; 506:243-8. [PMID: 11602254 DOI: 10.1016/s0014-5793(01)02920-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In Xenopus oocyte, the formation of complexes between neosynthesized cyclins and Cdc2 contributes to Cdc2 kinase activation that triggers meiotic divisions. It has been proposed that cytoplasmic membranes could be involved in this process. To investigate this possibility, we have injected in the oocyte two undegradable human cyclin A2 mutants anchored to the endoplasmic reticulum (ER) membrane. They encode fusion proteins between the truncated cyclin A2-Delta152 and a viral or cellular ER-targeting domain. We show that both mutants are fully functional as mitotic cyclins when expressed in Xenopus oocytes, bind Cdc2 and activate M-phase promoting factor.
Collapse
Affiliation(s)
- J Faivre
- INSERM U370, Institut Pasteur/Necker, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Hochegger H, Klotzbücher A, Kirk J, Howell M, le Guellec K, Fletcher K, Duncan T, Sohail M, Hunt T. New B-type cyclin synthesis is required between meiosis I and II duringXenopusoocyte maturation. Development 2001; 128:3795-807. [PMID: 11585805 DOI: 10.1242/dev.128.19.3795] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive ‘pre-MPF’ consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions.
Collapse
Affiliation(s)
- H Hochegger
- ICRF Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xie J, Wen JJ, Chen B, Gui JF. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene 2001; 271:109-16. [PMID: 11410372 DOI: 10.1016/s0378-1119(01)00491-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver crucian carp (Carassius auratus gibelio) is a unique triploid bisexual species that can reproduce by gynogenesis. As all other gynogenetic animals, it keeps its chromosome integrity by inhibiting the first meiosis division (no extrusion of the first pole body). To understand the molecular events governing this reproduction mode, suppression subtractive hybridization was used to identify the genes differentially expressed in fully-grown oocytes of the gynogenetic and gonochoristic crucian carp (gyno-carp and gono-carp). From two specific subtractive cDNA libraries, the clones screened out by dot blots and virtual Northern blots were chosen to clone full-length cDNA by RACE. Four differentially expressed genes were obtained. Two are novel genes and are expressed specifically in the oocytes. The gyno-carp stores much more mRNA of cyclin A2, a new member of the fish A-type cyclin gene, in its fully-grown oocyte than in the gono-carp. The last gene is histone H2A. The histone H2As of these two closely related crucian carps are quite different in the C-terminus. Preliminary characterization of the four genes has been analyzed by nucleotide and deduced amino acid sequence and Northern analysis.
Collapse
Affiliation(s)
- J Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
25
|
Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother 2001; 5:109-29. [PMID: 11355576 DOI: 10.1016/s1278-3218(01)00087-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Comprehension of cell cycle regulation mechanisms has progressed very quickly these past few years and regulators of the cell cycle have gained widespread importance in cancer. This review first summarizes major advances in the understanding of the control of cell cycle mechanisms. Examples of how this control is altered in tumoral cells are then described. CURRENT KNOWLEDGE AND KEY POINTS The typical mammalian cell cycle consists of four distinct phases occurring in a well-defined order, each of which should be completed successfully before the next begins. Progression of eukaryotic cells through major cell cycle transitions is mediated by sequential assembly and activation of a family of serine-threonine protein kinases, the cyclin dependent kinases (CDK). The timing of their activation is determined by their post-translational modifications (phosphorylations/dephosphorylations), and by the association of a protein called cyclin, which is the regulatory subunit of the kinase complex. The cyclin family is divided into two main classes. The 'G1 cyclins' include cyclins C, D1-3, and E, and their accumulation is rate-limiting for progression from the G1 to S phase. The 'mitotic or G2 cyclins', which include cyclin A and cyclin B, are involved in the control of G2/M transition and mitosis. The cyclins bind to and activate the CDK, which leads to phosphorylation (and then inhibition) of the tumor suppressor protein, pRb. pRb controls commitment to progress from the G1 to S phase, at least in part by repressing the activity of the E2F transcription factors known to promote cell proliferation. Both the D-type cyclins and their partner kinases CDK4/6 have proto-oncogenic properties, and their activity is carefully regulated at multiple levels including negative control by two families of CDK inhibitors. While members of the INK4 family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) interact specifically with CDK4 and CDK6, the CIP/KIP inhibitors p21CIP1/WAF1, p27KIP1 and p57KIP2 inhibit a broader spectrum of CDK. The interplay between p16INK4A, cyclin D/CDK, and pRb/E2F together constitute a functional unit collectively known as the 'pRb pathway'. Each of the major components of this mechanism may become deregulated in cancer, and accumulating evidence points to the 'pRb pathway' as a candidate obligatory target in multistep oncogenesis of possibly all human tumor types. FUTURE PROSPECTS AND PROJECTS Major advances in the understanding of cell cycle regulation mechanisms provided a better knowledge of the molecular interactions involved in human cancer. This progress has led to the promotion of new therapeutic agents presently in clinical trials or under development. Moreover, the components of the cell cycle are probably involved in other non-cancerous diseases and their role must be defined.
