1
|
Lovejoy CA, Wessel SR, Bhowmick R, Hatoyama Y, Kanemaki MT, Zhao R, Cortez D. SRBD1 facilitates chromosome segregation by promoting topoisomerase IIα localization to mitotic chromosomes. Nat Commun 2025; 16:1675. [PMID: 39955279 PMCID: PMC11830093 DOI: 10.1038/s41467-025-56911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Accurate sister chromatid segregation requires remodeling chromosome architecture, decatenation, and attachment to the mitotic spindle. Some of these events are initiated during S-phase, but they accelerate and conclude during mitosis. Here we describe SRBD1 as a histone and nucleic acid binding protein that prevents DNA damage in interphase cells, localizes to nascent DNA during replication and the chromosome scaffold in mitosis, and is required for chromosome segregation. SRBD1 inactivation causes micronuclei, chromatin bridges, and cell death. Inactivating SRBD1 immediately prior to mitotic entry causes anaphase failure, with a reduction in topoisomerase IIα localization to mitotic chromosomes and defects in properly condensing and decatenating chromosomes. In contrast, SRBD1 is not required to complete cell division after chromosomes are condensed. Strikingly, depleting condensin II reduces the severity of the anaphase defects in SRBD1-deficient cells by restoring topoisomerase IIα localization. Thus, SRBD1 is an essential genome maintenance protein required for mitotic chromosome organization and segregation.
Collapse
Affiliation(s)
- Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- BPGbio, Framingham, MA, USA
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
3
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590027. [PMID: 38659940 PMCID: PMC11042376 DOI: 10.1101/2024.04.18.590027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
6
|
Zheng C, Wei Y, Zhang P, Lin K, He D, Teng H, Manyam G, Zhang Z, Liu W, Lee HRL, Tang X, He W, Islam N, Jain A, Chiu Y, Cao S, Diao Y, Meyer-Gauen S, Höök M, Malovannaya A, Li W, Hu M, Wang W, Xu H, Kopetz S, Chen Y. CRISPR-Cas9-based functional interrogation of unconventional translatome reveals human cancer dependency on cryptic non-canonical open reading frames. Nat Struct Mol Biol 2023; 30:1878-1892. [PMID: 37932451 PMCID: PMC10716047 DOI: 10.1038/s41594-023-01117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/06/2023] [Indexed: 11/08/2023]
Abstract
Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a primate-specific, long noncoding RNA, the expression of which is associated with poor prognosis in CRC, is low in normal tissues and is specifically elevated in CRC and several other cancer types. Mechanistically, SMIMP interacts with the ATPase-forming domains of SMC1A, the core subunit of the cohesin complex, and facilitates SMC1A binding to cis-regulatory elements to promote epigenetic repression of the tumor-suppressive cell cycle regulators encoded by CDKN1A and CDKN2B. Thus, our study reveals a cryptic microprotein as an important component of cohesin-mediated gene regulation and suggests that the 'dark' proteome, encoded by cryptic non-canonical ORFs, may contain potential therapeutic or diagnostic targets.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangyu Lin
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan He
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sema4, Inc., Stamford, CT, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Institute of Biosciences of Technology, Houston, TX, USA
| | - Hye Rin Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nelufa Islam
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaolong Cao
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sherita Meyer-Gauen
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Institute of Biosciences of Technology, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Genetics and Epigenetics Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
9
|
Vernizzi L, Lehner CF. Bivalent individualization during chromosome territory formation in Drosophila spermatocytes by controlled condensin II protein activity and additional force generators. PLoS Genet 2021; 17:e1009870. [PMID: 34669718 PMCID: PMC8559962 DOI: 10.1371/journal.pgen.1009870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Reduction of genome ploidy from diploid to haploid necessitates stable pairing of homologous chromosomes into bivalents before the start of the first meiotic division. Importantly, this chromosome pairing must avoid interlocking of non-homologous chromosomes. In spermatocytes of Drosophila melanogaster, where homolog pairing does not involve synaptonemal complex formation and crossovers, associations between non-homologous chromosomes are broken up by chromosome territory formation in early spermatocytes. Extensive non-homologous associations arise from the coalescence of the large blocks of pericentromeric heterochromatin into a chromocenter and from centromere clustering. Nevertheless, during territory formation, bivalents are moved apart into spatially separate subnuclear regions. The condensin II subunits, Cap-D3 and Cap-H2, have been implicated, but the remarkable separation of bivalents during interphase might require more than just condensin II. For further characterization of this process, we have applied time-lapse imaging using fluorescent markers of centromeres, telomeres and DNA satellites in pericentromeric heterochromatin. We describe the dynamics of the disruption of centromere clusters and the chromocenter in normal spermatocytes. Mutations in Cap-D3 and Cap-H2 abolish chromocenter disruption, resulting in excessive chromosome missegregation during M I. Chromocenter persistence in the mutants is not mediated by the special system, which conjoins homologs in compensation for the absence of crossovers in Drosophila spermatocytes. However, overexpression of Cap-H2 precluded conjunction between autosomal homologs, resulting in random segregation of univalents. Interestingly, Cap-D3 and Cap-H2 mutant spermatocytes displayed conspicuous stretching of the chromocenter, as well as occasional chromocenter disruption, suggesting that territory formation might involve forces unrelated to condensin II. While the molecular basis of these forces remains to be clarified, they are not destroyed by inhibitors of F actin and microtubules. Our results indicate that condensin II activity promotes chromosome territory formation in co-operation with additional force generators and that careful co-ordination with alternative homolog conjunction is crucial.
