1
|
Novel Cytoskeleton-Associated Proteins in Trypanosoma brucei Are Essential for Cell Morphogenesis and Cytokinesis. Microorganisms 2021; 9:microorganisms9112234. [PMID: 34835360 PMCID: PMC8625193 DOI: 10.3390/microorganisms9112234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Trypanosome brucei, the causative agent of African sleeping sickness, harbours a highly ordered, subpellicular microtubule cytoskeleton that defines many aspects of morphology, motility and virulence. This array of microtubules is associated with a large number of proteins involved in its regulation. Employing proximity-dependent biotinylation assay (BioID) using the well characterised cytoskeleton-associated protein CAP5.5 as a probe, we identified CAP50 (Tb927.11.2610). This protein colocalises with the subpellicular cytoskeleton microtubules but not with the flagellum. Depletion by RNAi results in defects in cytokinesis, morphology and partial disorganisation of microtubule arrays. Published proteomics data indicate a possible association of CAP50 with two other, yet uncharacterised, cytoskeletal proteins, CAP52 (Tb927.6.5070) and CAP42 (Tb927.4.1300), which were therefore included in our analysis. We show that their depletion causes phenotypes similar to those described for CAP50 and that they are essential for cellular integrity.
Collapse
|
2
|
Kelly FD, Tran KD, Hatfield J, Schmidt K, Sanchez MA, Landfear SM. A cytoskeletal protein complex is essential for division of intracellular amastigotes of Leishmania mexicana. J Biol Chem 2020; 295:13106-13122. [PMID: 32719012 DOI: 10.1074/jbc.ra120.014065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies in Leishmania mexicana have identified the cytoskeletal protein KHARON as being important for both flagellar trafficking of the glucose transporter GT1 and for successful cytokinesis and survival of infectious amastigote forms inside mammalian macrophages. KHARON is located in three distinct regions of the cytoskeleton: the base of the flagellum, the subpellicular microtubules, and the mitotic spindle. To deconvolve the different functions for KHARON, we have identified two partner proteins, KHAP1 and KHAP2, which associate with KHARON. KHAP1 is located only in the subpellicular microtubules, whereas KHAP2 is located at the subpellicular microtubules and the base of the flagellum. Both KHAP1 and KHAP2 null mutants are unable to execute cytokinesis but are able to traffic GT1 to the flagellum. These results confirm that KHARON assembles into distinct functional complexes and that the subpellicular complex is essential for cytokinesis and viability of disease-causing amastigotes but not for flagellar membrane trafficking.
Collapse
Affiliation(s)
- Felice D Kelly
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jess Hatfield
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kat Schmidt
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
3
|
Dagger F, Valdivieso E, Marcano AK, Ayesta C. Regulatory volume decrease in Leishmania mexicana: effect of anti-microtubule drugs. Mem Inst Oswaldo Cruz 2013; 108:84-90. [PMID: 23440120 PMCID: PMC3974315 DOI: 10.1590/s0074-02762013000100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/02/2012] [Indexed: 11/21/2022] Open
Abstract
The trypanosomatid cytoskeleton is responsible for the parasite's shape and it is modulated throughout the different stages of the parasite's life cycle. When parasites are exposed to media with reduced osmolarity, they initially swell, but subsequently undergo compensatory shrinking referred to as regulatory volume decrease (RVD). We studied the effects of anti-microtubule (Mt) drugs on the proliferation of Leishmania mexicana promastigotes and their capacity to undergo RVD. All of the drugs tested exerted antiproliferative effects of varying magnitudes [ansamitocin P3 (AP3)> trifluoperazine > taxol > rhizoxin > chlorpromazine]. No direct relationship was found between antiproliferative drug treatment and RVD. Similarly, Mt stability was not affected by drug treatment. Ansamitocin P3, which is effective at nanomolar concentrations, blocked amastigote-promastigote differentiation and was the only drug that impeded RVD, as measured by light dispersion. AP3 induced 2 kinetoplasts (Kt) 1 nucleus cells that had numerous flagella-associated Kts throughout the cell. These results suggest that the dramatic morphological changes induced by AP3 alter the spatial organisation and directionality of the Mts that are necessary for the parasite's hypotonic stress-induced shape change, as well as its recovery.
Collapse
Affiliation(s)
- Francehuli Dagger
- Laboratorio de Biología Celular de Parásitos, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
4
|
Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS One 2012; 7:e31344. [PMID: 22355359 PMCID: PMC3280300 DOI: 10.1371/journal.pone.0031344] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022] Open
Abstract
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.
Collapse
Affiliation(s)
- Denis Dacheux
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Magali Thonnus
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Guillaume Gilbert
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Derrick R. Robinson
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
5
|
SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. EUKARYOTIC CELL 2011; 11:206-16. [PMID: 22021240 DOI: 10.1128/ec.05161-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.
Collapse
|
6
|
|
7
|
WCB is a C2 domain protein defining the plasma membrane - sub-pellicular microtubule corset of kinetoplastid parasites. Protist 2007; 159:115-25. [PMID: 17951107 DOI: 10.1016/j.protis.2007.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/18/2007] [Indexed: 11/20/2022]
Abstract
WCB is a protein that locates between the inner face of the plasma membrane and the sub-pellicular corset of microtubules in Trypanosoma brucei. We provide the molecular identity of WCB and bioinformatic analysis suggests that it possesses a C2 domain implicated in membrane/protein interactions and a highly charged region possessing characteristics of a putative tubulin-binding domain. Functional analyses via RNA interference (RNAi) depletion show that WCB is essential for cell morphogenesis. Depletion results in gross abnormalities in cell shape, mainly at the cytoskeletal/plasma membrane dynamic posterior end of the trypanosome. Failures in cytokinesis and zoid production are also evident. Furthermore, electron microscopy reveals that RNAi-induced trypanosomes lose local plasma membrane to microtubule corset integrity.