Collapse
Affiliation(s)
- J F Viallard
- Service de médecine interne et maladies infectieuses, centre François-Magendie, hôpital du Haut-Lévêque, 5, avenue Magellan, 33604 Pessac, France.
| | | | | | | | | |
Collapse
|
26
|
Kano F, Takenaka K, Yamamoto A, Nagayama K, Nishida E, Murata M. MEK and Cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts. J Cell Biol 2000; 149:357-68. [PMID: 10769028 PMCID: PMC2175170 DOI: 10.1083/jcb.149.2.357] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
At the onset of mitosis, the Golgi apparatus, which consists of several cisternae, disperses throughout the cell to be partitioned into daughter cells. The molecular mechanisms of this process are now beginning to be understood. To investigate the biochemical requirements and kinetics of mitotic Golgi membrane dynamics in polarized cells, we have reconstituted the disassembly of the Golgi apparatus by introducing Xenopus egg extracts into permeabilized Mardin-Darby canine kidney (MDCK) cells. We used green fluorescence protein (GFP)-tagged galactosyltransferase-expressing MDCK cells to analyze the morphological changes of the Golgi membrane in the semi-intact system. Analyses by fluorescence and electron microscopies showed that the Golgi disassembly can be dissected into two elementary processes morphologically. In the first process, the perinuclear Golgi stacks break into punctate structures, intermediates, which are comprised of mini-stacks of cisternae associating with apical microtubule networks. In the second process, the structures fragment more thoroughly or substantially relocate to the ER. Our analyses further showed that cdc2 kinase and mitogen-activated protein kinase kinase (MAPKK = MEK) are differently involved in these two processes: the first process is mainly regulated by MEK and the second mainly by cdc2.
Collapse
Affiliation(s)
- F Kano
- Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci 2000; 113 ( Pt 7):1127-38. [PMID: 10704364 DOI: 10.1242/jcs.113.7.1127] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus prophase oocytes reenter meiotic division in response to progesterone. The signaling pathway leading to Cdc2 activation depends on neosynthesized proteins and a decrease in PKA activity. We demonstrate that Eg2 protein, a Xenopus member of the Aurora/Ipl1 family of protein kinases, accumulates in response to progesterone and is degraded after parthenogenetic activation. The polyadenylation and cap ribose methylation of Eg2 mRNA are not needed for the protein accumulation. Eg2 protein accumulation is induced by progesterone through a decrease in PKA activity, upstream of Cdc2 activation. Eg2 kinase activity is undetectable in prophase and is raised in parallel with Cdc2 activation. In contrast to Eg2 protein accumulation, Eg2 kinase activation is under Cdc2 control. Furthermore, by using an anti-sense strategy, we show that Eg2 accumulation is not required in the transduction pathway leading to Cdc2 activation. Altogether, our results strongly suggest that Eg2 is not necessary for Cdc2 activation, though it could participate in the organization of the meiotic spindles, in agreement with the well-conserved roles of the members of the Aurora family, from yeast to man.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Lilly MA, de Cuevas M, Spradling AC. Cyclin A associates with the fusome during germline cyst formation in the Drosophila ovary. Dev Biol 2000; 218:53-63. [PMID: 10644410 DOI: 10.1006/dbio.1999.9570] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated changes in the cell cycle underlie many aspects of growth and differentiation. Prior to meiosis, germ cell cycles in many organisms become accelerated, synchronized, and modified to lack cytokinesis. These changes cause cysts of interconnected germ cells to form that typically contain 2(n) cells. In Drosophila, developing germ cells during this period contain a distinctive organelle, the fusome, that is required for normal cyst formation. We find that the cell cycle regulator Cyclin A transiently associates with the fusome during the cystocyte cell cycles, suggesting that fusome-associated Cyclin A drives the interconnected cells within each cyst synchronously into mitosis. In the presence of a normal fusome, overexpression of Cyclin A forces cysts through an extra round of cell division to produce cysts with 32 germline cells. Female sterile mutations in UbcD1, encoding an E2 ubiquitin-conjugating enzyme, have a similar effect. Our observations suggest that programmed changes in the expression and cytoplasmic localization of key cell cycle regulatory proteins control germline cyst production.