Collapse
Affiliation(s)
- Luisa Vernizzi
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 2021; 22:445-464. [PMID: 33767413 DOI: 10.1038/s41580-021-00349-7] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023]
Abstract
Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer-promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
11
|
Shintomi K, Hirano T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat Commun 2021; 12:2917. [PMID: 34006877 PMCID: PMC8131626 DOI: 10.1038/s41467-021-23205-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase II (topo II) is one of the six proteins essential for mitotic chromatid reconstitution in vitro. It is not fully understood, however, mechanistically how this enzyme regulates this process. In an attempt to further refine the reconstitution assay, we have found that chromosomal binding of Xenopus laevis topo IIα is sensitive to buffer conditions and depends on its C-terminal domain (CTD). Enzymological assays using circular DNA substrates supports the idea that topo IIα first resolves inter-chromatid entanglements to drive individualization and then generates intra-chromatid entanglements to promote thickening. Importantly, only the latter process requires the CTD. By using frog egg extracts, we also show that the CTD contributes to proper formation of nucleosome-depleted chromatids by competing with a linker histone for non-nucleosomal DNA. Our results demonstrate that topo IIα utilizes its CTD to deliver the enzymatic core to crowded environments created during mitotic chromatid assembly, thereby fine-tuning this process. Topoisomerase IIα (topo IIα) is critical for mitotic chromatid assembly. Here the authors report a refinement of the mitotic chromatid reconstitution assay and provide novel insights into the C-terminal domain (CTD) of topo IIα.
Collapse
Affiliation(s)
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
12
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
13
|
Banigan EJ, Mirny LA. The interplay between asymmetric and symmetric DNA loop extrusion. eLife 2020; 9:e63528. [PMID: 33295869 PMCID: PMC7793625 DOI: 10.7554/elife.63528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ∼1000-fold compaction is driven by condensin complexes that extrude chromatin loops, by progressively collecting chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Leonid A Mirny
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Costantino L, Hsieh THS, Lamothe R, Darzacq X, Koshland D. Cohesin residency determines chromatin loop patterns. eLife 2020; 9:e59889. [PMID: 33170773 PMCID: PMC7655110 DOI: 10.7554/elife.59889] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
15
|
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
16
|
Abstract
Structural Maintenance of Chromosomes (SMCs) are part of a large family of ring complexes that participates in a number of DNA transactions. Among SMCs, SMC1A gene is unique. It encodes a subunit of the cohesin-core complex that tethers sister chromatids together to ensure correct chromosome segregation in both mitosis and meiosis. As a member of the cohesin ring, SMC1A takes part in gene transcription regulation and genome organization; and it participates in the DNA Damage Repair (DDR) pathway, being phosphorylated by Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 Related (ATR) threonine/serine kinases. It is also a component of the Recombination protein complex (RC-1) involved in DNA repair by recombination. SMC1A pathogenic variants have been described in Cornelia de Lange syndrome (CdLS), a human rare disease, and recently SMC1A variants have been associated with epilepsy or resembling Rett syndrome phenotype. Finally, SMC1A variants have been identified in several human cancers. In this review, our current knowledge of the SMC1A gene has been summarized.
Collapse
Affiliation(s)
- Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
17
|
Loop extrusion: theory meets single-molecule experiments. Curr Opin Cell Biol 2020; 64:124-138. [PMID: 32534241 DOI: 10.1016/j.ceb.2020.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Chromosomes are organized as chromatin loops that promote segregation, enhancer-promoter interactions, and other genomic functions. Loops were hypothesized to form by 'loop extrusion,' by which structural maintenance of chromosomes (SMC) complexes, such as condensin and cohesin, bind to chromatin, reel it in, and extrude it as a loop. However, such exotic motor activity had never been observed. Following an explosion of indirect evidence, recent single-molecule experiments directly imaged DNA loop extrusion by condensin and cohesin in vitro. These experiments observe rapid (kb/s) extrusion that requires ATP hydrolysis and stalls under pN forces. Surprisingly, condensin extrudes loops asymmetrically, challenging previous models. Extrusion by cohesin is symmetric but requires the protein Nipbl. We discuss how SMC complexes may perform their functions on chromatin in vivo.