Collapse
|
8
|
Srinivasan S, Baszler T, Vonlaufen N, Leepin A, Sanderson SJ, Wastling JM, Hemphill A. Monoclonal antibody directed against Neospora caninum tachyzoite carbohydrate epitope reacts specifically with apical complex-associated sialylated beta tubulin. J Parasitol 2007; 92:1235-43. [PMID: 17304800 DOI: 10.1645/ge-889r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Monoclonal antibodies (mabs) were generated against whole sonicated Neospora caninum tachyzoites as immunogen. Initial ELISA screening of the reactivity of hybridoma culture supernatants using the same antigen and antigen treated with sodium periodate prior to antibody binding resulted in the identification of 8 supernatants with reactivity against putative carbohydrate epitopes. Following immunoblotting, mab6D12 (IgG1), binding a 52/48-kDa doublet, and mab6C6 (IgM), binding a 190/180-kDa doublet, were selected for further studies. Immunofluorescence of tachyzoite-infected cultures localized the corresponding epitopes not to the surface, but to interior epitopes at the apical part of N. caninum tachyzoites. During in vitro tachyzoite to bradyzoite stage conversion, mab6C6 labeling translocated toward the cyst periphery, while for mab6D12 no changes in localization were noted. Upon extraction of tachyzoites with the nonionic detergent Triton-X-100, the 52-kDa band recognized by mab6D12 was present exclusively in the insoluble, cytoskeletal fraction of both N. caninum and Toxoplasma gondii tachyzoites. Tandem mass spectrometry analysis identified this protein as N. caninum beta tubulin. The 48-kDa band labeled by mab6D12 was a Vero cell protein contamination. The protein(s) reacting with mab6C6 could not be conclusively identified by mass spectrometry. Immunofluorescence consistently failed to label T. gondii tachyzoites, indicating that beta tubulin in T. gondii and N. caninum could be differentially modified or that the reactive epitope in T. gondii is masked. Immunogold TEM of isolated apical cytoskeletal preparations and dual immunofluorescence with antibody to tubulin confirmed that mab6D12 binds to the anterior part of apical complex-associated microtubules. The sodium periodate sensitivity of the beta tubulin associated epitope was confirmed by immunoblotting and ELISA, and treatment of N. caninum cytoskeletal proteins with sialidase prior to mab6D12 labeling resulted in a profound loss of antibody binding, suggesting that mab6D12 reacts with sialylated beta tubulin.
Collapse
|
9
|
Abstract
Toxoplasma gondii is an obligatory intracellular parasite, an important human pathogen, and a convenient laboratory model for many other human and veterinary pathogens in the phylum Apicomplexa, such as Plasmodium, Eimeria, and Cryptosporidia. 22 subpellicular microtubules form a scaffold that defines the cell shape of T. gondii. Its cytoskeleton also includes an intricate apical structure consisting of the conoid, two intraconoid microtubules, and two polar rings. The conoid is a 380-nm diameter motile organelle, consisting of fibers wound into a spiral like a compressed spring. FRAP analysis of transgenic T. gondii expressing YFP-alpha-tubulin reveals that the conoid fibers are assembled by rapid incorporation of tubulin subunits during early, but not late, stages of cell division. Electron microscopic analysis shows that in the mature conoid, tubulin is arranged into a novel polymer form that is quite different from typical microtubules.
Collapse
Affiliation(s)
- Ke Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
10
|
Vedrenne C, Giroud C, Robinson DR, Besteiro S, Bosc C, Bringaud F, Baltz T. Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. Mol Biol Cell 2002; 13:1058-70. [PMID: 11907282 PMCID: PMC99619 DOI: 10.1091/mbc.01-06-0298] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The subpellicular microtubules of the trypanosome cytoskeleton are cross-linked to each other and the plasma membrane, creating a cage-like structure. We have isolated, from Trypanosoma brucei, two related low-molecular-weight cytoskeleton-associated proteins (15- and 17-kDa), called CAP15 and CAP17, which are differentially expressed during the life cycle. Immunolabeling shows a corset-like colocalization of both CAPs and tubulin. Western blot and electron microscope analyses show CAP15 and CAP17 labeling on detergent-extracted cytoskeletons. However, the localization of both proteins is restricted to the anterior, microtubule minus, and less dynamic half of the corset. CAP15 and CAP17 share properties of microtubule-associated proteins when expressed in heterologous cells (Chinese hamster ovary and HeLa), colocalization with their microtubules, induction of microtubule bundle formation, cold resistance, and insensitivity to nocodazole. When overexpressed in T. brucei, both CAP15 and CAP17 cover the whole subpellicular corset and induce morphological disorders, cell cycle-based abnormalities, and subsequent asymmetric cytokinesis.
Collapse
Affiliation(s)
- Cécile Vedrenne
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen de Bordeaux II, Unité Mixte Recherche-5016 Centre National de la Recherche Scientifique, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Kratzerová L, Dráberová E, Juliano C, Viklický V, Fiori PL, Cappuccinelli P, Dráber P. Cell cycle-dependent changes in localization of a 210-kDa microtubule-interacting protein in Leishmania. Exp Cell Res 2001; 266:270-8. [PMID: 11399055 DOI: 10.1006/excr.2001.5225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the monoclonal antibody MA-01, a new 210-kDa microtubule-interacting protein was identified in Leishmania promastigotes by immunoblotting and by immunoprecipitation. The protein was thermostable and was located on microtubules prepared by taxol-driven polymerization in vitro. On fixed cells the antibody gave specific staining of flagellum, flagellar pocket, and mitotic spindle. Subpellicular microtubules were basically not decorated but posterior poles of the cells were labeled in a cell-cycle-dependent manner. In anterior and posterior poles of cells the 210-kDa protein codistributed with the 57-kDa protein, immunodetected with anti-vimentin antibody, that was located only on cell poles. Immunolocalization of the 57-kDa protein was most prominent in dividing cells. The presented data suggest that the 210-kDa protein is a newly identified microtubule-interacting protein of Leishmania that could be involved in anchoring the microtubules in posterior poles of these cells. The striking codistribution of the microtubule-interacting protein and the 57-kDa protein in protozoa is described for the first time.
Collapse
Affiliation(s)
- L Kratzerová
- Department of Biology of the Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, CZ-14220, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Bringaud F, Robinson DR, Barradeau S, Biteau N, Baltz D, Baltz T. Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition. Mol Biochem Parasitol 2000; 111:283-97. [PMID: 11163437 DOI: 10.1016/s0166-6851(00)00319-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Trypanosoma brucei, we have cloned a gene approximately 5 kb downstream of the glucose transporter gene cluster, containing a variable number of 102 bp repeats. This gene encodes a protein with no homologues in the data bases. Antibodies raised against the 34 amino acids repeated motif recognized proteins ranging from 145 to 270 kDa, depending on strains, in both bloodstream and procyclic forms of T. brucei. A correlation was established between the apparent molecular mass of the detected proteins and the number of 34 amino acid repeats which varies from 3 to 40. We have called this protein the flagellum transition zone component (FTZC) due to its localization to the proximal region of the axoneme, within the transition zone. FTZC is the only reported example of a trypanosomal protein present in the transition zone. To determine the role of FTZC we developed a new strategy of gene inactivation based on conditional expression of double-stranded RNA. In the presence of tetracycline, expression of the double-stranded RNA, we observed a complete disappearance of FTZC in the EATRO 1125 and EATRO 427 strains of T. hrucei. Molecular ablation of FTZC does not generate any obvious phenotype such as, lethality, modification of growth rate or cellular shape, in the growth conditions used.