Collapse
Affiliation(s)
- M A Lilly
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland, 21210, USA
| | | | | |
Collapse
|
29
|
Abstract
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| |
Collapse
|
30
|
Frank-Vaillant M, Jessus C, Ozon R, Maller JL, Haccard O. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol Biol Cell 1999; 10:3279-88. [PMID: 10512866 PMCID: PMC25591 DOI: 10.1091/mbc.10.10.3279] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris 05, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Rime H, Talbi N, Popoff MR, Suziedelis K, Jessus C, Ozon R. Inhibition of small G proteins by clostridium sordellii lethal toxin activates cdc2 and MAP kinase in Xenopus oocytes. Dev Biol 1998; 204:592-602. [PMID: 9882492 DOI: 10.1006/dbio.1998.9069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lethal toxin (LT) from Clostridium sordellii is a glucosyltransferase that modifies and inhibits small G proteins of the Ras family, Ras and Rap, as well as Rac proteins. LT induces cdc2 kinase activation and germinal vesicle breakdown (GVBD) when microinjected into full-grown Xenopus oocytes. Toxin B from Clostridium difficile, that glucosylates and inactivates Rac proteins, does not induce cdc2 activation, indicating that proteins of the Ras family, Ras and/or Rap, negatively regulate cdc2 kinase activation in Xenopus oocyte. In oocyte extracts, LT catalyzes the incorporation of [14C]glucose into a group of proteins of 23 kDa and into one protein of 27 kDa. The 23-kDa proteins are recognized by anti-Rap1 and anti-Rap2 antibodies, whereas the 27-kDa protein is recognized by several anti-Ras antibodies and probably corresponds to K-Ras. Microinjection of LT into oocytes together with UDP-[14C]glucose results in a glucosylation pattern similar to the in vitro glucosylation, indicating that the 23- and 27-kDa proteins are in vivo substrates of LT. In vivo time-course analysis reveals that the 27-kDa protein glucosylation is completed within 2 h, well before cdc2 kinase activation, whereas the 23-kDa proteins are partially glucosylated at GVBD. This observation suggests that the 27-kDa Ras protein could be the in vivo target of LT allowing cdc2 kinase activation. Interestingly, inactivation of Ras proteins does not prevent the phosphorylation of c-Raf1 and the activation of MAP kinase that occurs normally around GVBD.
Collapse
Affiliation(s)
- H Rime
- INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cédex 05, France
| | | | | | | | | | | |
Collapse
|
33
|
Karaïskou A, Cayla X, Haccard O, Jessus C, Ozon R. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Exp Cell Res 1998; 244:491-500. [PMID: 9806800 DOI: 10.1006/excr.1998.4220] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of Cdc2 kinase induces the entry into M-phase of all eukaryotic cells. We have developed a cell-free system prepared from prophase-arrested Xenopus oocytes to analyze the mechanism initiating the all-or-none activation of Cdc2 kinase. Inhibition of phosphatase 2A, the major okadaic acid-sensitive Ser/Thr phosphatase, in these extracts, provokes Cdc2 kinase amplification and concomitant hyperphosphorylation of Cdc25 phosphatase, with a lag of about 1 h. Polo-like kinase (Plx1 kinase) is activated slightly after Cdc2. All these events are totally inhibited by the cdk inhibitor p21(Cip1), demonstrating that Plx1 kinase activation depends on Cdc2 kinase activity. Addition of a threshold level of recombinant Cdc25 induces a linear activation of Cdc2 and Plx1 kinases and a partial phosphorylation of Cdc25. We propose that the Cdc2 positive feedback loop involves two successive phosphorylation steps of Cdc25 phosphatase: the first one is catalyzed by Cdc2 kinase and/or Plx1 kinase but it does not modify Cdc25 enzymatic activity, the second one requires a new kinase counteracted by phosphatase 2A. Furthermore we demonstrate that, under our conditions, Cdc2 amplification and MAP kinase activation are two independent events.
Collapse
Affiliation(s)
- A Karaïskou
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Boîte 13, 4 place Jussieu, Paris cedex 05, 75252, France
| | | | | | | | | |
Collapse
|
34
|
Ihara J, Yoshida N, Tanaka T, Mita K, Yamashita M. Either cyclin B1 or B2 is necessary and sufficient for inducing germinal vesicle breakdown during frog (Rana japonica) oocyte maturation. Mol Reprod Dev 1998; 50:499-509. [PMID: 9669534 DOI: 10.1002/(sici)1098-2795(199808)50:4<499::aid-mrd14>3.0.co;2-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation.
Collapse
Affiliation(s)
- J Ihara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
35
|
Kamalati T, Davies D, Titley J, Crompton MR. Functional consequences of cyclin D1 overexpression in human mammary luminal epithelial cells. Clin Exp Metastasis 1998; 16:415-26. [PMID: 10091937 DOI: 10.1023/a:1006529407652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proliferation of eukaryotic cells is primarily regulated by a decision made during the G1 phase of the cell cycle as to remain in the cycle and divide, or to withdraw from the cycle and adopt a different cell fate. During this time, environmental signals, which regulate the synthesis of the G1 cyclins, are coupled to cell division. In this context, mammalian D-type cyclins have been shown to control progression through the G1 phase of the mammalian cell cycle. Specifically, cyclin D1 has been reported frequently to be amplified, over-transcribed and overexpressed in human breast carcinomas. Although the effects of cyclin D1 overexpression have been examined in human breast carcinoma cell lines, the biological consequences of cyclin D1 expression in normal human mammary epithelial cells remain to be elucidated. In this study we have stably over expressed cyclin D1 in human mammary luminal epithelial cells in order to more directly address the role of cyclin D1 in cell cycle control and tumorigenesis of the human breast. Here, we demonstrate that the effect of cyclin D1 overexpression in these cells is to reduce their growth factor dependency, as well as shorten the duration of G1 and correspondingly reduce the mean generation time. Collectively, our data indicate that deregulation of cyclin D1 expression in human mammary epithelial cells can provide a growth advantage and hence contribute to the oncogenic potential of these cells.
