1
|
Czajkowski ER, Cisneros M, Garcia BS, Shen J, Cripps RM. The Drosophila CG1674 gene encodes a synaptopodin 2-like related protein that localizes to the Z-disc and is required for normal flight muscle development and function. Dev Dyn 2021; 250:99-110. [PMID: 32893414 PMCID: PMC7902442 DOI: 10.1002/dvdy.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To identify novel myofibrillar components of the Drosophila flight muscles, we carried out a proteomic analysis of chemically demembranated flight muscle myofibrils, and characterized the knockdown phenotype of a novel gene identified in the screen, CG1674. RESULTS The CG1674 protein has some similarity to vertebrate synaptopodin 2-like, and when expressed as a FLAG-tagged fusion protein, it was localized during development to the Z-disc and cytoplasm. Knockdown of CG1674 expression affected the function of multiple muscle types, and defective flight in adults was accompanied by large actin-rich structures in the flight muscles that resembled overgrown Z-discs. Localization of CG1674 to the Z-disc depended predominantly upon presence of the Z-disc component alpha-actinin, but also depended upon other Z-disc components, including Mask, Zasp52, and Sals. We also observed re-localization of FLAG-CG1674 to the nucleus in Alpha-actinin and sals knockdown animals. CONCLUSIONS These studies identify and characterize a previously unreported myofibrillar component of Drosophila muscle that is necessary for proper myofibril assembly during development.
Collapse
Affiliation(s)
| | - Marilyn Cisneros
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bianca S. Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jim Shen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
2
|
Glasheen BM, Ramanath S, Patel M, Sheppard D, Puthawala JT, Riley LA, Swank DM. Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics. Biophys J 2019. [PMID: 29539400 DOI: 10.1016/j.bpj.2017.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Muscles have evolved to power a wide variety of movements. A protein component critical to varying power generation is the myosin isoform present in the muscle. However, how functional variation in muscle arises from myosin structure is not well understood. We studied the influence of the converter, a myosin structural region at the junction of the lever arm and catalytic domain, using Drosophila because its single myosin heavy chain gene expresses five alternative converter versions (11a-e). We created five transgenic fly lines, each forced to express one of the converter versions in their indirect flight muscle (IFM) fibers. Electron microscopy showed that the converter exchanges did not alter muscle ultrastructure. The four lines expressing converter versions (11b-e) other than the native IFM 11a converter displayed decreased flight ability. IFM fibers expressing converters normally found in the adult stage muscles generated up to 2.8-fold more power and displayed up to 2.2-fold faster muscle kinetics than fibers with converters found in the embryonic and larval stage muscles. Small changes to stretch-activated force generation only played a minor role in altering power output of IFM. Muscle apparent rate constants, derived from sinusoidal analysis of the chimeric converter fibers, showed a strong positive correlation between optimal muscle oscillation frequency and myosin attachment kinetics to actin, and an inverse correlation with detachment related cross-bridge kinetics. This suggests the myosin converter alters at least two rate constants of the cross-bridge cycle with changes to attachment and power stroke related kinetics having the most influence on setting muscle oscillatory power kinetics.
Collapse
Affiliation(s)
| | - Seemanti Ramanath
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Monica Patel
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Debra Sheppard
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Joy T Puthawala
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Lauren A Riley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas M Swank
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York; Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
3
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
4
|
Chechenova MB, Maes S, Oas ST, Nelson C, Kiani KG, Bryantsev AL, Cripps RM. Functional redundancy and nonredundancy between two Troponin C isoforms in Drosophila adult muscles. Mol Biol Cell 2017; 28:760-770. [PMID: 28077621 PMCID: PMC5349783 DOI: 10.1091/mbc.e16-07-0498] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/18/2022] Open
Abstract
Knockout of either of two Drosophila Troponin C genes that are expressed in either the flight muscle or the jump muscle resulted in expansion of transcription of its paralogue into the affected muscle. Although either isoform can support normal jumping, only the flight isoform can support flight. We investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, Drosophila melanogaster: TpnC4 is predominantly expressed in the indirect flight muscles (IFMs), whereas TpnC41C is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of TpnC41C and compared its phenotype to a line lacking functional TpnC4. We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene. Functionally, the two TpnC isoforms were not equal. Although ectopic TpnC4 in TDT muscles was able to maintain jumping ability, TpnC41C in IFMs could not effectively support flying. Simultaneous functional disruption of both TpnC genes resulted in jump-defective and flightless phenotypes of the survivors, as well as abnormal sarcomere organization. These results indicated that TpnC is required for myofibril assembly, and that there is functional specialization among TpnC isoforms in Drosophila.
Collapse
Affiliation(s)
- Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Sara Maes
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Cloyce Nelson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Kaveh G Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
5
|
Achal M, Trujillo AS, Melkani GC, Farman GP, Ocorr K, Viswanathan MC, Kaushik G, Newhard CS, Glasheen BM, Melkani A, Suggs JA, Moore JR, Swank DM, Bodmer R, Cammarato A, Bernstein SI. A Restrictive Cardiomyopathy Mutation in an Invariant Proline at the Myosin Head/Rod Junction Enhances Head Flexibility and Function, Yielding Muscle Defects in Drosophila. J Mol Biol 2016; 428:2446-2461. [PMID: 27107639 PMCID: PMC4884507 DOI: 10.1016/j.jmb.2016.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022]
Abstract
An "invariant proline" separates the myosin S1 head from its S2 tail and is proposed to be critical for orienting S1 during its interaction with actin, a process that leads to muscle contraction. Mutation of the invariant proline to leucine (P838L) caused dominant restrictive cardiomyopathy in a pediatric patient (Karam et al., Congenit. Heart Dis. 3:138-43, 2008). Here, we use Drosophila melanogaster to model this mutation and dissect its effects on the biochemical and biophysical properties of myosin, as well as on the structure and physiology of skeletal and cardiac muscles. P838L mutant myosin isolated from indirect flight muscles of transgenic Drosophila showed elevated ATPase and actin sliding velocity in vitro. Furthermore, the mutant heads exhibited increased rotational flexibility, and there was an increase in the average angle between the two heads. Indirect flight muscle myofibril assembly was minimally affected in mutant homozygotes, and isolated fibers displayed normal mechanical properties. However, myofibrils degraded during aging, correlating with reduced flight abilities. In contrast, hearts from homozygotes and heterozygotes showed normal morphology, myofibrillar arrays, and contractile parameters. When P838L was placed in trans to Mhc(5), an allele known to cause cardiac restriction in flies, it did not yield the constricted phenotype. Overall, our studies suggest that increased rotational flexibility of myosin S1 enhances myosin ATPase and actin sliding. Moreover, instability of P838L myofibrils leads to decreased function during aging of Drosophila skeletal muscle, but not cardiac muscle, despite the strong evolutionary conservation of the P838 residue.