Collapse
Affiliation(s)
- F Bringaud
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen de Bordeaux II, UMR-5016 CNRS, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
13
|
Baqui MM, Milder R, Mortara RA, Pudles J. In vivo and in vitro phosphorylation and subcellular localization of trypanosomatid cytoskeletal giant proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:25-37. [PMID: 11002308 DOI: 10.1002/1097-0169(200009)47:1<25::aid-cm3>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Promastigote forms of Phytomonas serpens, Leptomonas samueli, and Leishmania tarentolae express cytoskeletal giant proteins with apparent molecular masses of 3,500 kDa (Ps 3500), 2,500 kDa (Ls 2500), and 1,200 kDa (Lt 1200), respectively. Polyclonal antibodies to Lt 1200 and to Ps 3500 specifically recognize similar polypeptides of the same genera of parasite. In addition to reacting with giant polypeptides of the Leptomonas species, anti-Ls 2500 also cross reacts with Ps 3500, and with a 500-kDa polypeptide of Leishmania. Confocal immunofluorescence and immunogold electron microscopy showed major differences in topological distribution of these three proteins, though they partially share a common localization at the anterior end of the cell body skeleton. Furthermore, Ps 3500, Ls 2500, and Lt 1200 are in vivo phosphorylated at serine and threonine residues, whereas, in vitro phosphorylation of cytoskeletal fractions reveal that only Ps 3500 and Ls 2500 are phosphorylated. Heat treatment (100 degrees C) of high salt cytoskeletal extracts demonstrates that Ps 3500 and Ls 2500 remain stable in solution, whereas Lt 1200 is denatured. Kinase assays with immunocomplexes of heat-treated giant proteins show that only Ps 3500 and Ls 2500 are phosphorylated. These results demonstrate the existence of a novel class of megadalton phosphoproteins in promastigote forms of trypanosomatids that appear to be genera specific with distinct cytoskeletal functions. In addition, there is also evidence that Ps 3500 and Ls 2500, in contrast to Lt 1200, seem to be autophosphorylating serine and threonine protein kinases, suggesting that they might play regulatory roles in the cytoskeletal organization.
Collapse
Affiliation(s)
- M M Baqui
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
14
|
Stoppini L, Buchs PA, Brun R, Muller D, Duport S, Parisi L, Seebeck T. Infection of organotypic slice cultures from rat central nervous tissue with Trypanosoma brucei brucei. Int J Med Microbiol 2000; 290:105-13. [PMID: 11043987 DOI: 10.1016/s1438-4221(00)80113-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently described a new procedure to grow nervous tissue as organotypic culture. The main feature of these slice cultures is to maintain a well preserved, three-dimensional organisation of the central nervous tissue. As these cultures can be kept for several weeks (up to three months), we have used this in vitro approach to study the complex interactions between host tissue and parasites during late stages of cerebral African trypanosomiasis. Light and electron microscopical studies, as well as electrophysiological recordings demonstrate that the structure and function of the nervous tissue is not severely affected even after several weeks of trypanosome infection. The presence of a large number of parasites does not seem to be deleterious to neuronal survival. Secondly, most of the trypanosomes are located around the periphery of the nervous tissue, but many of them also penetrate into the nervous parenchyma. Thirdly, trypanosomes with well-conserved morphology are found within the cytoplasm of glial cells, which in some cases were identified as astrocytes. These "intracellular parasites" seem to actively invade the target cells. Our study demonstrates that the presence of proliferating trypanosomes does not per se interfere with the neural activity of CNS tissues. Secondly, it provides, to the best of our knowledge, the first in vitro demonstration of intracellular forms of African trypanosomes.
Collapse
Affiliation(s)
- L Stoppini
- Department of Pharmacology, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Species of the trypanosomatid parasite genera Trypanosoma and Leishmania exhibit a particular range of cell shapes that are defined by their internal cytoskeletons. The cytoskeleton is characterized by a subpellicular corset of microtubules that are cross-linked to each other and to the plasma membrane. Trypanosomatid cells possess an extremely precise organization of microtubules and filaments, with some of their organelles, such as the mitochondria, kinetoplasts, basal bodies, and flagella, present as single copies in each cell. The duplication of these structures and changes in their position during life cycle differentiations provide markers and insight into events involved in determining cell form and division. We have a rapidly increasing catalog of these structures, their molecular cytology, and their ontogeny. The current sophistication of available molecular genetic techniques for use in these organisms has allowed a new functional analysis of the cytoskeleton, including functions that are intrinsic to the proliferation and pathogenicity of these parasites.
Collapse
Affiliation(s)
- K Gull
- School of Biological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
16
|
Fuchs N, Sonda K, Bütikofer P, Hemphill A. Detection of surface-associated and intracellular glycoconjugates and glycoproteins in Neospora caninum tachyzoites. Int J Parasitol 1999; 29:1597-611. [PMID: 10608447 DOI: 10.1016/s0020-7519(99)00118-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The surface-associated molecules of the invasive stages of apicomplexan parasites such as Neospora caninum and Toxoplasma gondii are most likely crucially involved in mediating the interaction between the parasite and its host cell. In N. caninum, several antigens have recently been identified which could participate in host cell adhesion and/or invasion. These are antigens which are either constitutively expressed on the outer plasma membrane, or antigens which are only transiently localised on the surface as they are expulsed from the secretory vesicles either prior, or after host cell invasion. Some of these proteins have been characterised at the molecular level, and it has been shown that they are, with respect to protein sequences, closely related to homologous counterparts in T. gondii. Nevertheless, there is only a low degree of cross-antigenicity between the two species. In microbial interactions it has been shown that carbohydrates could also play a crucial role in host cell recognition and immunological host parasite interactions. In this study we present data which strongly suggest that the surface of N. caninum tachyzoites is glycosylated. In SDS-PAGE, glycoproteins comigrated largely with glycosylphosphatidylinositol-anchored proteins which were identified using in vivo [3H]ethanolamine labelling followed by autoradiography. The lectin Con A reacted strongly with the surface of these parasites, binding of which is indicative for the presence of N-glycans. Additional surface binding was observed, although only in a subpopulation of all tachyzoites, for wheat germ agglutinin and Jacalin. Intracellular binding sites for Con A were mainly associated with the parasite dense granules. By lectin labelling of Western blots of N. caninum protein extracts, glycoproteins were identified which reacted specifically with the lectins Con A, wheat germ agglutinin, Jacalin and soy bean agglutinin.