Collapse
Affiliation(s)
- T Kamalati
- Division of Cell Biology and Experimental Pathology, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
36
|
Okano-Uchida T, Sekiai T, Lee K, Okumura E, Tachibana K, Kishimoto T. In vivo regulation of cyclin A/Cdc2 and cyclin B/Cdc2 through meiotic and early cleavage cycles in starfish. Dev Biol 1998; 197:39-53. [PMID: 9578617 DOI: 10.1006/dbio.1998.8881] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In starfish, fertilization occurs naturally at late meiosis I. In the absence of fertilization, however, oocytes complete meiosis I and II, resulting in mature eggs arrested at the pronucleus stage, which are still fertilizable. In this study, we isolated cDNAs of starfish cyclin A and Cdc2, and monitored extensively the cell cycle dynamics of cyclin A and cyclin B levels and their associated Cdc2 kinase activity, Tyr phosphorylation of Cdc2, and Cdc25 phosphorylation states throughout meiotic and early embryonic cleavage cycles in vivo. In meiosis I, cyclin A was undetectable and cyclin B/Cdc2 alone exhibited histone H1 kinase activity, while thereafter both cyclin A/Cdc2 and cyclin B/Cdc2 kinase activity oscillated along with the cell cycle. Cyclin B-, but not cyclin A-, associated Cdc2 was subjected to regulation via Tyr phosphorylation, and phosphorylation states of Cdc25 correlated with cyclin B/Cdc2 kinase activity with some exceptions. Between meiosis I and II and at the pronucleus stage, cyclin A and B levels remained low, Cdc2 Tyr phosphorylation was undetectable, and Cdc25 remained phosphorylated depending on MAP kinase activity, showing a good correlation between these two stages. Upon fertilization of mature eggs, Cdc2 Tyr phosphorylation reappeared and Cdc25 was dephosphorylated. In the first cleavage cycle, under conditions which prevented Cdc25 activity, cyclin A/Cdc2 was activated with a normal time course and then cyclin B/Cdc2 was activated with a significant delay, resulting in the delayed completion of M-phase. Thus, in contrast to meiosis I, both cyclin A and cyclin B appear to be involved in the embryonic cleavage cycles. We propose that regulation of cyclin A/Cdc2 and cyclin B/Cdc2 is characteristic of meiotic and early cleavage cycles.
Collapse
Affiliation(s)
- T Okano-Uchida
- Faculty of Biosciences and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Jessus C, Ozon R. Function and regulation of cdc25 protein phosphate through mitosis and meiosis. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:215-28. [PMID: 9552365 DOI: 10.1007/978-1-4615-1809-9_17] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the cyclin B-cdc2 kinase mitotic inducer involves dephosphorylation of two inhibitory residues, tyrosine 15 and threonine 14, cdc25 is the specific phosphatase that directly dephosphorylates and activates the cdc2 kinase, cdc25 activity is regulated by phosphorylation. Both phosphatases 1 and 2A could act as cdc25-specific inhibitory phosphatases. Although the cyclin B-cdc2 complex plays a role in activating cdc25, it is highly probable that a distinct protein kinase is involved as a trigger in cdc25 activation. The implication of raf kinase as a cdc25-specific activating kinase in human cells and Xenopus oocytes is discussed.
Collapse
Affiliation(s)
- C Jessus
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
38
|
Hua XH, Newport J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Biophys Biochem Cytol 1998; 140:271-81. [PMID: 9442103 PMCID: PMC2132576 DOI: 10.1083/jcb.140.2.271] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Before initiation of DNA replication, origin recognition complex (ORC) proteins, cdc6, and minichromosome maintenance (MCM) proteins bind to chromatin sequentially and form preinitiation complexes. Using Xenopus laevis egg extracts, we find that after the formation of these complexes and before initiation of DNA replication, cdc6 is rapidly removed from chromatin, possibly degraded by a cdk2-activated, ubiquitin-dependent proteolytic pathway. If this displacement is inhibited, DNA replication fails to initiate. We also find that after assembly of MCM proteins into preinitiation complexes, removal of the ORC from DNA does not block the subsequent initiation of replication. Importantly, under conditions in which both ORC and cdc6 protein are absent from preinitiation complexes, DNA replication is still dependent on cdk2 activity. Therefore, the final steps in the process leading to initiation of DNA replication during S phase of the cell cycle are independent of ORC and cdc6 proteins, but dependent on cdk2 activity.