Collapse
Affiliation(s)
- Madhulika Achal
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Adriana S Trujillo
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Girish C Melkani
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Gerrie P Farman
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Bernadette M Glasheen
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Anju Melkani
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Jennifer A Suggs
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sanford I Bernstein
- Biology Department, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
6
|
Adame V, Chapapas H, Cisneros M, Deaton C, Deichmann S, Gadek C, Lovato TL, Chechenova MB, Guerin P, Cripps RM. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:263-75. [PMID: 27009801 PMCID: PMC5377917 DOI: 10.1002/bmb.20950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 05/25/2023]
Abstract
CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul Guerin
- Institute for Social Research, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
7
|
A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Genetics 2015; 200:149-65. [PMID: 25747460 DOI: 10.1534/genetics.115.175604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023] Open
Abstract
Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.
Collapse
|
8
|
Wang Q, Newhard CS, Ramanath S, Sheppard D, Swank DM. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight. ACTA ACUST UNITED AC 2013; 217:290-8. [PMID: 24115062 DOI: 10.1242/jeb.091769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
9
|
Wang Y, Melkani GC, Suggs JA, Melkani A, Kronert WA, Cammarato A, Bernstein SI. Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness. Mol Biol Cell 2012; 23:2057-65. [PMID: 22496423 PMCID: PMC3364171 DOI: 10.1091/mbc.e12-02-0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A Drosophila model of myosin-based inclusion body myopathy type 3 is presented. Muscle function, ATPase activity, and actin sliding velocity were dramatically reduced. The mutant myosin is prone to aggregate, likely accounting for the observed cytoplasmic inclusions and disorganized muscle filaments reminiscent of the human disease. Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Salvi SS, Kumar RP, Ramachandra NB, Sparrow JC, Nongthomba U. Mutations in Drosophila myosin rod cause defects in myofibril assembly. J Mol Biol 2012; 419:22-40. [PMID: 22370558 DOI: 10.1016/j.jmb.2012.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/17/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies.
Collapse
Affiliation(s)
- Sheetal S Salvi
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
11
|
Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, Bernstein SI. Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 2011; 124:699-705. [PMID: 21285246 DOI: 10.1242/jcs.078964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated muscles, similarly to muscle myosin. dUNC-45 localizes to the Z-discs of sarcomeres in third instar larval body-wall muscles. We produced a dunc-45 mutant in which zygotic expression is disrupted. This results in nearly undetectable dUNC-45 levels in maturing embryos as well as late embryonic lethality. Muscle myosin accumulation is robust in dunc-45 mutant embryos at 14 hours. However, myosin is dramatically decreased in the body-wall muscles of 22-hour-old mutant embryos. Furthermore, electron microscopy showed only a few thick filaments and irregular thick-thin filament lattice spacing. The lethality, defective protein accumulation, and ultrastructural abnormalities are rescued with a wild-type dunc-45 transgene, indicating that the mutant phenotypes arise from the dUNC-45 deficiency. Overall, our data indicate that dUNC-45 is important for myosin accumulation and muscle function. Furthermore, our results suggest that dUNC-45 acts post-translationally for proper myosin folding and maturation.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The mechanical properties of Drosophila jump muscle expressing wild-type and embryonic Myosin isoforms. Biophys J 2010; 98:1218-26. [PMID: 20371321 DOI: 10.1016/j.bpj.2009.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022] Open
Abstract
Transgenic Drosophila are highly useful for structure-function studies of muscle proteins. However, our ability to mechanically analyze transgenically expressed mutant proteins in Drosophila muscles has been limited to the skinned indirect flight muscle preparation. We have developed a new muscle preparation using the Drosophila tergal depressor of the trochanter (TDT or jump) muscle that increases our experimental repertoire to include maximum shortening velocity (V(slack)), force-velocity curves and steady-state power generation; experiments not possible using indirect flight muscle fibers. When transgenically expressing its wild-type myosin isoform (Tr-WT) the TDT is equivalent to a very fast vertebrate muscle. TDT has a V(slack) equal to 6.1 +/- 0.3 ML/s at 15 degrees C, a steep tension-pCa curve, isometric tension of 37 +/- 3 mN/mm(2), and maximum power production at 26% of isometric tension. Transgenically expressing an embryonic myosin isoform in the TDT muscle increased isometric tension 1.4-fold, but decreased V(slack) 50% resulting in no significant difference in maximum power production compared to Tr-WT. Drosophila expressing embryonic myosin jumped <50% as far as Tr-WT that, along with comparisons to frog jump muscle studies, suggests fast muscle shortening velocity is relatively more important than high tension generation for Drosophila jumping.
Collapse
|
13
|
Gajewski KM, Schulz RA. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila. PLoS One 2010; 5:e10713. [PMID: 20520827 PMCID: PMC2876027 DOI: 10.1371/journal.pone.0010713] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 03/28/2010] [Indexed: 11/19/2022] Open
Abstract
The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size.