Collapse
|
18
|
Wang H, Liu Y, Yuan J, Zhang J, Han F. The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:467-479. [PMID: 31816133 DOI: 10.1111/tpj.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
Structural Maintenance of Chromosomes 2 (SMC2) and Structural Maintenance of Chromosomes 4 (SMC4) are the core components of the condensin complexes, which are required for chromosome assembly and faithful segregation during cell division. Because of the crucial functions of both proteins in cell division, much work has been done in various vertebrates, but little information is known about their roles in plants. Here, we identified ZmSMC2 and ZmSMC4 in maize (Zea mays) and confirmed that ZmSMC2 associates with ZmSMC4 via their hinge domains. Immunostaining revealed that both proteins showed dynamic localization during mitosis. ZmSMC2 and ZmSMC4 are essential for proper chromosome segregation and for H3 phosphorylation at Serine 10 (H3S10ph) at pericentromeres during mitotic division. The loss of function of ZmSMC2 and ZmSMC4 enlarges mitotic chromosome volume and impairs sister chromatid separation to the opposite poles. Taken together, these findings confirm and extend the coordinated role of ZmSMC2 and ZmSMC4 in maintenance of normal chromosome architecture and accurate segregation during mitosis.
Collapse
Affiliation(s)
- Hefei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Elbatsh AMO, Kim E, Eeftens JM, Raaijmakers JA, van der Weide RH, García-Nieto A, Bravo S, Ganji M, Uit de Bos J, Teunissen H, Medema RH, de Wit E, Haering CH, Dekker C, Rowland BD. Distinct Roles for Condensin's Two ATPase Sites in Chromosome Condensation. Mol Cell 2019; 76:724-737.e5. [PMID: 31629658 PMCID: PMC6900782 DOI: 10.1016/j.molcel.2019.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/17/2019] [Accepted: 09/13/2019] [Indexed: 01/19/2023]
Abstract
Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.
Collapse
Affiliation(s)
- Ahmed M O Elbatsh
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jorine M Eeftens
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Robin H van der Weide
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alberto García-Nieto
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sol Bravo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mahipal Ganji
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jelmi Uit de Bos
- Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Benjamin D Rowland
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Nakazawa N, Arakawa O, Yanagida M. Condensin locates at transcriptional termination sites in mitosis, possibly releasing mitotic transcripts. Open Biol 2019; 9:190125. [PMID: 31615333 PMCID: PMC6833218 DOI: 10.1098/rsob.190125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Condensin is an essential component of chromosome dynamics, including mitotic chromosome condensation and segregation, DNA repair, and development. Genome-wide localization of condensin is known to correlate with transcriptional activity. The functional relationship between condensin accumulation and transcription sites remains unclear, however. By constructing the auxin-inducible degron strain of condensin, herein we demonstrate that condensin does not affect transcription itself. Instead, RNA processing at transcriptional termination appears to define condensin accumulation sites during mitosis, in the fission yeast Schizosaccharomyces pombe. Combining the auxin-degron strain with the nda3 β-tubulin cold-sensitive (cs) mutant enabled us to inactivate condensin in mitotically arrested cells, without releasing the cells into anaphase. Transcriptional activation and termination were not affected by condensin's degron-mediated depletion, at heat-shock inducible genes or mitotically activated genes. On the other hand, condensin accumulation sites shifted approximately 500 bp downstream in the auxin-degron of 5′-3′ exoribonuclease Dhp1, in which transcripts became aberrantly elongated, suggesting that condensin accumulates at transcriptionally terminated DNA regions. Growth defects in mutant strains of 3′-processing ribonuclease and polyA cleavage factors were additive in condensin temperature-sensitive (ts) mutants. Considering condensin's in vitro activity to form double-stranded DNAs from unwound, single-stranded DNAs or DNA-RNA hybrids, condensin-mediated processing of mitotic transcripts at the 3′-end may be a prerequisite for faithful chromosome segregation.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Takahashi M, Hirota T. Folding the genome into mitotic chromosomes. Curr Opin Cell Biol 2019; 60:19-26. [PMID: 30999230 DOI: 10.1016/j.ceb.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
How linear DNA molecules are packaged into compact cylindrical chromosomes in preparation for cell division has remained one of the central outstanding questions in cell biology. Condensin is a highly conserved protein complex that universally determines large-scale DNA geometry during mitotic chromosome assembly. A wide range of recently developed approaches, including super resolution microscopy, single molecule imaging, Hi-C analyses and computational modeling, have profoundly changed how we view mitotic chromosomes. This review highlights recent discoveries on chromosome architecture and condensin function.