Collapse
Affiliation(s)
- X H Hua
- Biology Department, University of California, San Diego, CA 92093-0347, USA
| | | |
Collapse
|
39
|
Abrieu A, Fisher D, Simon MN, Dorée M, Picard A. MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle. EMBO J 1997; 16:6407-13. [PMID: 9351823 PMCID: PMC1170247 DOI: 10.1093/emboj/16.21.6407] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Down-regulation of MAP kinase (MAPK) is a universal consequence of fertilization in the animal kingdom, although its role is not known. Here we show that MAPK inactivation is essential for embryos, both vertebrate and invertebrate, to enter first mitosis. Suppressing down-regulation of MAPK at fertilization, for example by constitutively activating the upstream MAPK cascade, specifically suppresses cyclin B-cdc2 kinase activation and its consequence, entry into first mitosis. It thus appears that MAPK functions in meiotic maturation by preventing unfertilized eggs from proceeding into parthenogenetic development. The most general effect of artificially maintaining MAPK activity after fertilization is prevention of the G2 to M-phase transition in the first mitotic cell cycle, even though inappropriate reactivation of MAPK after fertilization may lead to metaphase arrest in vertebrates. Advancing the time of MAPK inactivation in fertilized eggs does not, however, speed up their entry into first mitosis. Thus, sustained activity of MAPK during part of the first mitotic cell cycle is not responsible for late entry of fertilized eggs into first mitosis.
Collapse
Affiliation(s)
- A Abrieu
- Centre de Recherches de Biochimie Macromoléculaire, Montpellier, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
Oocyte and egg are suitable model systems for studying cell division since meiotic maturation resembles a G2/M transition and early embryonic divisions are precisely timed and occur without zygotic transcription. The analysis of oocytes and eggs from different species provides the opportunity to understand the roles of proteins that the critical to the progression and maintenance of the cell cycle. Among them, cyclins are certainly worthy of investigation. Mitotic cyclins (cyclins A and B) are clearly implicated in meiosis and early embryonic cell cycles. More recent studies have revealed that G1-type cyclins (cyclins E and D) could also play a role in both processes and cyclin H has been suggesed to participate to CAK activity (cdc2-activating kinase) in oocytes. The study of cyclins in oocytes and eggs clearly offer insights into their roles during the cell cycle.
Collapse
Affiliation(s)
- F Taieb
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
41
|
Vadiveloo PK, Filonzi EL, Stanton HR, Hamilton JA. G1 phase arrest of human smooth muscle cells by heparin, IL-4 and cAMP is linked to repression of cyclin D1 and cdk2. Atherosclerosis 1997; 133:61-9. [PMID: 9258408 DOI: 10.1016/s0021-9150(97)00116-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smooth muscle cell proliferation is a key event in the development of atherosclerosis. Inhibition of this proliferation may lead to better prevention and treatment of the disease. While a number of agents have been found to inhibit SMC proliferation, their mechanisms of action are not fully understood. We wanted to determine the effects of three physiologically relevant anti-mitogenic agents on two classes of proteins which have major roles in cellular proliferation, namely cyclins and cyclin-dependent kinases (cdks). Following stimulation with fetal calf serum (FCS), quiescent human umbilical artery smooth muscle cells (HUASMC) synthesised cyclin D1 mRNA and protein and cdk2 mRNA in the G1 phase, whereas cdc2 protein was expressed after the onset of the S phase. Heparin, a strong inhibitor of HUASMC proliferation, strongly down-modulated the levels of cyclin D1 mRNA and protein, cdk2 mRNA and cdc2 protein. Interleukin-4 (IL-4) or 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP) also lowered the levels of these cell cycle regulatory proteins, although their effects were relatively weak, reflecting their only partial inhibition of HUASMC DNA synthesis. There was specificity in the cell cycle targets of the agents since none appeared to affect the levels of cdk4 protein.
Collapse
Affiliation(s)
- P K Vadiveloo
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Sprenger F, Yakubovich N, O'Farrell PH. S-phase function of Drosophila cyclin A and its downregulation in G1 phase. Curr Biol 1997; 7:488-99. [PMID: 9210381 PMCID: PMC2754254 DOI: 10.1016/s0960-9822(06)00220-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cyclin E is the normal inducer of S phase in G1 cells of Drosophila embryos. Stable G1 quiescence requires the downregulation both of cyclin E and of other factors that can bypass the normal regulation of cell cycle progression. RESULTS High-level expression of cyclin A triggered the G1/S transition in wild-type embryos and in mutant embryos lacking cyclin E. Three types of control downregulated this activity of cyclin A. First, cyclin destruction limited the accumulation of cyclin A protein in G1. Second, inhibitory phosphorylation of cdc2, the kinase partner of cyclin A, reduced the S-phase promoting activity of cyclin A in G1. Third, rux, a protein with unknown biochemical function, limited cyclin A function in G1. Overexpression of rux blocked S phase induction by coexpressed cyclin A and promoted the degradation of cyclin A. Rux also prevented a stable cyclin A mutant from inducing S phase, indicating that inhibition does not require cyclin destruction, and drove the nuclear localization of cyclin A. CONCLUSIONS Cyclin A can drive the G1/S transition, but this function is suppressed by three types of control: cyclin A destruction, inhibitory phosphorylation of cdc2, and inhibition by rux. The partly redundant contributions of these three inhibitory mechanisms safeguard the stability of G1 quiescence until the induction of cyclin E. The action of rux during G1 resembles the action of inhibitors of mitotic kinases present during G1 in yeast, although no obvious sequence similarity exists.