Collapse
Affiliation(s)
- Kathleen M Gajewski
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
14
|
Jaramillo MS, Lovato CV, Baca EM, Cripps RM. Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle. Development 2009; 136:1105-13. [PMID: 19244280 PMCID: PMC2685931 DOI: 10.1242/dev.031567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
Skeletal muscles are readily characterized by their location within the body and by the number and composition of their constituent muscle fibers. Here, we characterize a mutation that causes a severe reduction in the number of fibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions in the escape response of the Drosophila adult. The wild-type TDT comprises over 20 large muscle fibers and four small fibers. In crossveinless (cv) mutants, the number of large fibers is reduced by 50%, and the number of small fibers is also occasionally reduced. This reduction in fiber number arises from a reduction in the number of founder cells contributing to the TDT at the early pupal stage. Given the role of cv in TGFbeta signaling, we determined whether this pathway directly impacts TDT development. Indeed, gain- and loss-of-function manipulations in the TGFbeta pathway resulted in dramatic increases and decreases, respectively, in TDT fiber number. By identifying the origins of the TDT muscle, from founder cells specified in the mesothoracic leg imaginal disc, we also demonstrate that the TGFbeta pathway directly impacts the specification of founder cells for the jump muscle. Our studies define a new role for the TGFbeta pathway in the control of specific skeletal muscle characteristics.
Collapse
Affiliation(s)
| | | | | | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Kronert WA, Dambacher CM, Knowles AF, Swank DM, Bernstein SI. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function. J Mol Biol 2008; 379:443-56. [PMID: 18462751 PMCID: PMC2528879 DOI: 10.1016/j.jmb.2008.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 01/18/2023]
Abstract
The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.
Collapse
Affiliation(s)
- William A. Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Corey M. Dambacher
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Aileen F. Knowles
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030
| | - Douglas M. Swank
- Department of Biology & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| |
Collapse
|
16
|
Cammarato A, Dambacher CM, Knowles AF, Kronert WA, Bodmer R, Ocorr K, Bernstein SI. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 2008; 19:553-62. [PMID: 18045988 PMCID: PMC2230588 DOI: 10.1091/mbc.e07-09-0890] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/06/2007] [Accepted: 11/16/2007] [Indexed: 12/12/2022] Open
Abstract
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc(5) affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc(5) (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc(5) myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc(5) mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.
Collapse
Affiliation(s)
- Anthony Cammarato
- *Department of Biology and Heart Institute, San Diego State University, San Diego, CA 92182-4614
- Development and Aging Program, Burnham Institute for Medical Research, La Jolla, CA 92037; and
| | - Corey M. Dambacher
- *Department of Biology and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Aileen F. Knowles
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030
| | - William A. Kronert
- *Department of Biology and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| | - Rolf Bodmer
- Development and Aging Program, Burnham Institute for Medical Research, La Jolla, CA 92037; and
| | - Karen Ocorr
- Development and Aging Program, Burnham Institute for Medical Research, La Jolla, CA 92037; and
| | - Sanford I. Bernstein
- *Department of Biology and Heart Institute, San Diego State University, San Diego, CA 92182-4614
| |
Collapse
|
17
|
Elgar SJ, Han J, Taylor MV. mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proc Natl Acad Sci U S A 2008; 105:918-23. [PMID: 18198273 PMCID: PMC2242723 DOI: 10.1073/pnas.0711255105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Indexed: 01/21/2023] Open
Abstract
Cell differentiation is controlled by key transcription factors, and a major question is how they orchestrate cell-type-specific genetic programs. Muscle differentiation is a well studied paradigm in which the conserved Mef2 transcription factor plays a pivotal role. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can control such diverse patterns of gene expression. In this study we used a strategy combining genomics and developmental genetics to address this issue in vivo during Drosophila muscle development. We found that groups of mef2-regulated genes respond differently to changes in mef2 activity levels: some require higher levels for their expression than others. Furthermore, this differential requirement correlates with when the gene is first expressed during the muscle differentiation program. Genes that require higher levels are activated later. These results implicate mef2 in the temporal regulation of muscle gene expression, and, consistent with this, we show that changes in mef2 activity levels can alter the start of gene expression in a predictable manner. Together these results indicate that Mef2 is not an all-or-none regulator; rather, its action is more subtle, and levels of its activity are important in the differential expression of muscle genes. This suggests a route by which mef2 can orchestrate the muscle differentiation program and contribute to the stringent regulation of gene expression during myogenesis.