Collapse
Affiliation(s)
- N Fuchs
- Institute of Parasitology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- L Kohl
- School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
18
|
Nolan DP, Jackson DG, Windle HJ, Pays A, Geuskens M, Michel A, Voorheis HP, Pays E. Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif. J Biol Chem 1997; 272:29212-21. [PMID: 9361000 DOI: 10.1074/jbc.272.46.29212] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new surface membrane protein, invariant surface glycoprotein termed ISG100, was identified in Trypanosoma brucei, using catalyzed surface, radioiodination of intact cells. This integral membrane glycoprotein was purified by a combination of detergent extraction, lectin-affinity, and ion-exchange chromatography followed by preparative SDS-polyacrylamide gel electrophoresis. The protein was expressed only in bloodstream forms of the parasite, was heavily N-glycosylated, and was present in different clonal variants of the same serodeme as well as in different serodemes. The gene for this protein was isolated by screening a cDNA expression library with antibodies against the purified protein followed by screening of a genomic library. The nucleotide sequence of the gene (4050 base pairs) predicted a highly reiterative polypeptide containing three distinct domains, a unique N-terminal domain of about 10 kDa containing three potential N-glycosylation sites, which was followed by a large internal domain consisting entirely of 72 consecutive copies of a serine-rich, 17-amino acid motif (approximately 113 kDa) and terminated with an apparent transmembrane spanning region of about 3.3 kDa. The internal repeat region of this gene (3672 base pairs) represents the largest reiterative coding sequence to be fully characterized in any species of trypanosome. There was no significant homology with other known proteins, and overall the predicted protein was extremely hydrophobic. Unlike the genes for other surface proteins, the gene encoding ISG100 was present as a single copy. Although present in the flagellar pocket, ISG100 was predominantly associated with components of the pathways for endo/exocytosis, such as intracellular vesicles located in the proximity of the pocket as well a large, electron-lucent perinuclear digestive vacuole.
Collapse
Affiliation(s)
- D P Nolan
- Department of Molecular Biology, University of Brussels, 67 rue des Chevaux, B-1640 Rhode St. Genèse, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lawton P, Hemphill A, Deplazes P, Gottstein B, Sarciron ME. Echinococcus multilocularis metacestodes: immunological and immunocytochemical analysis of the relationships between alkaline phosphatase and the Em2 antigen. Exp Parasitol 1997; 87:142-9. [PMID: 9326889 DOI: 10.1006/expr.1997.4190] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Echinococcus multilocularis metacestodes possess an alkaline phosphatase (EmAP) which has been extensively characterized at the biochemical level in previous studies. The apparent molecular weight of the enzyme monomer and its isoelectric point matched those originally described for the Em2 antigen, a reference antigen currently used for the immunodiagnosis of E. multilocularis infection. These observations raised questions about the molecular relationship between the two molecules. In order to investigate the relations between EmAP and the Em2 antigen, immunoblotting and ELISA were carried out using polyclonal and monoclonal antibodies directed against EmAP and the Em2 antigen, respectively. In addition, the localization of EmAP and the Em2 antigen was compared by immunofluorescence and immunogold electron microscopy in in vitro-generated E. multilocularis metacestodes. The results show that common epitopes between EmAP and Em2 exist, which are predominantly of a peptidic nature. Both antigens are localized in an acellular parasite structure, the laminated layer, with additional locations for the EmAP on the glycocalyx and in the central region of invaginated protoscoleces. These results suggest a putative functional relationship between the two antigens and that Em2 could originate from EmAP.
Collapse
Affiliation(s)
- P Lawton
- Laboratoire de Parasitologie, Faculté de Pharmacie, Université Claude-Bernard, Lyon, France.
| | | | | | | | | |
Collapse
|
20
|
Irminger-Finger I, Hurt E, Roebuck A, Collart MA, Edelstein SJ. MHP1, an essential gene in Saccharomyces cerevisiae required for microtubule function. J Cell Biol 1996; 135:1323-39. [PMID: 8947554 PMCID: PMC2121081 DOI: 10.1083/jcb.135.5.1323] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP-Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion-disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules.
Collapse
|
21
|
Müller N, Mansfield JM, Seebeck T. Trypanosome variant surface glycoproteins are recognized by self-reactive antibodies in uninfected hosts. Infect Immun 1996; 64:4593-7. [PMID: 8890212 PMCID: PMC174418 DOI: 10.1128/iai.64.11.4593-4597.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The variant surface glycoproteins (VSGs) of African trypanosomes form a dense surface coat on the bloodstream parasites. VSGs are immunodominant antigens that stimulate a rapid antibody response in trypanosome-infected individuals. In the present study, we examined VSG-specific antibodies present not only in sera from infected individuals but also in sera from individuals that had never been exposed to trypanosomes. Native antibodies against different VSGs were detected in sera from uninfected mice, bovines, and humans; the antibodies were revealed to be exclusively directed against variable determinants of the antigens. Further experimentation demonstrated that such native antibodies immunoreact with cellular components of mice and thus are most likely produced by the self-reactive B-cell compartment of the murine immune system.