Collapse
Affiliation(s)
- Frank Sprenger
- Department of Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | - Patrick H. O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| |
Collapse
|
43
|
de Vantéry C, Stutz A, Vassalli JD, Schorderet-Slatkine S. Acquisition of meiotic competence in growing mouse oocytes is controlled at both translational and posttranslational levels. Dev Biol 1997; 187:43-54. [PMID: 9224673 DOI: 10.1006/dbio.1997.8599] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Full-grown mouse oocytes spontaneously resume meiosis in vitro when released from their follicular environment. By contrast, growing oocytes are not competent to resume meiosis; the molecular basis of meiotic competence is not known. Entry into M phase of the eukaryotic cell cycle is controlled by MPF, a catalytically active complex comprising p34cdc2 kinase and cyclin B. Incompetent oocytes contain levels of cyclin B comparable to those in competent oocytes, while their level of p34cdc2 is markedly lower; p34cdc2 accumulates abruptly at the end of oocyte growth, at the time of meiotic competence acquisition. We show here that this change in p34cdc2 concentration is not secondary to a corresponding change in the concentration of the cognate mRNA, indicating that translational control may be involved. Microinjection of translatable p34cdc2 mRNA into incompetent oocytes yielded high levels of the protein, but it did not lead to resumption of meiosis. Similarly, microinjection of cyclin B1 mRNA resulted in accumulation of the protein, but not in the acquisition of meiotic competence. By contrast, the microinjection of both p34cdc2 and cyclin B1 mRNAs in incompetent oocytes induced histone H1 and MAP kinase activation, germinal vesicle breakdown, and entry into M-phase including the translational activation of a dormant mRNA. Thus, endogenous cyclin B1 in incompetent oocytes is not available for interaction with p34cdc2, suggesting that a posttranslational event must occur to achieve meiotic competence. Microinjection of either p34cdc2 or cyclin B1 mRNAs accelerated meiotic reinitiation of okadaic acid-treated incompetent oocytes. Taken together, these results suggest that acquisition of meiotic competence by mouse oocytes is regulated at both translational and posttranslational levels.
Collapse
Affiliation(s)
- C de Vantéry
- Clinique de Stérilité et d'Endocrinologie Gynécologique, Département de Gynécologie et Obstétrique, Maternité, Hôpital Cantonal Universitaire de Geneve, Genèva, Switzerland
| | | | | | | |
Collapse
|
44
|
Thibier C, De Smedt V, Poulhe R, Huchon D, Jessus C, Ozon R. In vivo regulation of cytostatic activity in Xenopus metaphase II-arrested oocytes. Dev Biol 1997; 185:55-66. [PMID: 9169050 DOI: 10.1006/dbio.1997.8543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metaphase II arrest of Xenopus oocyte is characterized by the presence of M-phase-promoting factor (MPF) and of a microtubular spindle, both of which are stable in the presence of protein synthesis inhibitors. We studied in vivo this equilibrium state that is settled during meiotic maturation. At time of germinal vesicle breakdown (GVBD), cdc2 kinase and MAP kinase activities are stimulated. A component of the cyclin ubiquitin ligase, CDC27, is phosphorylated at the same time and remains phosphorylated until fertilization, indicating that an important component of the ligase complex is modified as early as GVBD. During a first period extending from GVBD until the cortical anchorage of the metaphase II spindle, homogeneous pools of cdc2 kinase and mitogen-activated protein (MAP) kinase activities are present in oocyte and are strictly dependent on protein turnover, since protein synthesis inhibition induces their total inactivation and drives oocytes into interphase. The metaphase II spindle, once anchored into the cortex, is no more sensitive to protein synthesis inhibition, likewise MAP kinase activity. During this cellular arrest, cdc2 kinase is divided into two distinctly regulated pools. The first one contains cyclin B that actively turns over and is subjected to a microtubular checkpoint. The second one is stable. Alteration of intracellular compartmentation of metaphase II oocytes either by gentle centrifugation or by cold shock inactivates MAP kinase and targets all cyclin B molecules for full destruction. We therefore suggest that MAP kinase participates to the cytostatic activity by preventing part of cyclin B molecules from entering the ubiquitination/degradation machinery which is still turned on in metaphase II oocytes.