Collapse
Affiliation(s)
- Stuart J. Elgar
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| | - Jun Han
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| | - Michael V. Taylor
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, United Kingdom
| |
Collapse
|
18
|
Barton B, Ayer G, Maughan DW, Vigoreaux JO. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics. J Muscle Res Cell Motil 2007; 28:219-30. [PMID: 17912596 DOI: 10.1007/s10974-007-9120-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
Flightin is a myosin rod binding protein that in Drosophila melanogaster is expressed exclusively in the asynchronous indirect flight muscles (IFM). Hyperphosphorylation of flightin coincides with the completion of myofibril assembly and precedes the emergence of flight competency in young adults. To investigate the role of flightin phosphorylation in vivo we generated three flightin null (fln(0)) Drosophila strains that express a mutant flightin transgene with two (Thr158, Ser 162), three (Ser139, Ser141, Ser145) or all five potential phosphorylation sites mutated to alanines. These amino acid substitutions result in lower than normal levels of flightin accumulation and transgenic strains that are unable to beat their wings. On two dimensional gels of IFM proteins, the transgenic strain with five mutant sites (fln(5STA)) is devoid of all phosphovariants, the transgenic strain with two mutant sites (fln(2TSA)) expresses only the two least acidic of the nine phosphovariants, and the transgenic strain with three mutant sites (fln(3SA)) expresses all nine phosphovariants, as the wild-type strain. These results suggest that phosphorylation of Thr158 and/or Ser162 is necessary for subsequent phosphorylation of other sites. All three transgenic strains show normal, albeit long, IFM sarcomeres in newly eclosed adults. In contrast, sarcomeres in fully mature fln(5STA) and fln(2TSA) adults show extensive breakdown while those in fln(3SA) are not as disordered. The fiber hypercontraction phenotype that characterizes fln(0) is fully evident in fln(5STA) and fln(2TSA) but partially rescued in fln(3SA). Mechanics on skinned fibers from newly eclosed flies show alterations in viscous modulus for fln(5STA) and fln(2TSA) that result in a significant reduction in oscillatory power output. Expression of fln(5STA) and fln(2TSA), but not fln(3SA), in a wild-type (fln(+)/fln(+)) background resulted in a dominant negative effect manifested as flight impairments and hypercontracted IFM fibers. Our studies indicate that Thr158 and/or Ser162 are (is) indispensable for flightin function and suggest that phosphorylation of one or both residues fulfills an essential role in IFM structural stability and mechanics.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acid Substitution/genetics
- Animals
- Animals, Genetically Modified
- Binding Sites/genetics
- Drosophila Proteins/genetics
- Drosophila melanogaster
- Filamins
- Microscopy, Electron, Transmission
- Muscle Contraction/genetics
- Muscle Proteins/genetics
- Muscle, Striated/abnormalities
- Muscle, Striated/metabolism
- Muscle, Striated/physiopathology
- Mutagenesis, Site-Directed
- Mutation/genetics
- Phenotype
- Phosphorylation
- Sarcomeres/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Serine/genetics
- Serine/metabolism
- Threonine/genetics
- Threonine/metabolism
- Transgenes
- Wings, Animal/abnormalities
- Wings, Animal/metabolism
- Wings, Animal/physiopathology
Collapse
Affiliation(s)
- Byron Barton
- Department of Biology, University of Vermont, 109 Carrigan Drive, 120 Marsh Life Science Building, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
19
|
Babu S, Ramachandra NB. Screen for new mutations on the 2nd chromosome involved in indirect flight muscle development in Drosophila melanogaster. Genome 2007; 50:343-50. [PMID: 17546092 DOI: 10.1139/g07-012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)RU8). In addition, we found 6 new complementation groups with strong defects in adult-muscle morphology; we named these ifm(2)RS1 to ifm(2)RS6. All mutant lines were mapped by meiotic recombination, and 5 of the 6 new complementation lines were mapped using chromosome deficiencies. ifm(2)RS1 maps to a region that harbors ifm(2)RU4 (a mutation that was isolated previously); however, theses are not alleles because each complements the other mutation, and the mutant-muscle phenotype is very different. We used direct screening under polarized light to find recessive mutations; although this method was labor intensive, it can be used to identify recessive genes involved in myogenesis, unlike screens for flightlessness or wing-position defects. This screen identifies regions on the second chromosome that harbor probable genes that are likely expressed in the mesoderm and are thought to be involved in myogenesis. This screen has generated valuable resources that will help us to understand the role of many molecular players involved in myogenesis.
Collapse
Affiliation(s)
- Sajesh Babu
- National Drosophila Stock Centre, Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570 006, India
| | | |
Collapse
|
20
|
Miller BM, Bloemink MJ, Nyitrai M, Bernstein SI, Geeves MA. A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites. J Mol Biol 2007; 368:1051-66. [PMID: 17379245 PMCID: PMC2034518 DOI: 10.1016/j.jmb.2007.02.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
Drosophila expresses several muscle myosin isoforms from a single gene by alternatively splicing six of the 19 exons. Here we investigate exon 7, which codes for a region in the upper 50 kDa domain near the nucleotide-binding pocket. This region is of interest because it is also the place where a large insert is found in myosin VI and where several cardiomyopathy mutations have been identified in human cardiac myosin. We expressed and purified chimeric muscle myosins from Drosophila, each varying at exon 7. Two chimeras exchanged the entire exon 7 domain between the indirect flight muscle (IFI, normally containing exon 7d) and embryonic body wall muscle (EMB, normally containing exon 7a) isoforms to create IFI-7a and EMB-7d. The second two chimeras replaced each half of the exon 7a domain in EMB with the corresponding portion of exon 7d to create EMB-7a/7d and EMB-7d/7a. Transient kinetic studies of the motor domain from these myosin isoforms revealed changes in several kinetic parameters between the IFI or EMB isoforms and the chimeras. Of significance were changes in nucleotide binding, which differed in the presence and absence of actin, consistent with a model in which the exon 7 domain is part of the communication pathway between the nucleotide and actin-binding sites. Homology models of the structures suggest how the exon 7 domain might modulate this pathway.
Collapse
Affiliation(s)
- Becky M Miller
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | | | | | |
Collapse
|
21
|
Miller BM, Zhang S, Suggs JA, Swank DM, Littlefield KP, Knowles AF, Bernstein SI. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics. J Mol Biol 2005; 353:14-25. [PMID: 16154586 DOI: 10.1016/j.jmb.2005.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/29/2022]
Abstract
In Drosophila melanogaster expression of muscle myosin heavy chain isoforms occurs by alternative splicing of transcripts from a single gene. The exon 7 domain is one of four variable regions in the catalytic head and is located near the nucleotide-binding site. To ascribe a functional role to this domain, we created two chimeric myosin isoforms (indirect flight isoform-exon 7a and embryonic-exon 7d) that differ from the native indirect flight muscle and embryonic body-wall muscle isoforms only in the exon 7 region. Germline transformation and subsequent expression of the chimeric myosins in the indirect flight muscle of myosin-null Drosophila allowed us to purify the myosin for in vitro studies and to assess in vivo structure and function of transgenic muscles. Intriguingly, in vitro experiments show the exon 7 domain modulates myosin ATPase activity but has no effect on actin filament velocity, a novel result compared to similar studies with other Drosophila variable exons. Transgenic flies expressing the indirect flight isoform-exon 7a have normal indirect flight muscle structure, and flight and jump ability. However, expression of the embryonic-exon 7d chimeric isoform yields flightless flies that show improvements in both the structural stability of the indirect flight muscle and in locomotor abilities as compared to flies expressing the embryonic isoform. Overall, our results suggest the exon 7 domain participates in the regulation of the attachment of myosin to actin in order to fine-tune the physiological properties of Drosophila myosin isoforms.