Collapse
Affiliation(s)
- N Müller
- Institute of Parasitology, University of Berne, Switzerland.
| | | | | |
Collapse
|
22
|
Hemphill A. Subcellular localization and functional characterization of Nc-p43, a major Neospora caninum tachyzoite surface protein. Infect Immun 1996; 64:4279-87. [PMID: 8926100 PMCID: PMC174368 DOI: 10.1128/iai.64.10.4279-4287.1996] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neospora caninum is a recently identified coccidian parasite which shares many features with, but is clearly distinct from, Toxoplasma gondii. N. caninum tachyzoites infect a wide range of mammalian cells both in vivo and in vitro. The mechanisms by which infection is achieved are largely unknown. Recent evidence has suggested that a receptor-ligand system in which one or several host cell receptors bind to one or several parasite ligands is involved. Parasite cell surface-associated molecules such as the recently identified Nc-p43 antigen are prime suspects for being implicated in this physical interaction. In this study it is shown that invasion of Vero cell monolayers by N. caninum tachyzoites in vitro is impaired on incubation of parasites with subagglutinating amounts of affinity-purified antibodies directed against Nc-p43. Postembedding immunogold labeling with anti-Nc-p43 antibodies demonstrated that Nc-p43 is localized not only on the parasite cell surface but also within dense granules and rhoptries. The fate of Nc-p43 during intracellular proliferation of N. caninum tachyzoites and subsequent maturation of the parasitophorous vacuole was also studied.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, University of Bern, Switzerland.
| |
Collapse
|
23
|
Henríquez JP, Cambiazo V, Maccioni RB. Tubulin domains for the interaction of microtubule associated protein DMAP-85 from Drosophila melanogaster. Mol Cell Biochem 1996; 158:149-59. [PMID: 8817477 DOI: 10.1007/bf00225841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of microtubule associated proteins (MAPs) with the microtubule system has been characterized in depth in neuronal cells from various mammalian species. These proteins interact with well-defined domains within the acidic tubulin carboxyl-terminal regulatory region. However, there is little information on the mechanisms of MAPs-tubulin interactions in nonmammalian systems. Recently, a novel tau-like protein designated as DMAP-85 has been identified in Drosophila melanogaster, and the regulation of its interactions with cytoskeletal elements was analyzed throughout different developmental stages of this organism. In this report, the topographic domains involved in the binding of DMAP-85 with tubulin heterodimer were investigated. Affinity chromatography of DMAP-85 in matrixes of taxol-stabilized microtubules showed the reversible interaction of DMAP-85 with domains on the microtubular surface. Co-sedimentation studies using the subtilisin-treated tubulin (S-tubulin) indicated the lack of association of DMAP-85 to this tubulin moiety. Moreover, studies on affinity chromatography of the purified 4 kDa C-terminal tubulin peptide bound to an affinity column, confirmed that DMAP-85 interacts directly with this regulatory domain on tubulin subunits. Further studies on sequential affinity chromatography using a calmodulin affinity column followed by the microtubule column confirmed the similarities in the interaction behaviour of DMAP-85 with that of tau. DMAP-85 associated to both calmodulin and the microtubular polymer. These studies support the idea that the carboxyl-terminal region on tubulin constitutes a common binding domain for most microtubule-interacting proteins.
Collapse
Affiliation(s)
- J P Henríquez
- Laboratory of Cellular and Molecular Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
24
|
Hemphill A, Gottstein B, Kaufmann H. Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology 1996; 112 ( Pt 2):183-97. [PMID: 8851858 DOI: 10.1017/s0031182000084754] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neospora caninum is a recently identified coccidian parasite which was, until 1988, misdiagnosed as Toxoplasma gondii. It causes paralysis and death in dogs and neonatal mortality and abortion in cattle, sheep, goats and horses. The life-cycle of Neospora has not yet been elucidated. The only two stages identified so far are tissue cysts and intracellularly dividing tachyzoites. Very little is known about the biology of this species. We have set up a fluorescence-based adhesion/invasion assay in order to investigate the interaction of N. caninum tachyzoites with bovine aorta endothelial (BAE) cells in vitro. Treatment of both host cells and parasites with metabolic inhibitors determined the metabolic requirements for adhesion and invasion. Chemical and enzymatic modifications of parasite and endothelial cell surfaces were used in order to obtain information on the nature of cell surface components responsible for the interaction between parasite and host. Electron microscopical investigations defined the ultrastructural characteristics of the adhesion and invasion process, and provided information on the intracellular development of the parasites.
Collapse
Affiliation(s)
- A Hemphill
- Institute for Parasitology, University of Berne, Switzerland
| | | | | |
Collapse
|
25
|
Bouck GB, Ngô H. Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:267-318. [PMID: 8843656 DOI: 10.1016/s0074-7696(08)61988-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The membrane skeletal complex (cortex) of euglenoids generates and maintains cell form. In this review we summarize structural, biochemical, physiological, and molecular studies on the euglenoid membrane skeleton, focusing specifically on four principal components: the plasma membrane, a submembrane layer (epiplasm), cisternae of the endoplasmic reticulum, and microtubules. The data from euglenoids are compared with findings from representative organisms of three other protist groups: the trypanosomes, ciliates, and dinoflagellates. Although there are significant differences in cell form and phylogenetic affinities among these groups, there are also many similarities in the organization and possibly the function of their cortical components. For example, an epiplasmic (membrane skeletal) layer is widely used for adding strength and rigidity to the cell surface. The ER/alveolus/amphiesmal vesicle may function in calcium storage and regulation, and in mediating assembly of surface plates. GPI-linked variable surface antigens are characteristic of both ciliates and the unrelated trypanosomatids. Microtubules are ubiquitous, and cortices in trypanosomes may relay exclusively on microtubules and microtubule-associated proteins for maintaining cell form. Also, in agreement with previous suggestions, there is an apparent preservation of many cortical structures during cell duplication. In three of the four groups there is convincing evidence that part or all of the parental cortex persists during cytokinesis, thereby producing mosaics or chimeras consisting of both inherited and newly synthesized cortical components.