Collapse
Affiliation(s)
- Motoko Takahashi
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
| |
Collapse
|
22
|
Antoniou-Kourounioti M, Mimmack ML, Porter ACG, Farr CJ. The Impact of the C-Terminal Region on the Interaction of Topoisomerase II Alpha with Mitotic Chromatin. Int J Mol Sci 2019; 20:ijms20051238. [PMID: 30871006 PMCID: PMC6429393 DOI: 10.3390/ijms20051238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Type II topoisomerase enzymes are essential for resolving DNA topology problems arising through various aspects of DNA metabolism. In vertebrates two isoforms are present, one of which (TOP2A) accumulates on chromatin during mitosis. Moreover, TOP2A targets the mitotic centromere during prophase, persisting there until anaphase onset. It is the catalytically-dispensable C-terminal domain of TOP2 that is crucial in determining this isoform-specific behaviour. In this study we show that, in addition to the recently identified chromatin tether domain, several other features of the alpha-C-Terminal Domain (CTD). influence the mitotic localisation of TOP2A. Lysine 1240 is a major SUMOylation target in cycling human cells and the efficiency of this modification appears to be influenced by T1244 and S1247 phosphorylation. Replacement of K1240 by arginine results in fewer cells displaying centromeric TOP2A accumulation during prometaphase-metaphase. The same phenotype is displayed by cells expressing TOP2A in which either of the mitotic phosphorylation sites S1213 or S1247 has been substituted by alanine. Conversely, constitutive modification of TOP2A by fusion to SUMO2 exerts the opposite effect. FRAP analysis of protein mobility indicates that post-translational modification of TOP2A can influence the enzyme's residence time on mitotic chromatin, as well as its subcellular localisation.
Collapse
Affiliation(s)
- Melissa Antoniou-Kourounioti
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Michael L Mimmack
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew C G Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
23
|
Wei-Shan H, Amit VC, Clarke DJ. Cell cycle regulation of condensin Smc4. Oncotarget 2019; 10:263-276. [PMID: 30719224 PMCID: PMC6349450 DOI: 10.18632/oncotarget.26467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The condensin complex is a conserved ATPase which promotes the compaction of chromatin during mitosis in eukaryotic cells. Condensin complexes have in addition been reported to contribute to interphase processes including sister chromatid cohesion. It is not understood how condensins specifically become competent to facilitate chromosome condensation in preparation for chromosome segregation in anaphase. Here we describe evidence that core condensin subunits are regulated at the level of protein stability in budding yeast. In particular, Smc2 and Smc4 abundance is cell cycle regulated, peaking at mitosis and falling to low levels in interphase. Smc4 degradation at the end of mitosis is dependent on the Anaphase Promoting Complex/Cyclosome and is mediated by the proteasome. Overproduction of Smc4 results in delayed decondensation, but has a limited ability to promote premature condensation in interphase. Unexpectedly, the Mad2 spindle checkpoint protein is required for mitotic Smc4 degradation. These studies have revealed the novel finding that condensin protein levels are cell cycle regulated and have identified the factors necessary for Smc4 proteolysis.
Collapse
Affiliation(s)
- Hsu Wei-Shan
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vas C. Amit
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
- Present address: Cargill Inc., Wayzata, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
24
|
Takata H, Madung M, Katoh K, Fukui K. Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis. PLoS One 2018; 13:e0209614. [PMID: 30576375 PMCID: PMC6303012 DOI: 10.1371/journal.pone.0209614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Chromosome organization during cell division is achieved through the timely association of proteins with chromatin and is regulated by protein phosphorylation. Kinesin family member 4A (KIF4A) plays an important role in the chromosome organization through the formation of the chromosome scaffold structure. However, the relationship between the function of KIF4A and its phosphorylation remains unclear. Here, we demonstrate that Cdk1-dependent phosphorylation of KIF4A at S1186 is required for chromosome binding and chromosome scaffold formation. The KIF4A mutant, which is not phosphorylated at S1186, was found to localize to the nucleus during interphase but did not accumulate in the chromosome scaffold after nuclear envelope breakdown. In addition, defects in KIF4A phosphorylation were found to disrupt the interaction of KIF4A with the condensin I complex. As a result, the morphology of the chromosomes was observed to be laterally decondensed, without condensin I in the chromosome scaffold. Additionally, a defect in chromosome segregation, chromosome bridge formation, was often observed. Although both KIF4A and condensin I disappeared from the chromosomes, the chromosomal localization of condensin II was not affected. Collectively, our novel results revealed that Cdk1-dependent KIF4A phosphorylation at S1186 is a trigger for chromosomal organization during early mitosis.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
- * E-mail:
| | - Marliza Madung
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
25
|
Baxter J, Oliver AW, Schalbetter SA. Are SMC Complexes Loop Extruding Factors? Linking Theory With Fact. Bioessays 2018; 41:e1800182. [PMID: 30506702 DOI: 10.1002/bies.201800182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The extreme length of chromosomal DNA requires organizing mechanisms to both promote functional genetic interactions and ensure faithful chromosome segregation when cells divide. Microscopy and genome-wide contact frequency analyses indicate that intra-chromosomal looping of DNA is a primary pathway of chromosomal organization during all stages of the cell cycle. DNA loop extrusion has emerged as a unifying model for how chromosome loops are formed in cis in different genomic contexts and cell cycle stages. The highly conserved family of SMC complexes have been found to be required for DNA cis-looping and have been suggested to be the enzymatic core of loop extruding machines. Here, the current body of evidence available for the in vivo and in vitro action of SMC complexes is discussed and compared to the predictions made by the loop extrusion model. How SMC complexes may differentially act on chromatin to generate DNA loops and how they could work to generate the dynamic and functionally appropriate organization of DNA in cells is explored.