Collapse
Affiliation(s)
- Becky M Miller
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Marco-Ferreres R, Arredondo J, Fraile B, Cervera M. Overexpression of troponin T in Drosophila muscles causes a decrease in the levels of thin-filament proteins. Biochem J 2005; 386:145-52. [PMID: 15469415 PMCID: PMC1134776 DOI: 10.1042/bj20041240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Formation of the contractile apparatus in muscle cells requires co-ordinated activation of several genes and the proper assembly of their products. To investigate the role of TnT (troponin T) in the mechanisms that control and co-ordinate thin-filament formation, we generated transgenic Drosophila lines that overexpress TnT in their indirect flight muscles. All flies that overexpress TnT were unable to fly, and the loss of thin filaments themselves was coupled with ultrastructural perturbations of the sarcomere. In contrast, thick filaments remained largely unaffected. Biochemical analysis of these lines revealed that the increase in TnT levels could be detected only during the early stages of adult muscle formation and was followed by a profound decrease in the amount of this protein as well as that of other thin-filament proteins such as tropomyosin, troponin I and actin. The decrease in thin-filament proteins is not only due to degradation but also due to a decrease in their synthesis, since accumulation of their mRNA transcripts was also severely diminished. This decrease in expression levels of the distinct thin-filament components led us to postulate that any change in the amount of TnT transcripts might trigger the down-regulation of other co-regulated thin-filament components. Taken together, these results suggest the existence of a mechanism that tightly co-ordinates the expression of thin-filament genes and controls the correct stoichiometry of these proteins. We propose that the high levels of unassembled protein might act as a sensor in this process.
Collapse
Affiliation(s)
- Raquel Marco-Ferreres
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Juan J. Arredondo
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Benito Fraile
- †Departamento de Biología Celular y Genética, Universidad de Alcalá de Henares, Carretera Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Margarita Cervera
- *Departamento de Bioquímica and Instituto Investigaciones Biomédicas, UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
24
|
Barton B, Ayer G, Heymann N, Maughan DW, Lehmann FO, Vigoreaux JO. Flight muscle properties and aerodynamic performance ofDrosophilaexpressing aflightintransgene. J Exp Biol 2005; 208:549-60. [PMID: 15671343 DOI: 10.1242/jeb.01425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFlightin is a multiply phosphorylated, myosin-binding protein found specifically in indirect flight muscles (IFM) of Drosophila. A null mutation in the flightin gene (fln0) compromises thick filament assembly and muscle integrity resulting in muscle degeneration and lost of flight ability. Using P-element-mediated transformation with the full-length flightin gene driven by the Actin88F promoter,we have achieved rescue of all fln0-related ultrastructural and functional defects of the IFM. Transgenic P{fln+}fln0 `rescued' flies have fewer thick filaments per myofbril than wild-type flies (782±13 vs945±9) but have otherwise normal IFM. Transgenic P{fln+}fln+ `tetraploid' flies have a normal number of thick filaments. The flightin protein levels in both transgenic strains are similar to wild type. By contrast, flightin levels are reduced in a myosin heavy chain tetraploid strain that produces excess myosin and excess thick filaments. These results suggest that regulation of flightin protein level is independent of gene copy number and that the number of thick filaments assembled per myofibril is influenced independently by myosin and flightin expression. We measured mechanical properties of IFM skinned fibers by sinusoidal analysis and found no significant differences in active viscoelastic properties of flightin-rescued and tetraploid transgenic flies vs wild type. The ability of the fln+transgene to overcome deficits in dynamic stiffness and power output in fln0 suggest that the flightin protein contributes directly to fiber stiffness and stretch activation. However, flight parameters at maximum locomotor capacity, measured in a virtual reality flight simulator,are slightly compromised for both transgenic strains. P{fln+}fln0 and P{fln+}fln+ flies generated enough flight force to sustain hovering flight but showed reduced capability to produce forces in excess of hovering flight force. Both strains showed reductions in stroke frequency but only P{fln+}fln+ showed reductions in stroke amplitude. Muscle and aerodynamic efficiency are similar among the two transgenic strains and wild type. These results illustrate the importance of flightin in flight muscle development and function.
Collapse
Affiliation(s)
- Byron Barton
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
25
|
Swank DM, Knowles AF, Kronert WA, Suggs JA, Morrill GE, Nikkhoy M, Manipon GG, Bernstein SI. Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sliding velocity. J Biol Chem 2003; 278:17475-82. [PMID: 12606545 DOI: 10.1074/jbc.m212727200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We integratively assessed the function of alternative versions of a region near the N terminus of Drosophila muscle myosin heavy chain (encoded by exon 3a or 3b). We exchanged the alternative exon 3 regions between an embryonic isoform and the indirect flight muscle isoform. Each chimeric myosin was expressed in Drosophila indirect flight muscle, in the absence of other myosin isoforms, allowing for purified protein analysis and whole organism locomotory studies. The flight muscle isoform generates higher in vitro actin sliding velocity and solution ATPase rates than the embryonic isoform. Exchanging the embryonic exon 3 region into the flight muscle isoform decreased ATPase rates to embryonic levels but did not affect actin sliding velocity or flight muscle ultrastructure. Interestingly, this swap only slightly impaired flight ability. Exchanging the flight muscle-specific exon 3 region into the embryonic isoform increased actin sliding velocity 3-fold and improved indirect flight muscle ultrastructure integrity but failed to rescue the flightless phenotype of flies expressing embryonic myosin. These results suggest that the two structural versions of the exon 3 domain independently influence the kinetics of at least two steps of the actomyosin cross-bridge cycle.