Collapse
Affiliation(s)
- G B Bouck
- Department of Biological Sciences (M/C 066), University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
26
|
King SM, Patel-King RS, Wilkerson CG, Witman GB. The 78,000-M(r) intermediate chain of Chlamydomonas outer arm dynein is a microtubule-binding protein. J Cell Biol 1995; 131:399-409. [PMID: 7593167 PMCID: PMC2199976 DOI: 10.1083/jcb.131.2.399] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previous study (King et al., 1991. J. Biol. Chem. 266:8401-8407) showed that the 78,000-M(r) intermediate chain (IC78) from the Chlamydomonas outer arm dynein is in direct contact with alpha-tubulin in situ, suggesting that this protein may be involved in binding the dynein to the doublet microtubules. Molecular genetic analysis of this chain recently demonstrated that it is a WD repeat protein essential for outer arm assembly (Wilkerson et al., 1995.J. Cell Biol. 129:169-178). We have now transcribed and translated IC78 in vitro, and demonstrate that this molecule binds axonemes and microtubules, whereas a homologous protein (the 69,000-M(r) intermediate chain [IC69] of Chlamydomonas outer arm dynein) does not. Thus, IC78 is a bona fide microtubule-binding protein. Taken together with the previous results, these findings indicate that IC78 is likely to provide at least some of the adhesive force that holds the dynein to the doublet microtubule, and support the general hypothesis that the dynein intermediate chains are involved in targeting different dyneins to the specific cell organelles with which they associate. Analysis of the binding activities of various IC78 deletion constructs translated in vitro identified discrete regions of IC78 that affected the binding to microtubules; two of these regions are specifically missing in IC69. Previous studies also showed that IC78 is in direct contact with IC69; the current work indicates that the region of IC78 that mediates this interaction is coincident with two of IC78's WD repeats. This supports the hypothesis that these repeats are involved in protein-protein interactions within the dynein complex.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | | | | | |
Collapse
|
27
|
Woodward R, Carden MJ, Gull K. Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei. Parasitology 1995; 111 ( Pt 1):77-85. [PMID: 7609993 DOI: 10.1017/s0031182000064623] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The monoclonal antibody BS7, raised to bovine sperm flagellum cytoskeletal antigens in a previous study, is here reported to detect flagellum-associated structures in Trypanosoma brucei and Crithidia fasciculata. Immunoblotting showed that BS7 cross-reacts with several cytoskeletal T. brucei proteins but phosphatase treatment did not diminish this complex immunoblot reactivity. To characterize further the cross-reactive proteins recognized in T. brucei-cytoskeletons by BS7 each was excised from preparative gels and used as an immunogen for antiserum production. Two proteins, with apparent sizes around 43 and 47 kDa, produced antisera shown to be monospecific by immunoblotting total T. brucei flagellum preparations. Each of these detected the basal body-associated immunofluorescence in T. brucei. Identification of the smaller, 43 kDa, component as a basal body-associated product was supported by the behaviour of a second monoclonal antibody, BBA4, which was also shown to detect the T. brucei basal body complex by immunofluorescence and immunoblots the 43 kDa polypeptide. These observations reveal new components of the trypanosome cytoskeleton. Also, they provide a further example of an immunological approach for identification of interesting, rare components of the T. brucei cytoskeleton starting from a complex mixture of proteins.
Collapse
Affiliation(s)
- R Woodward
- Research School of Biosciences, Biological Laboratory, University of Kent, Canterbury
| | | | | |
Collapse
|
28
|
Imboden M, Müller N, Hemphill A, Mattioli R, Seebeck T. Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens. Parasitology 1995; 110 ( Pt 3):249-58. [PMID: 7724233 DOI: 10.1017/s0031182000080835] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosome infection of mammalian hosts leads, within days, to a strong early response against a small, distinct number of parasite proteins. One of these proteins is the variable surface glycoprotein (VSG). Most of the others are apparently non-variable, intracellular trypanosome proteins. Two of these antigens I2 and I17 are now characterized at the molecular level. Both exhibit a highly repetitive amino acid sequence organization, but they show no sequence similarity either to each other or to any other proteins known to date. Preliminary serological analyses indicate that both allow the early, sensitive and specific detection of infections with different species of trypanosomatids, making them interesting candidates for the development of diagnostic tools for trypanosomiasis detection.
Collapse
Affiliation(s)
- M Imboden
- Institute of General Microbiology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Abstract
Most mammalian microtubules disassemble at low temperature, but some are cold stable. This probably has little to do with a need for cold-stable microtubules, but reflects that certain populations of microtubules must be stabilized for specific functions. There are several routes by which to achieve cold stability. Factors that interact with microtubules, such as microtubule-associated proteins, STOPs (stable tubule only polypeptides), histones, and possibly capping factors, are involved. Specific tubulin isotypes and posttranslational modifications might also be of importance. More permanent stable microtubules can be achieved by bundling factors, associations to membranes, as well as by assembly of microtubule doublets and triplets. This is, however, not the explanation for cold adaptation of microtubules from poikilothermic animals, that is, animals that must have all their microtubules adapted to low temperatures. All evidence so far suggests that cold adaptation is intrinsic to the tubulins, but it is unknown whether it depends on different amino acid sequences or posttranslational modifications.
Collapse
Affiliation(s)
- M Wallin
- Department of Zoophysiology, University of Göteborg, Sweden
| | | |
Collapse
|
30
|
Hemphill A, Gottstein B. Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes. Parasitol Res 1995; 81:605-14. [PMID: 7479653 DOI: 10.1007/bf00932028] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The larval stage of Echinococcus multilocularis causes alveolar echinococcosis (AE) in various mammals, including humans. Traditionally metacestodes are maintained in the laboratory by serial transplantation passages into susceptible animals such as mice or gerbils. However, in animal models it has always been difficult to draw definite conclusions about the factors modulating metacestode differentiation, and investigations on gene expression and respective regulation have been hampered by the complexicity of the host-parasite interplay. This paper describes the maintenance and proliferation of E. multilocularis metacestodes as well as the formation of protoscolices in a chemically defined medium devoid of host influence. The interactive role of a heterologous human cell line (CACO2) in the in vitro development of metacestodes was also assessed. The morphology and ultrastructure of in vitro-generated metacestodes was studied using scanning (SEM) and transmission electron microscopy (TEM). Different cultivation procedures were analyzed in terms of expression of B- and T-cell epitopes and of the relevant laminated layer-antigen Em2; the exact localization of this antigen was further demonstrated by immunogold electron microscopy.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Berne, Switzerland
| | | |
Collapse
|
31
|
Ortega Perez R, Irminger-Finger I, Arrighi JF, Capelli N, van Tuinen D, Turian G. Identification and partial purification of calmodulin-binding microtubule-associated proteins from Neurospora crassa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:303-10. [PMID: 8001548 DOI: 10.1111/j.1432-1033.1994.tb20054.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have purified microtubule-associated proteins from Neurospora crassa on the basis of heat stability and affinity to calmodulin. Two proteins of molecular masses 170 kDa and 190 kDa have been partially purified. A third protein of 145 kDa was purified almost to homogeneity, and we present evidence that this protein is a specific substrate for a Ca2+/calmodulin-dependent protein kinase. The purified 170-, 190-, and 145-kDa proteins induce the assembly of microtubules from purified porcine brain tubulin. We demonstrate that all three proteins are microtubule-associated proteins on the basis of an in vitro microtubule-binding assay.