Collapse
Affiliation(s)
- Jonathan Baxter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Stephanie A Schalbetter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| |
Collapse
|
26
|
Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability. PLoS Biol 2018; 16:e2003980. [PMID: 29949571 PMCID: PMC6039025 DOI: 10.1371/journal.pbio.2003980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 07/10/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Effective transfer of genetic information during cell division requires a major reorganization of chromosome structure. This process is triggered by condensin, a conserved pentameric ATPase essential for chromosome condensation. How condensin harnesses the energy of ATP hydrolysis to promote chromatin reorganization is unknown. To address this issue, we performed a genetic screen specifically focused on the ATPase domain of Smc4, a core subunit of condensin. Our screen identified mutational hotspots that impair condensin’s ability to condense chromosomes to various degrees. These mutations have distinct effects on viability, genome stability, and chromosome morphology, revealing unique thresholds for condensin enzymatic activity in the execution of its cellular functions. Biochemical analyses indicate that inactivation of Smc4 ATPase activity can result in cell lethality because it favors a specific configuration of condensin that locks ATP in the enzyme. Together, our results provide critical insights into the mechanism used by condensin to harness the energy of ATP hydrolysis for the compaction of chromatin. In eukaryotes, the deletion of a single copy of most genes shows little or no detectable phenotype under standard proliferative conditions. This implies that a large reduction in the level of a gene product can be tolerated by eukaryotic organisms and that a “reserve capacity” is built in the protein machinery that drives most cellular processes. Here, we test if the main effector of chromosome condensation—the condensin complex—operates with a reserve enzymatic capacity in the execution of its multiple functions in vivo. To achieve this, we created an allelic series of mutations that selectively inactivate condensin ATPase activity in a graded manner. We show that many core functions of condensin can be maintained even at low levels of ATPase activity. Our data also reveal the existence of various thresholds of ATPase activity that are necessary and sufficient for the execution of different cellular functions by condensin. Notably, loss of genome stability at repetitive DNA is only observed when condensin ATPase activity is severely impaired. Taken together, our results reveal key insights into the process of ATP hydrolysis by condensin and how the energy it releases promotes genome remodeling and stability during cell division.
Collapse
|
27
|
Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci Rep 2018; 8:9272. [PMID: 29915179 PMCID: PMC6006247 DOI: 10.1038/s41598-018-27606-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.
Collapse
|
28
|
van Ruiten MS, Rowland BD. SMC Complexes: Universal DNA Looping Machines with Distinct Regulators. Trends Genet 2018; 34:477-487. [PMID: 29606284 DOI: 10.1016/j.tig.2018.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022]
Abstract
What drives the formation of chromatin loops has been a long-standing question in chromosome biology. Recent work provides major insight into the basic principles behind loop formation. Structural maintenance of chromosomes (SMC) complexes, that are conserved from bacteria to humans, are key to this process. The SMC family includes condensin and cohesin, which structure chromosomes to enable mitosis and long-range gene regulation. We discuss novel insights into the mechanism of loop formation and the implications for how these complexes ultimately shape chromosomes. A picture is emerging in which these complexes form small loops that they then processively enlarge. It appears that SMC complexes act by family-wide basic principles, with complex-specific levels of control.
Collapse
Affiliation(s)
- Marjon S van Ruiten
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Isolation of mitotic chromosomes from vertebrate cells and characterization of their proteome by mass spectrometry. Methods Cell Biol 2018; 144:329-348. [PMID: 29804675 DOI: 10.1016/bs.mcb.2018.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chromosomes consist of enormously long DNA molecules plus the proteins that package and regulate the transcription and replication of this DNA. In order to understand both the composition of the bulk chromatin that packages the DNA and the specialized structures that direct its segregation (e.g., centromeres and kinetochores), one requirement is to have a list of the component proteins of mitotic chromosomes. Identification and quantitation of these proteins and their modifications require the ability to isolate chromosomes and analyze their proteome by mass spectrometry. Here, we describe a step-by-step protocol to isolate mitotic chromosomes from vertebrate cells. The chromosome proteins may be labeled in vivo with heavy stable isotope for quantitative proteomics. We then go through the proteomics workflow from preparation of samples to their analysis in the mass spectrometer. Finally, we describe some of the software used in processing of output data for statistical and bioinformatic analysis.