Collapse
Affiliation(s)
- C Thibier
- Laboratorie de Physiologie de la Reproduction, URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Lahti JM, Li H, Kidd VJ. Elimination of cyclin D1 in vertebrate cells leads to an altered cell cycle phenotype, which is rescued by overexpression of murine cyclins D1, D2, or D3 but not by a mutant cyclin D1. J Biol Chem 1997; 272:10859-69. [PMID: 9099742 DOI: 10.1074/jbc.272.16.10859] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DT40 lymphoma B-cells normally express cyclins D1 and D2 but not D3. When cyclin D1 expression was extinguished in these cells by gene knockout, specific alterations in their ability to transit the cell cycle were observed. These changes are exemplified by a delay of approximately 2 h in their progression through a normal 14-h cell cycle. This delay results in an increase in the number of cells in the G2/M phase population, most likely due to triggering of checkpoints in G2/M, inability to enter G1 normally, and/or alterations of crucial event(s) in early G1. The defect(s) in the cell cycle of these D1 "knockout" cells can be rescued by overexpression of any normal mouse D-type cyclin but not by a mutant mouse cyclin D1 protein that lacks the LXCXE motif at its amino terminus. These data suggest that the cell cycle alterations observed in the D1-/- cells are a direct effect of the absence of the cyclin D1 protein and support the hypothesis that the D-type cyclins have separate, but overlapping, functions. Elimination of cyclin D1 also resulted in enhanced sensitivity to radiation, resulting in a significant increase in apoptotic cells. Expression of any normal murine D-type cyclin in the D1-/- cells reversed this phenotype. Intriguingly, expression of the mutant cyclin D1 in the D1 -/- cells partially restored resistance to radiation-induced apoptosis. Thus, there may be distinct differences in cyclin D1 complexes and/or its target(s) in proliferating and apoptotic DT40 lymphoma B-cells.
Collapse
Affiliation(s)
- J M Lahti
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
46
|
Derua R, Stevens I, Waelkens E, Fernandez A, Lamb N, Merlevede W, Goris J. Characterization and physiological importance of a novel cell cycle regulated protein kinase in Xenopus laevis oocytes that phosphorylates cyclin B2. Exp Cell Res 1997; 230:310-24. [PMID: 9024790 DOI: 10.1006/excr.1996.3436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have partially purified a specific cyclin B2 kinase (cyk) from prophase oocytes of Xenopus laevis after an ATP-gamma-S activation step. Phosphopeptide analysis identified Ser53 as the major in vitro phosphorylation site for cyk in cyclin B2. Using a synthetic peptide derived from cyclin B2 encompassing Ser53 (cyktide) as a substrate, cyk was shown to be activated during progesterone-induced maturation, with a peak of activity between 40 and 50% maturation. A sustained high cyk activity was observed in oscillating egg extracts. Microinjection of cyk-phosphorylated cyclin B2 into prophase oocytes accelerated progesterone-induced maturation by about 2 h, indicating that cyclin B2 is a relevant substrate for cyk and that the function of cyk is situated upstream of cdc2-cyclin B activation. Microinjection of cyk-phosphorylated cyktide or a combination of cyk and cyclin B1 into G2 fibroblasts induced significant changes in cell morphology, reminiscent of a premature prophase-like phenotype. Similarly, addition of cyk-phosphorylated cyktide in cyclin B1-dependent interphase extracts resulted in histone H1 kinase activation.
Collapse
Affiliation(s)
- R Derua
- Afdeling Biochemie, Faculteit Geneeskunde, K.U. Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Mahbubani HM, Chong JP, Chevalier S, Thömmes P, Blow JJ. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol 1997; 136:125-35. [PMID: 9008708 PMCID: PMC2132454 DOI: 10.1083/jcb.136.1.125] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The replication licensing factor (RLF) is an essential initiation factor that is involved in preventing re-replication of chromosomal DNA in a single cell cycle. In Xenopus egg extracts, it can be separated into two components: RLF-M, a complex of MCM/P1 polypeptides, and RLF-B, which is currently unpurified. In this paper we investigate variations in RLF activity throughout the cell cycle. Total RLF activity is low in metaphase, due to a lack of RLF-B activity and the presence of an RLF inhibitor. RLF-B is rapidly activated on exit from metaphase, and then declines during interphase. The RLF inhibitor present in metaphase extracts is dependent on the activity of cyclin-dependent kinases (Cdks). Affinity depletion of Cdks from metaphase extracts removed the RLF inhibitor, while Cdc2/cyclin B directly inhibited RLF activity. In metaphase extracts treated with the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP), both cyclin B and the RLF inhibitor were stabilized although the extracts morphologically entered interphase. These results are consistent with studies in other organisms that invoke a key role for Cdks in preventing re-replication of DNA in a single cell cycle.