Collapse
Affiliation(s)
- R Ortega Perez
- Laboratory of General Microbiology, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Alpha- and beta-tubulin cDNA were selected from a Euglena lambda gt11 expression library, recloned and either sequenced (alpha-tubulin cDNA) or hybridized to Euglena RNA and DNA (alpha- and beta-tubulin cDNA). RNA for hybridization was extracted at 30 minute intervals after flagellar amputation and quantitated for cDNA binding. Unlike previous reports on most other flagellates, no net increase in either alpha- or beta-tubulin RNA could be detected during regeneration--suggesting steady state or constitutive tubulin RNA synthesis. Incubation of the cDNA with genomic DNA after restriction digestion produced patterns of hybridization consistent with the presence of one to two kinds each of the alpha- and beta-tubulin genes. The deduced amino acid sequence of the alpha-tubulin cDNA was more than 90% identical to the alpha-tubulins of Trypanosoma, Chlamydomonas, Naegleria, Tetrahymena and higher plants. The carboxy terminus of the alpha-tubulin cDNA and the previously sequenced beta-tubulin of Euglena showed greatest identity to the carboxy terminus of the tubulins from Trypanosoma brucei. The sequence data for alpha- and beta-tubulins of Euglena provides direct evidence for the similarity of two gene products from euglenas and trypanosomes and adds support to earlier suggestions that these organisms are phylogenetically related.
Collapse
Affiliation(s)
- P J Levasseur
- Department of Biological Sciences (M/C 066), University of Illinois at Chicago 60607-7060
| | | | | |
Collapse
|
33
|
Cravchik A, Reddy D, Matus A. Identification of a novel microtubule-binding domain in microtubule-associated protein 1A (MAP1A). J Cell Sci 1994; 107 ( Pt 3):661-72. [PMID: 8006079 DOI: 10.1242/jcs.107.3.661] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several microtubule-associated proteins (MAPs) have been shown to bind to microtubules via short sequences with repeated amino acids motifs. A microtubule-binding domain has hitherto not been defined for the adult brain microtubule-associated protein 1A (MAP1A). We have searched for a microtubule-binding domain by expressing different protein regions of MAP1A in cultured cell lines using cDNA constructs. One construct included an area with homology to the microtubule-binding domain of MAP1B (Noble et al. (1989) J. Cell Biol. 109, 437–448), but this did not bind to microtubules in transfected cells. Further investigation of other areas of MAP1A revealed a protein domain, capable of autonomously binding to microtubules, which bears no homology to any previously described microtubule-binding sequence. This MAP1A domain is rich in charged amino acids, as are other mammalian microtubule-binding domains, but unlike them has no identifiable sequence repeats. Whereas all previously described mammalian microtubule-binding domains are basic, this novel microtubule-binding domain of MAP1A is acidic. The expression of this polypeptide in cultured cell lines led to a rearrangement of the microtubules in a pattern distinct from that produced by MAP2 or tau, and increased their resistance to treatment with the microtubule depolymerising agent nocodazole. When the MAP1A microtubule-binding domain was co-expressed in cultured cell lines together with MAP2c, the MAP1A microtubule-binding domain was able to bind to the MAP2c-induced microtubule bundles. These results suggest that different microtubule-binding sequences have a common ability to stabilise microtubules but differ in their influence on microtubule arrangement in the cell. This may be significant in neurons, where microtubule-associated proteins with different microtubule-binding sequences are expressed in different cell compartments and at different times during development.
Collapse
Affiliation(s)
- A Cravchik
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
34
|
Müller N, Imboden M, Detmer E, Mansfield JM, Seebeck T. Cytoskeleton-associated antigens from African trypanosomes are recognized by self-reactive antibodies of uninfected mice. Parasitology 1993; 107 ( Pt 4):411-7. [PMID: 7506406 DOI: 10.1017/s0031182000067767] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum from uninfected mice of different strains, as well as from germ-free animals, contains antibodies which react specifically with at least two trypanosomal proteins, I/6 and MARP1. These antibody populations are highly specific for the respective proteins, are of similar affinity as hyperimmune antibodies, and consist of IgM as well as IgG isotypes. Hyperimmune antibody raised against the cross-reacting trypanosomal protein I/6 detects a 60 kDa protein in mouse 3T6 cells, which is a component of the fibroblast cytoskeleton.
Collapse
Affiliation(s)
- N Müller
- Institut für Allgemeine Mikrobiologie, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Masson D, Kreis TE. Identification and molecular characterization of E-MAP-115, a novel microtubule-associated protein predominantly expressed in epithelial cells. J Cell Biol 1993; 123:357-71. [PMID: 8408219 PMCID: PMC2119845 DOI: 10.1083/jcb.123.2.357] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel microtubule-associated protein (MAP) of M(r) 115,000 has been identified by screening of a HeLa cell cDNA expression library with an anti-serum raised against microtubule-binding proteins from HeLa cells. Monoclonal and affinity-purified polyclonal antibodies were generated for the further characterization of this MAP. It is different from the microtubule-binding proteins of similar molecular weights, characterized so far, by its nucleotide-insensitive binding to microtubules and different sedimentation behavior. Since it is predominantly expressed in cells of epithelial origin (Caco-2, HeLa, MDCK), and rare (human skin, A72) or not detectable (Vero) in fibroblastic cells, we name it E-MAP-115 (epithelial MAP of 115 kD). In HeLa cells, E-MAP-115 is preferentially associated with subdomains or subsets of perinuclear microtubules. In Caco-2 cells, labeling for E-MAP-115 increases when they polarize and form blisters. The molecular characterization of E-MAP-115 reveals that it is a novel protein with no significant homologies to other known proteins. The secondary structure predicted from its sequence indicates two domains connected by a putative hinge region rich in proline and alanine (PAPA region). E-MAP-115 has two highly charged regions with predicted alpha-helical structure, one basic with a pI of 10.9 in the NH2-terminal domain and one neutral with a pI of 7.6 immediately following the PAPA region in the acidic COOH-terminal half of the molecule. A novel microtubule-binding site has been localized to the basic alpha-helical region in the NH2-terminal domain using in vitro microtubule-binding assays and expression of mutant polypeptides in vivo. Overexpression of this domain of E-MAP-115 by transfection of fibroblasts lacking significant levels of this protein with its cDNA renders microtubules stable to nocodazole. We conclude that E-MAP-115 is a microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells.