Collapse
|
30
|
Samejima K, Booth DG, Ogawa H, Paulson JR, Xie L, Watson CA, Platani M, Kanemaki MT, Earnshaw WC. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J Cell Sci 2018; 131:jcs.210187. [PMID: 29361541 PMCID: PMC5868952 DOI: 10.1242/jcs.210187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
The requirement for condensin in chromosome formation in somatic cells remains unclear, as imperfectly condensed chromosomes do form in cells depleted of condensin by conventional methodologies. In order to dissect the roles of condensin at different stages of vertebrate mitosis, we have established a versatile cellular system that combines auxin-mediated rapid degradation with chemical genetics to obtain near-synchronous mitotic entry of chicken DT40 cells in the presence and absence of condensin. We analyzed the outcome by live- and fixed-cell microscopy methods, including serial block face scanning electron microscopy with digital reconstruction. Following rapid depletion of condensin, chromosomal defects were much more obvious than those seen after a slow depletion of condensin. The total mitotic chromatin volume was similar to that in control cells, but a single mass of mitotic chromosomes was clustered at one side of a bent mitotic spindle. Cultures arrest at prometaphase, eventually exiting mitosis without segregating chromosomes. Experiments where the auxin concentration was titrated showed that different condensin levels are required for anaphase chromosome segregation and formation of a normal chromosome architecture. This article has an associated First Person interview with the first author of the paper. Summary: Rapid condensin depletion reveals that different condensin levels are required for mitotic chromosome architecture and segregation. Condensin is not required for chromatin volume compaction during mitosis.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Daniel G Booth
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Cara A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Melpomeni Platani
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, ROIS, and Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
31
|
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 2017; 36:3573-3599. [PMID: 29217591 PMCID: PMC5730888 DOI: 10.15252/embj.201798004] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.
Collapse
Affiliation(s)
- Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Csilla Várnai
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Cisneros
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Gregor Jessberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nike Walther
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
32
|
Shintomi K, Hirano T. Mitotic Chromosome Assembly In Vitro: Functional Cross Talk between Nucleosomes and Condensins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:157-164. [PMID: 29118204 DOI: 10.1101/sqb.2017.82.033639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitotic chromosome is a macromolecular assembly that ensures error-free transmission of the genome during cell division. It has long been a big mystery how long stretches of DNA might be folded into rod-shaped chromosomes or how such an elaborate process might be accomplished at a mechanistic level. Cell-free extracts made from frog eggs offer a unique opportunity to address these questions by enabling mitotic chromosomes to be assembled in a test tube. Moreover, the core part of the chromosome assembly reaction can now be reconstituted with a limited number of purified factors. A combination of these in vitro assays makes it possible not only to prepare a complete list of proteins required for chromosome assembly but also to dissect functions of individual proteins and their cooperation with unparalleled clarity. Emerging lines of evidence underscore the paramount importance of condensins in building mitotic chromosomes and shed new light on the functional cross talk between nucleosomes and condensins in this process.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
34
|
Yi F, Wang Z, Liu J, Zhang Y, Wang Z, Xu H, Li X, Bai N, Cao L, Song X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int J Biol Sci 2017; 13:1092-1099. [PMID: 28924389 PMCID: PMC5599913 DOI: 10.7150/ijbs.21206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC superfamily members, has been explored to function in many activities including chromosome dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can cause defect in the DNA damage repair pathway, which has been strongly associated with tumorigenesis. Here we focus to discuss SMC1's role in genome stability maintenance and tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
35
|
Zhiteneva A, Bonfiglio JJ, Makarov A, Colby T, Vagnarelli P, Schirmer EC, Matic I, Earnshaw WC. Mitotic post-translational modifications of histones promote chromatin compaction in vitro. Open Biol 2017; 7:170076. [PMID: 28903997 PMCID: PMC5627050 DOI: 10.1098/rsob.170076] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023] Open
Abstract
How eukaryotic chromosomes are compacted during mitosis has been a leading question in cell biology since the nineteenth century. Non-histone proteins such as condensin complexes contribute to chromosome shaping, but appear not to be necessary for mitotic chromatin compaction. Histone modifications are known to affect chromatin structure. As histones undergo major changes in their post-translational modifications during mitotic entry, we speculated that the spectrum of cell-cycle-specific histone modifications might contribute to chromosome compaction during mitosis. To test this hypothesis, we isolated core histones from interphase and mitotic cells and reconstituted chromatin with them. We used mass spectrometry to show that key post-translational modifications remained intact during our isolation procedure. Light, atomic force and transmission electron microscopy analysis showed that chromatin assembled from mitotic histones has a much greater tendency to aggregate than chromatin assembled from interphase histones, even under low magnesium conditions where interphase chromatin remains as separate beads-on-a-string structures. These observations are consistent with the hypothesis that mitotic chromosome formation is a two-stage process with changes in the spectrum of histone post-translational modifications driving mitotic chromatin compaction, while the action of non-histone proteins such as condensin may then shape the condensed chromosomes into their classic mitotic morphology.