Collapse
Affiliation(s)
- Douglas M Swank
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nongthomba U, Cummins M, Clark S, Vigoreaux JO, Sparrow JC. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 2003; 164:209-22. [PMID: 12750333 PMCID: PMC1462538 DOI: 10.1093/genetics/164.1.209] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.
Collapse
Affiliation(s)
- Upendra Nongthomba
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Arredondo JJ, Mardahl-Dumesnil M, Cripps RM, Cervera M, Bernstein SI. Overexpression of miniparamyosin causes muscle dysfunction and age-dependant myofibril degeneration in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 2002; 22:287-99. [PMID: 11763201 DOI: 10.1023/a:1012431725009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Miniparamyosin (mPM) is a protein of invertebrate muscle thick filaments. Its similarity to paramyosin (PM) suggests that it regulates thick filament and myofibril assembly. To determine its role in muscle structure and function we overexpressed mPM in muscles of Drosophila melanogaster. Surprisingly, myofibrils accumulating excess mPM assemble nearly normally, with thick filament electron density and sarcomere length unaffected. Myofibrils in some indirect flight muscle groups are misaligned and young flies exhibit a moderate level of flight impairment. This phenotype is exacerbated with age. Transgenic flies undergo progressive myofibril deterioration that increases flight muscle dysfunction. Our observations indicate that the correct stoichiometry of mPM is important for maintenance of myofibril integrity and for the proper function of the flight musculature.
Collapse
Affiliation(s)
- J J Arredondo
- Departamento de Bioquímica and Instituto Investigaciones Biomédicas, CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Swank DM, Knowles AF, Suggs JA, Sarsoza F, Lee A, Maughan DW, Bernstein SI. The myosin converter domain modulates muscle performance. Nat Cell Biol 2002; 4:312-6. [PMID: 11901423 DOI: 10.1038/ncb776] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.
Collapse
Affiliation(s)
- Douglas M Swank
- Department of Biology, Molecular Biology Institute, and the Heart Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mardahl-Dumesnil M, Fowler VM. Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J Cell Biol 2001; 155:1043-53. [PMID: 11739412 PMCID: PMC2150893 DOI: 10.1083/jcb.200108026] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.
Collapse
Affiliation(s)
- M Mardahl-Dumesnil
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Vigoreaux JO. Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems. Bioessays 2001; 23:1047-63. [PMID: 11746221 DOI: 10.1002/bies.1150] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This essay reviews the long tradition of experimental genetics of the Drosophila indirect flight muscles (IFM). It discusses how genetics can operate in tandem with multidisciplinary approaches to provide a description, in molecular terms, of the functional properties of the muscle myofibril. In particular, studies at the interface of genetics and proteomics address protein function at the cellular scale and offer an outstanding platform with which to elucidate how the myofibril works. Two generalizations can be enunciated from the studies reviewed. First, the study of mutant IFM proteomes provides insight into how proteins are functionally organized in the myofibril. Second, IFM mutants can give rise to structural and contractile defects that are unrelated, a reflection of the dual function that myofibrillar proteins play as fundamental components of the sarcomeric framework and biochemical "parts" of the contractile "engine".
Collapse
Affiliation(s)
- J O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405 USA.
| |
Collapse
|
31
|
Abstract
An underpinning of basic physiology and clinical medicine is that specific protein complements underlie cell and organ function. In the heart, contractile protein changes correlating with functional alterations occur during both normal development and the development of numerous pathologies. What has been lacking for the majority of these observations is an extension of correlation to causative proof. More specifically, different congenital heart diseases are characterized by shifts in the motor proteins, and the genetic etiologies of a number of different dilated and hypertrophic cardiomyopathies have been established as residing at loci encoding the contractile proteins. To establish cause, or to understand development of the pathophysiology over an animal's life span, it is necessary to direct the heart to synthesize, in the absence of other pleiotropic changes, the candidate protein. Subsequently one can determine whether or how the protein's presence causes the effects either directly or indirectly. By affecting the heart's protein complement in a defined manner, the potential to establish the function of different proteins and protein isoforms exists. Transgenesis provides a means of stably modifying the mammalian genome. By directing expression of engineered proteins to the heart, cardiac contractile protein profiles can be effectively remodeled and the resultant animal used to study the consequences of a single, genetic manipulation at the molecular, biochemical, cytological, and physiological levels.
Collapse
Affiliation(s)
- J Robbins
- Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
32
|
Swank DM, Wells L, Kronert WA, Morrill GE, Bernstein SI. Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila. Microsc Res Tech 2000; 50:430-42. [PMID: 10998634 DOI: 10.1002/1097-0029(20000915)50:6<430::aid-jemt2>3.0.co;2-e] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drosophila melanogaster is an excellent system for examining the structure/function relationships of myosin. It yields insights into the roles of myosin in assembly and stability of myofibrils, in defining the mechanical properties of muscle fibers, and in dictating locomotory abilities. Drosophila has a single gene encoding muscle myosin heavy chain (MHC), with alternative RNA splicing resulting in stage- and tissue-specific isoform production. Localization of the alternative domains of Drosophila MHC on a three-dimensional molecular model suggests how they may determine functional differences between isoforms. We are testing these predictions directly by using biophysical and biochemical techniques to characterize myosin isolated from transgenic organisms. Null and missense mutations help define specific amino acid residues important in actin binding and ATP hydrolysis and the function of MHC in thick filament and myofibril assembly. Insights into the interaction of thick and thin filaments result from studying mutations in MHC that suppress ultrastructural defects induced by a troponin I mutation. Analysis of transgenic organisms expressing engineered versions of MHC shows that the native isoform of myosin is not critical for myofibril assembly but is essential for muscle function and maintenance of muscle integrity. We show that the C-terminus of MHC plays a pivotal role in the maintenance of muscle integrity. Transgenic studies using headless myosin reveal that the head is important for some, but not all, aspects of myofibril assembly. The integrative approach described here provides a multi-level understanding of the function of the myosin molecular motor.