Collapse
Affiliation(s)
- D Masson
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
36
|
Maekawa T, Kuriyama R. Primary structure and microtubule-interacting domain of the SP-H antigen: a mitotic MAP located at the spindle pole and characterized as a homologous protein to NuMA. J Cell Sci 1993; 105 ( Pt 2):589-600. [PMID: 8408288 DOI: 10.1242/jcs.105.2.589] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a human autoantibody, SP-H, we identified a 200–230 kDa mitotic MAP in a variety of mammalian cell lines which shows affinity for the minus end of microtubules and also becomes associated with the spindle pole during mitosis. To examine the detailed structure and functional organization of the protein, the gene coding for the end-specific MAP was isolated and characterized by screening a human placenta lambda gt11 expression library using SP-H as a probe. Overlapping cDNA clones, which covered the entire length of the coding region of the SP-H antigen, were obtained. Polyclonal antibodies raised against fusion proteins generated from non-overlapping cDNA fragments stained the HeLa SP-H antigen in interphase and mitotic cells, and recognized a single 215 kDa band on immunoblots, as did the original SP-H antibody. Analysis of the nucleotide sequence revealed a 7,091 nucleotide sequence with an open reading frame of 6,345 nucleotides encoding a 2,115 amino acid polypeptide with a calculated molecular mass of 238,376 Da. The predicted amino acid sequence showed the protein to be composed of an alpha-helical domain, flanked by globular domains located at the amino and carboxy termini. The sequence contained five repeats of the hypothetical leucine zipper motif: one is in the N-terminal globular domain, and four are in the central alpha-helical stalk. Comparison with other sequences in the database shows that the SP-H antigen is identical to the NuMA protein reported by Yang et al. (1992) J. Cell Biol. 116, 1303–1317, but there are differences between the SP-H antigen and NuMA sequence reported by Compton et al. (1992) J. Cell Biol. 116, 1395–1408. cDNA inserts of the truncated SP-H antigen were expressed in both insect Sf9 cells and in cultured mammalian cells. The recombinant protein corresponding to the C-terminal half of the protein was restricted to the nucleus, whereas the N-terminal half of the protein was localized in the cytoplasm, suggesting the presence of a nuclear translocation signal(s) in the C-terminal domain. The C-terminal polypeptide expressed in mitotic COS cells was shown to specifically localize at the spindle pole. Microtubule-binding assays using in vitro transcribed/translated polypeptide products from different domains of the SP-H antigen further suggested that the SP-H antigen interacts with microtubules through the globular domain at the C-terminus.
Collapse
Affiliation(s)
- T Maekawa
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
37
|
Rindisbacher L, Hemphill A, Seebeck T. A repetitive protein from Trypanosoma brucei which caps the microtubules at the posterior end of the cytoskeleton. Mol Biochem Parasitol 1993; 58:83-96. [PMID: 8459837 DOI: 10.1016/0166-6851(93)90093-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The major structural component of the cyto-architecture of Trypanosoma brucei is a microtubular array which envelopes the entire cell body and which is in close contact with the overlying cell membrane. A cytoskeletal protein has been identified which is associated with the microtubules of this array at their posterior ends exclusively. This protein, Gb4, is coded for by a very large gene which consists of numerous, tandemly linked repeat units of 0.6 kb length. Despite the large size of the gene, and also of the corresponding mRNA, the mature Gb4 protein has a size of only 28 kDa. Gb4 is well conserved between different species of African trypanosomes.
Collapse
Affiliation(s)
- L Rindisbacher
- Institute for General Microbiology, University of Bern, Switzerland
| | | | | |
Collapse
|
38
|
Abstract
This past year, the structure and function of microtubule-associated proteins (MAPs) have been investigated in studies probing their phosphorylation, patterns of expression, and the function of the microtubule-binding domain. Cellular studies have also contributed new insights into the roles of these proteins in process outgrowth.
Collapse
Affiliation(s)
- G Lee
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Abstract
Proteins at the boundary between the cytoskeleton and the plasma membrane control cell shape, delimit specialized membrane domains, and stabilize attachments to other cells and to the substrate. These proteins also regulate cell locomotion and cytoplasmic responses to growth factors and other external stimuli. This diversity of cellular functions is matched by the large number of biochemical mechanisms that mediate the connections between membrane proteins and the underlying cytoskeleton, the so-called membrane skeleton. General organizational themes are beginning to emerge from examination of this biochemical diversity.
Collapse
Affiliation(s)
- E J Luna
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | |
Collapse
|
40
|
Woods A, Baines AJ, Gull K. A high molecular mass phosphoprotein defined by a novel monoclonal antibody is closely associated with the intermicrotubule cross bridges in the Trypanosoma brucei cytoskeleton. J Cell Sci 1992; 103 ( Pt 3):665-75. [PMID: 1478963 DOI: 10.1242/jcs.103.3.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main component of the cell body cytoskeleton of Trypanosoma brucei is the highly organised array of stable, subpellicular microtubules on the cytoplasmic face of the plasma membrane. Although several microtubule associated proteins (MAPs) have been shown to be associated with this array, the mechanisms by which individual microtubules interact with one another and with the membrane are still largely undetermined. In this study we have used the T. brucei cytoskeleton as a complex immunogen for the production of monoclonal antibodies to define novel cytoskeletal antigens. Screening by immunofluorescence enabled the selection of an antibody, WCB-1, which detects an antigen associated specifically with the subpellicular microtubules and not with the flagellum microtubules. The antigen (WCB210) was shown to have a relative molecular mass of 210,000 by western blotting. Immunogold studies showed the epitope to be located on the membrane-facing side of the subpellicular cage; it appears to be closely associated with the cross-bridges lying between the microtubules. Unlike many MAPs this protein was shown not to be heat stable and is predicted to be a roughly globular monomer. Even though WCB210 is a very minor component of the cytoskeleton it is heavily phosphorylated. It is possible that this protein is involved in regulation of the subpellicular microtubule crossbridges by interaction with other proteins.
Collapse
Affiliation(s)
- A Woods
- Biological Laboratory, University of Kent, Canterbury, UK
| | | | | |
Collapse
|