Collapse
Affiliation(s)
- Alisa Zhiteneva
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Juan Jose Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Alexandr Makarov
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Paola Vagnarelli
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Institute of Environment, Health and Society, Department of Life Sciences, Brunel University London, Heinz Wolff Building, Uxbridge UB8 3PH, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
36
|
Ono T, Sakamoto C, Nakao M, Saitoh N, Hirano T. Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Mol Biol Cell 2017; 28:2875-2886. [PMID: 28835373 PMCID: PMC5638589 DOI: 10.1091/mbc.e17-04-0252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023] Open
Abstract
A modified protocol for inducing reversible assembly of mitotic chromosomes in situ is developed. As judged by this assay, which is combined with quantitative morphological analyses using a supervised machine-learning algorithm, condensin II plays a crucial role in both the recovery of chromatin shapes and the reorganization of chromosome axes. Condensins I and II are multisubunit complexes that play a central role in mitotic chromosome assembly. Although both complexes become concentrated along the axial region of each chromatid by metaphase, it remains unclear exactly how such axes might assemble and contribute to chromosome shaping. To address these questions from a physico-chemical point of view, we have established a set of two-step protocols for inducing reversible assembly of chromosome structure in situ, namely within a whole cell. In this assay, mitotic chromosomes are first expanded in a hypotonic buffer containing a Mg2+-chelating agent and then converted into different shapes in a NaCl concentration-dependent manner. Both chromatin and condensin-positive chromosome axes are converted into near-original shapes at 100 mM NaCl. This assay combined with small interfering RNA depletion demonstrates that the recovery of chromatin shapes and the reorganization of axes are highly sensitive to depletion of condensin II but less sensitive to depletion of condensin I or topoisomerase IIα. Furthermore, quantitative morphological analyses using the machine-learning algorithm wndchrm support the notion that chromosome shaping is tightly coupled to the reorganization of condensin II-based axes. We propose that condensin II makes a primary contribution to mitotic chromosome architecture and maintenance in human cells.
Collapse
Affiliation(s)
- Takao Ono
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chiyomi Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Charó NL, Rodríguez Ceschan MI, Galigniana NM, Toneatto J, Piwien-Pilipuk G. Organization of nuclear architecture during adipocyte differentiation. Nucleus 2017; 7:249-69. [PMID: 27416359 DOI: 10.1080/19491034.2016.1197442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered.
Collapse
Affiliation(s)
- Nancy L Charó
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - María I Rodríguez Ceschan
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Natalia M Galigniana
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Judith Toneatto
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Graciela Piwien-Pilipuk
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| |
Collapse
|
38
|
Golloshi R, Sanders JT, McCord RP. Genome organization during the cell cycle: unity in division. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28510289 DOI: 10.1002/wsbm.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
39
|
Condensin, master organizer of the genome. Chromosome Res 2017; 25:61-76. [PMID: 28181049 DOI: 10.1007/s10577-017-9553-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
A fundamental requirement in nature is for a cell to correctly package and divide its replicated genome. Condensin is a mechanical multisubunit complex critical to this process. Condensin uses ATP to power conformational changes in DNA to enable to correct DNA compaction, organization, and segregation of DNA from the simplest bacteria to humans. The highly conserved nature of the condensin complex and the structural similarities it shares with the related cohesin complex have provided important clues as to how it functions in cells. The fundamental requirement for condensin in mitosis and meiosis is well established, yet the precise mechanism of action is still an open question. Mutation or removal of condensin subunits across a range of species disrupts orderly chromosome condensation leading to errors in chromosome segregation and likely death of the cell. There are divergences in function across species for condensin. Once considered to function solely in mitosis and meiosis, an accumulating body of evidence suggests that condensin has key roles in also regulating the interphase genome. This review will examine how condensin organizes our genomes, explain where and how it binds the genome at a mechanical level, and highlight controversies and future directions as the complex continues to fascinate and baffle biologists.
Collapse
|
40
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Yu S, Yang F, Shen WH. Genome maintenance in the context of 4D chromatin condensation. Cell Mol Life Sci 2016; 73:3137-50. [PMID: 27098512 PMCID: PMC4956502 DOI: 10.1007/s00018-016-2221-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.
Collapse
Affiliation(s)
- Sonia Yu
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Fan Yang
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Abstract
SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.
Collapse
|
43
|
Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosome Res 2016; 24:243-69. [PMID: 27008552 DOI: 10.1007/s10577-016-9519-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Condensin is an integral component of the mitotic chromosome condensation machinery, which ensures orderly segregation of chromosomes during cell division. In metazoans, condensin exists as two complexes, condensin I and II. It is not yet clear what roles these complexes may play outside mitosis, and so we have examined their behaviour both in normal interphase and in premature chromosome condensation (PCC). We find that a small fraction of condensin I is retained in interphase nuclei, and our data suggests that this interphase nuclear condensin I is active in both gene regulation and chromosome condensation. Furthermore, live cell imaging demonstrates condensin II dramatically increases on G1 nuclei following completion of mitosis. Our PCC studies show condensins I and II and topoisomerase II localise to the chromosome axis in G1-PCC and G2/M-PCC, while KIF4 binding is altered. Individually, condensins I and II are dispensable for PCC. However, when both are knocked out, G1-PCC chromatids are less well structured. Our results define new roles for the condensins during interphase and provide new information about the mechanism of PCC.