Collapse
Affiliation(s)
- D M Swank
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
33
|
Nongthomba U, Ramachandra NB. A direct screen identifies new flight muscle mutants on the Drosophila second chromosome. Genetics 1999; 153:261-74. [PMID: 10471711 PMCID: PMC1460746 DOI: 10.1093/genetics/153.1.261] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An ethyl methanesulfonate mutagenesis of Drosophila melanogaster was undertaken, and >3000 mutagenized second chromosomes were generated. More than 800 homozygous viable lines were established, and adults were screened directly under polarized light for muscle defects. A total of 16 mutant strains in which the indirect flight muscles were reduced in volume or disorganized or were otherwise abnormal were identified. These fell into seven recessive and one semidominant complementation groups. Five of these eight complementation groups, including the semidominant mutation, have been mapped using chromosomal deficiencies and meiotic recombination. Two complementation groups mapped close to the Myosin heavy chain gene, but they are shown to be in different loci. Developmental analysis of three mutations showed that two of these are involved in the early stages of adult myogenesis while the other showed late defects. This is the first report of results from a systematic and direct screen for recessive flight muscle defects. This mutant screen identifies genes affecting the flight muscles, which are distinct from those identified when screening for flightlessness.
Collapse
Affiliation(s)
- U Nongthomba
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | | |
Collapse
|
34
|
Cripps RM, Suggs JA, Bernstein SI. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J 1999; 18:1793-804. [PMID: 10202143 PMCID: PMC1171265 DOI: 10.1093/emboj/18.7.1793] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.
Collapse
Affiliation(s)
- R M Cripps
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|
35
|
Kronert WA, Acebes A, Ferrús A, Bernstein SI. Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles. J Cell Biol 1999; 144:989-1000. [PMID: 10085296 PMCID: PMC2148188 DOI: 10.1083/jcb.144.5.989] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We show that specific mutations in the head of the thick filament molecule myosin heavy chain prevent a degenerative muscle syndrome resulting from the hdp2 mutation in the thin filament protein troponin I. One mutation deletes eight residues from the actin binding loop of myosin, while a second affects a residue at the base of this loop. Two other mutations affect amino acids near the site of nucleotide entry and exit in the motor domain. We document the degree of phenotypic rescue each suppressor permits and show that other point mutations in myosin, as well as null mutations, fail to suppress the hdp2 phenotype. We discuss mechanisms by which the hdp2 phenotypes are suppressed and conclude that the specific residues we identified in myosin are important in regulating thick and thin filament interactions. This in vivo approach to dissecting the contractile cycle defines novel molecular processes that may be difficult to uncover by biochemical and structural analysis. Our study illustrates how expression of genetic defects are dependent upon genetic background, and therefore could have implications for understanding gene interactions in human disease.
Collapse
Affiliation(s)
- W A Kronert
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | |
Collapse
|
36
|
Brault V, Sauder U, Reedy MC, Aebi U, Schoenenberger CA. Differential epitope tagging of actin in transformed Drosophila produces distinct effects on myofibril assembly and function of the indirect flight muscle. Mol Biol Cell 1999; 10:135-49. [PMID: 9880332 PMCID: PMC25159 DOI: 10.1091/mbc.10.1.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have tested the impact of tags on the structure and function of indirect flight muscle (IFM)-specific Act88F actin by transforming mutant Drosophila melanogaster, which do not express endogenous actin in their IFMs, with tagged Act88F constructs. Epitope tagging is often the method of choice to monitor the fate of a protein when a specific antibody is not available. Studies addressing the functional significance of the closely related actin isoforms rely almost exclusively on tagged exogenous actin, because only few antibodies exist that can discriminate between isoforms. Thereby it is widely presumed that the tag does not significantly interfere with protein function. However, in most studies the tagged actin is expressed in a background of endogenous actin and, as a rule, represents only a minor fraction of the total actin. The Act88F gene encodes the only Drosophila actin isoform exclusively expressed in the highly ordered IFM. Null mutations in this gene do not affect viability, but phenotypic effects in transformants can be directly attributed to the transgene. Transgenic flies that express Act88F with either a 6x histidine tag or an 11-residue peptide derived from vesicular stomatitis virus G protein at the C terminus were flightless. Overall, the ultrastructure of the IFM resembled that of the Act88F null mutant, and only low amounts of C-terminally tagged actins were found. In contrast, expression of N-terminally tagged Act88F at amounts comparable with that of wild-type flies yielded fairly normal-looking myofibrils and partially reconstituted flight ability in the transformants. Our findings suggest that the N terminus of actin is less sensitive to modifications than the C terminus, because it can be tagged and still polymerize into functional thin filaments.
Collapse
Affiliation(s)
- V Brault
- M.E. Müller Institute, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Davis MB, Dietz J, Standiford DM, Emerson CP. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants. Genetics 1998; 150:1105-14. [PMID: 9799262 PMCID: PMC1460390 DOI: 10.1093/genetics/150.3.1105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by the alternative splicing apparatus. Mhc2 and Mhc4 have insertion elements located within intron 7c and exon 9a, respectively, and each expresses a single truncated transcript that contains an aberrant terminal exon defined by the poly(A) signal of the inserted element and the 3' acceptor of the upstream common exon. In Mhc3, a poly(A) signal inserted into Mhc intron 7d defines terminal exons using either the upstream 3' acceptor of common exon 6 or the 7d acceptor, leading to the expression of 4.1- and 1.7-kb transcripts, respectively. Acceptor selection is regulated in Mhc3 transcripts, where the 3' acceptor of common Mhc exon 6 is preferentially selected in larvae, whereas the alternative exon 7d acceptor is favored in adults. These results reflect the adult-specific use of exon 7d and suggest that the normal exon 7 alternative splicing mechanism continues to influence the selection of exon 7d in Mhc3 transcripts. Overall, transposable element-induced disruptions in alternative processing demonstrate a role for the nonconsensus 3' acceptors in Mhc exons 7 and 9 alternative splicing regulation.