Collapse
Affiliation(s)
- H M Mahbubani
- Imperial Cancer Research Fund, Clare Hall Laboratories, Potters Bar, Herts, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Kang JS, Krauss RS. Ras induces anchorage-independent growth by subverting multiple adhesion-regulated cell cycle events. Mol Cell Biol 1996; 16:3370-80. [PMID: 8668152 PMCID: PMC231331 DOI: 10.1128/mcb.16.7.3370] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anchorage-independent growth is a hallmark of transformed cells, but little is known of the molecular mechanisms that underlie this phenomenon. We describe here studies of cell cycle control of anchorage-independent growth induced by the ras oncogene, with the use of a somatic cell mutant fibroblast line (ER-1-2) that is specifically defective in oncogene-mediated, anchorage-independent growth. Control, nontransformed PKC3-F4 cells and ER-1-2 cells cannot proliferate in semisolid medium. Three important cell cycle events are dependent on adhesion of these cells to a substratum: phosphorylation of the retinoblastoma protein, pRB; cyclin E-dependent kinase activity; and cyclin A expression. PKC3-F4 cells that express ras (PKC3-F4/ras cells) proliferate in nonadherent cultures, and each of these three events occurs in the absence of adhesion in PKC3-F4/ras cells. Thus, ras can override the adhesion requirement of cellular functions that are necessary for cell cycle progression. ER-1-2 cells that express ras (ER-1-2/ras cells) possess hyperphosphorylated forms of pRB and cyclin E-dependent kinase activity in the absence of adhesion but remain adhesion dependent for expression of cyclin A. The adhesion dependence of pRB phosphorylation and cyclin E-dependent kinase activity is therefore dissociable from the adhesion dependence of cyclin A expression. Furthermore, ectopic expression of cyclin A is sufficient to rescue anchorage-independent growth of ER-1-2/ras cells but does not induce anchorage-independent growth of PKC3-F4 or ER-1-2 cells. However, like pRB phosphorylation and cyclin E-dependent kinase activity, the kinase activity associated with ectopically expressed cyclin A is dependent on cell adhesion, and this dependence is overcome by ras. Thus, the induction of anchorage-independent growth by ras may involve multiple signals that lead to both expression of cyclin A and activation of G1 cyclin-dependent kinase activities in the absence of cell adhesion.
Collapse
Affiliation(s)
- J S Kang
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
49
|
Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T, Blow JJ. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 1996; 109 ( Pt 6):1555-63. [PMID: 8799842 DOI: 10.1242/jcs.109.6.1555] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracts of activated Xenopus eggs in which protein synthesis has been inhibited support a single round of chromosomal DNA replication. Affinity-depletion of cyclin dependent kinases (Cdks) from these extracts blocks the initiation of DNA replication. We define ‘S-phase promoting factor’ (SPF) as the Cdk activity required for DNA replication in these Cdk-depleted extracts. Recombinant cyclins A and E, but not cyclin B, showed significant SPF activity. High concentrations of cyclin A promoted entry into mitosis, which inhibited DNA replication. In contrast, high concentrations of cyclin E1 promoted neither nuclear envelope disassembly nor full chromosome condensation. In the early embryo cyclin E1 complexes exclusively with Cdk2 and cyclin A is complexed predominantly with Cdc2; only later in development does cyclin A associate with Cdk2. We show that baculovirus-produced complexes of cyclin A-Cd2, cyclin A-Cdk2 and cyclin E-Cdk2 could each provide SPF activity. These results suggest that although in the early Xenopus embryo cyclin E1-Cdk2 is sufficient to support entry into S-phase, cyclin A-Cdc2 provides a significant additional quantity of SPF as its levels rise during S phase.
Collapse
Affiliation(s)
- U P Strausfeld
- Imperial Cancer Research Fund, Clare Hall Laboratories, Potters Bar, Herts, England
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jones C, Smythe C. Activation of the Xenopus cyclin degradation machinery by full-length cyclin A. J Cell Sci 1996; 109 ( Pt 5):1071-9. [PMID: 8743954 DOI: 10.1242/jcs.109.5.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry into mitosis is dependent on the activation of mitotic forms of cdc2 kinase. In many cell types, cyclin A-associated kinase activity peaks just prior to that of cyclin B, although the precise role of cyclin A-associated kinase in the entry into mitosis is still unclear. Previous work has suggested that while cyclin B is capable of triggering cyclin destruction in Xenopus cell-free systems, cyclin A-associated kinase is not able to support this function. Here we have expressed a full-length human cyclin A in Escherichia coli and purified the protein to homogeneity by virtue of an N-terminal histidine tag. We have found that when added to Xenopus cell-free extracts free of cyclin B and incapable of protein synthesis, the temporal pattern of cyclin A-associated cdc2 kinase activity showed distinct differences that were dependent on the concentration of cyclin A added. When cyclin A was added to a concentration that generated levels of cdc2 kinase activity capable of inducing nuclear envelope breakdown, the histone H1 kinase activity profile was bi-phasic, consisting of an activation phase followed by an inactivation phase. Inactivation was found to be due to cyclin destruction, which was prevented by mos protein. Cyclin destruction was followed by nuclear reassembly and an additional round of DNA replication, indicating that there is no protein synthesis requirement for DNA replication in this embryonic system. It has been suggested that the evolutionary recruitment of cyclin A into an S phase function may have necessitated the loss of an original mitotic ability to activate the cyclin destruction pathway. The results presented here indicate that cyclin A has not lost the ability to activate its own destruction and that cyclin A-mediated activation of the cyclin destruction pathway permitted destruction of cyclin B1 as well as cyclin A, indicating that there are not distinct cyclin A and cyclin B destruction pathways. Thus the ordered progression of the cell cycle requires the careful titration of cyclin. A concentration in order to avoid activation of the cyclin destruction pathway before sufficient active cyclin B/cdc2 kinase has accumulated.
Collapse
Affiliation(s)
- C Jones
- MRC Protein Phosphorylation Unit, Department of Biochemistry, The University, Dundee, UK
| | | |
Collapse
|