Collapse
|
44
|
Abstract
The compaction of diffuse interphase chromatin into stable mitotic chromosomes enables the segregation of replicated DNA to daughter cells. Two new studies characterise, both in vivo and in vitro, the essential contribution of the vertebrate condensin complex to chromosome organisation.
Collapse
Affiliation(s)
- Rahul Thadani
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Frank Uhlmann
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
45
|
|
46
|
Akai Y, Kanai R, Nakazawa N, Ebe M, Toyoshima C, Yanagida M. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding. Open Biol 2015; 4:rsob.140193. [PMID: 25520186 PMCID: PMC4281712 DOI: 10.1098/rsob.140193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.
Collapse
Affiliation(s)
- Yuko Akai
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Ryuta Kanai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
47
|
Kinoshita K, Kobayashi TJ, Hirano T. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev Cell 2015; 33:94-106. [PMID: 25850674 DOI: 10.1016/j.devcel.2015.01.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/16/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
Condensin I is a five-subunit protein complex that plays a central role in mitotic chromosome assembly and segregation in eukaryotes. To dissect its mechanism of action, we reconstituted wild-type and mutant complexes from recombinant subunits and tested their abilities to assemble chromosomes in Xenopus egg cell-free extracts depleted of endogenous condensins. We find that ATP binding and hydrolysis by SMC subunits have distinct contributions to the action of condensin I and that continuous ATP hydrolysis is required for structural maintenance of chromosomes. Mutant complexes lacking either one of two HEAT subunits produce abnormal chromosomes with highly characteristic defects and have contrasting structural effects on chromosome axes preassembled with the wild-type complex. We propose that balancing acts of the two HEAT subunits support dynamic assembly of chromosome axes under the control of the SMC ATPase cycle, thereby governing construction of rod-shaped chromosomes in eukaryotic cells.
Collapse
Affiliation(s)
- Kazuhisa Kinoshita
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Sciences, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
48
|
Chromosome structure deficiencies in MCPH1 syndrome. Chromosoma 2015; 124:491-501. [PMID: 25845520 DOI: 10.1007/s00412-015-0512-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023]
Abstract
Mutations in the MCPH1 gene result in primary microcephaly in combination with a unique cellular phenotype of defective chromosome condensation. MCPH1 patient cells display premature chromosome condensation in G2 phase of the cell cycle and delayed decondensation in early G1 phase, observable as an increased proportion of cells with prophase-like appearance. MCPH1 deficiency thus appears to uncouple the chromosome cycle from the coordinated series of events that take place during mitosis such as some phases of the centrosome cycle and nuclear envelope breakdown. Here, we provide a further characterization of the effects of MCPH1 loss-of-function on chromosome morphology. In comparison to healthy controls, chromosomes of MCPH1 patients are shorter and display a pronounced coiling of their central chromatid axes. In addition, a substantial fraction of metaphase chromosomes shows apparently unresolved chromatids with twisted appearance. The patient chromosomes also showed signs of defective centromeric cohesion, which become more apparent and pronounced after harsh hypotonic conditions. Taking together, the observed alterations indicate additional so far unknown functions of MCPH1 during chromosome shaping and dynamics.
Collapse
|
49
|
Nakazawa N, Sajiki K, Xu X, Villar-Briones A, Arakawa O, Yanagida M. RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast. Genes Cells 2015; 20:481-99. [PMID: 25847133 PMCID: PMC4471619 DOI: 10.1111/gtc.12239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Condensin plays fundamental roles in chromosome dynamics. In this study, we determined the binding sites of condensin on fission yeast (Schizosaccharomyces pombe) chromosomes at the level of nucleotide sequences using chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq). We found that condensin binds to RNA polymerase I-, II- and III-transcribed genes during both mitosis and interphase, and we focused on pol II constitutive and inducible genes. Accumulation sites for condensin are distinct from those of cohesin and DNA topoisomerase II. Using cell cycle stage and heat-shock-inducible genes, we show that pol II-mediated transcripts cause condensin accumulation. First, condensin's enrichment on mitotically activated genes was abolished by deleting the sep1(+) gene that encodes an M-phase-specific forkhead transcription factor. Second, by raising the temperature, condensin accumulation was rapidly induced at heat-shock protein genes in interphase and even during mid-mitosis. In interphase, condensin accumulates preferentially during the postreplicative phase. Pol II-mediated transcription was neither repressed nor activated by condensin, as levels of transcripts per se did not change when mutant condensin failed to associate with chromosomal DNA. However, massive chromosome missegregation occurred, suggesting that abundant pol II transcription may require active condensin before proper chromosome segregation.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Alejandro Villar-Briones
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Orie Arakawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
50
|
Xu X, Nakazawa N, Yanagida M. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast. PLoS One 2015; 10:e0119347. [PMID: 25764183 PMCID: PMC4357468 DOI: 10.1371/journal.pone.0119347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.
Collapse
Affiliation(s)
- Xingya Xu
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- * E-mail:
| |
Collapse
|