Collapse
Affiliation(s)
- M B Davis
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadephia, Pennsylvania 19104-6058, USA
| | | | | | | |
Collapse
|
38
|
Wojtas K, Slepecky N, von Kalm L, Sullivan D. Flight muscle function in Drosophila requires colocalization of glycolytic enzymes. Mol Biol Cell 1997; 8:1665-75. [PMID: 9307964 PMCID: PMC305727 DOI: 10.1091/mbc.8.9.1665] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Structural relationships between the myofibrillar contractile apparatus and the enzymes that generate ATP for muscle contraction are not well understood. We explored whether glycolytic enzymes are localized in Drosophila flight muscle and whether localization is required for function. We find that glycerol-3-phosphate dehydrogenase (GPDH) is localized at Z-discs and M-lines. The glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are also localized along the sarcomere with a periodic pattern that is indistinguishable from that of GPDH localization. Furthermore, localization of aldolase and GAPDH requires simultaneous localization of GPDH, because aldolase and GAPDH are not localized along the sarcomere in muscles of strains that carry Gpdh null alleles. In an attempt to understand the process of glycolytic enzyme colocalization, we have explored in more detail the mechanism of GPDH localization. In flight muscle, there is only one GPDH isoform, GPDH-1, which is distinguished from isoforms found in other tissues by having three C-terminal amino acids: glutamine, asparagine, and leucine. Transgenic flies that can produce only GPDH-1 display enzyme colocalization similar to wild-type flies. However, transgenic flies that synthesize only GPDH-3, lacking the C-terminal tripeptide, do not show the periodic banding pattern of localization at Z-discs and M-lines for GPDH. In addition, neither GAPDH nor aldolase colocalize at Z-discs and M-lines in the sarcomeres of muscles from GPDH-3 transgenic flies. Failure of the glycolytic enzymes to colocalize in the sarcomere results in the inability to fly, even though the full complement of active glycolytic enzymes is present in flight muscles. Therefore, the presence of active enzymes in the cell is not sufficient for muscle function; colocalization of the enzymes is required. These results indicate that the mechanisms by which ATP is supplied to the myosin ATPase, for muscle contraction, requires a highly organized cellular system.
Collapse
Affiliation(s)
- K Wojtas
- Department of Biology, Syracuse University, New York 13244, USA
| | | | | | | |
Collapse
|
39
|
Palermo J, Gulick J, Colbert M, Fewell J, Robbins J. Transgenic remodeling of the contractile apparatus in the mammalian heart. Circ Res 1996; 78:504-9. [PMID: 8593710 DOI: 10.1161/01.res.78.3.504] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure-function relationships of the sarcomeric proteins in the mammalian cardiac compartment remain ill-defined because of the lack of a suitable model in which they can be readily manipulated or exchanged in vivo. To establish the validity of the transgenic paradigm for remodeling the mammalian heart, the murine alpha -cardiac myosin heavy chain gene promoter was used to express a ventricular myosin light chain-2 transgene (MLC2v) in both the atria and ventricles of the adult animal. Expression resulted in high levels of the transgene's transcript in both compartments. In the ventricle, the transgene was expressed against the background expression of the normal isoform. In the atrium, the transgene's expression would be ectopic, in that normally, MLC2v expression is restricted to the ventricle. Ectopic expression of the transgene in the atria resulted in a complete replacement of the atrial myosin light chain-2 protein isoform, although the endogenous isoform's steady state transcript levels were unchanged. In contrast, ventricular expression of the transgene had no effect at the protein level, despite an eightfold increase in MLC2v transcript levels. The data show that sarcomeric protein stoichiometry is maintained rigorously via posttransciptional regulation and that protein replacement can be achieved through a single transgenic manipulation.
Collapse
Affiliation(s)
- J Palermo
- Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
40
|
Miedema K, Hanske M, Akhmanova A, Bindels P, Hennig W. Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene. Mech Dev 1995; 51:67-81. [PMID: 7669694 DOI: 10.1016/0925-4773(95)00356-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Searching for structural proteins involved in spermatogenesis of Drosophila, we found a novel myosin isoform in the testis of Drosophila hydei and D. melanogaster. The transcript encoding this isoform, which we called 'minor-myosin', initiates within the intron between exons 12 and 13 of the muscle myosin heavy chain (mMHC) gene. Minor-myosin contains a common myosin tail but no ordinary myosin head domain. Instead, it has a short N-terminal domain which displays similarity with the N-termini of certain myosin light chain proteins. Western blots with male germ line mutants showed that the novel mMHC isoform is synthesized in the male germ cells, mainly postmeiotically. However, minor-myosin is not testis-specific, as it is expressed at a low level in the fly carcasses. The possible functions of the myosin isoform in the male germ line are discussed.
Collapse
Affiliation(s)
- K Miedema
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Chiba A, Snow P, Keshishian H, Hotta Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature 1995; 374:166-8. [PMID: 7877688 DOI: 10.1038/374166a0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fasciclin III, a cell adhesion molecule of the immunoglobulin superfamily, is expressed by motor neuron RP3 and its synaptic targets (muscle cells 6 and 7) during embryonic neuromuscular development of Drosophila. We report here that RP3 often incorrectly innervates neighbouring non-target muscle cells when these cells misexpress fasciclin III, but still innervates normal targets in the fasciclin III null mutant. Fasciclin III manipulations do not influence target selections by other motor neurons, including fasciclin III-expressing RP1. We propose that fasciclin III acts as a synaptic target recognition molecule for motor neuron RP3, and also that its absence can be compensated for by other molecule(s).
Collapse
Affiliation(s)
- A Chiba
- University of Tokyo, Department of Physics, Graduate School of Science, Japan
| | | | | | | |
Collapse
|
42
|
Genetic and transgenic approaches to dissecting muscle development and contractility using the Drosophila model system. Trends Cardiovasc Med 1994; 4:243-50. [DOI: 10.1016/1050-1738(94)90027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|