1
|
Matsunaga Y, Hwang H, Franke B, Williams R, Penley M, Qadota H, Yi H, Morran LT, Lu H, Mayans O, Benian GM. Twitchin kinase inhibits muscle activity. Mol Biol Cell 2017; 28:1591-1600. [PMID: 28428253 PMCID: PMC5469603 DOI: 10.1091/mbc.e16-10-0707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023] Open
Abstract
Muscles express giant polypeptides with kinase domains, but the in vivo significance of their catalytic activity has been unknown. Analysis of a mutant nematode that expresses the giant protein twitchin with a catalytically inactive kinase indicates that twitchin kinase inhibits muscle activity and is favored by selection. Muscle sarcomeres contain giant polypeptides composed of multiple immunoglobulin and fibronectin domains and one or two protein kinase domains. Although binding partners for a number of this family’s kinase domains have been identified, the catalytic necessity of these kinase domains remains unknown. In addition, various members of this kinase family are suspected pseudokinases with no or little activity. Here we address catalytic necessity for the first time, using the prototypic invertebrate representative twitchin (UNC-22) from Caenorhabditis elegans. In in vitro experiments, change of a conserved lysine (K) that is involved in ATP coordination to alanine (A) resulted in elimination of kinase activity without affecting the overall structure of the kinase domain. The same mutation, unc-22(sf21), was generated in the endogenous twitchin gene. The unc-22(sf21) worms have well-organized sarcomeres. However, unc-22(sf21) mutants move faster than wild-type worms and, by optogenetic experiments, contract more. Wild-type nematodes exhibited greater competitive fitness than unc-22(sf21) mutants. Thus the catalytic activity of twitchin kinase has a role in vivo, where it inhibits muscle activity and is likely maintained by selection.
Collapse
Affiliation(s)
- Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Hyundoo Hwang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Barbara Franke
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Rhys Williams
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - McKenna Penley
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Hong Yi
- Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
2
|
Yuan CC, Ma W, Schemmel P, Cheng YS, Liu J, Tsaprailis G, Feldman S, Ayme Southgate A, Irving TC. Elastic proteins in the flight muscle of Manduca sexta. Arch Biochem Biophys 2015; 568:16-27. [PMID: 25602701 PMCID: PMC4684177 DOI: 10.1016/j.abb.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
The flight muscles (DLM1) of the Hawkmoth, Manduca sexta are synchronous, requiring a neural spike for each contraction. Stress/strain curves of skinned DLM1 showed hysteresis indicating the presence of titin-like elastic proteins. Projectin and kettin are titin-like proteins previously identified in Lethocerus and Drosophila flight muscles. Analysis of Manduca muscles with 1% SDS-agarose gels and western blots showed two bands near 1 MDa that cross-reacted with antibodies to Drosophila projectin. Antibodies to Drosophila kettin cross-reacted to bands at ∼500 and ∼700 kDa, but also to bands at ∼1.6 and ∼2.1 MDa, that had not been previously observed in insect flight muscles. Mass spectrometry identified the 2.1 MDa protein as a product of the Sallimus (sls) gene. Analysis of the gene sequence showed that all 4 putative Sallimus and kettin isoforms could be explained as products of alternative splicing of the single sls gene. Both projectin and sallimus isoforms were expressed to higher levels in ventrally located DLM1 subunits, primarily responsible for active work production, as compared to dorsally located subunits, which may act as damped springs. The different expression levels of the 2 projectin isoforms and 4 sallimus/kettin isoforms may be adaptations to the specific requirements of individual muscle subunits.
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Weikang Ma
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Peter Schemmel
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Yu-Shu Cheng
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Jiangmin Liu
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | | | - Samuel Feldman
- Dept. of Biology, College of Charleston, Charleston, SC, USA
| | | | - Thomas C Irving
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
3
|
A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:2409-18. [PMID: 25324299 PMCID: PMC4267936 DOI: 10.1534/g3.114.013979] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technologies promises a quantum leap in genome engineering of model organisms. However, CRISPR-mediated gene targeting reports in Drosophila melanogaster are still restricted to a few genes, use variable experimental conditions, and vary in efficiency, questioning the universal applicability of the method. Here, we developed an efficient two-step strategy to flexibly engineer the fly genome by combining CRISPR with recombinase-mediated cassette exchange (RMCE). In the first step, two sgRNAs, whose activity had been tested in cell culture, were co-injected together with a donor plasmid into transgenic Act5C-Cas9, Ligase4 mutant embryos and the homologous integration events were identified by eye fluorescence. In the second step, the eye marker was replaced with DNA sequences of choice using RMCE enabling flexible gene modification. We applied this strategy to engineer four different locations in the genome, including a gene on the fourth chromosome, at comparably high efficiencies. Our data suggest that any fly laboratory can engineer their favorite gene for a broad range of applications within approximately 3 months.
Collapse
|
4
|
Ohtsuka S, Hanashima A, Kubokawa K, Bao Y, Tando Y, Kohmaru J, Nakaya H, Maruyama K, Kimura S. Amphioxus connectin exhibits merged structure as invertebrate connectin in I-band region and vertebrate connectin in A-band region. J Mol Biol 2011; 409:415-26. [PMID: 21510959 DOI: 10.1016/j.jmb.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 04/05/2011] [Indexed: 11/16/2022]
Abstract
Connectin is an elastic protein found in vertebrate striated muscle and in some invertebrates as connectin-like proteins. In this study, we determined the structure of the amphioxus connectin gene and analyzed its sequence based on its genomic information. Amphioxus is not a vertebrate but, phylogenetically, the lowest chordate. Analysis of gene structure revealed that the amphioxus gene is approximately 430 kb in length and consists of regions with exons of repeatedly aligned immunoglobulin (Ig) domains and regions with exons of fibronectin type 3 and Ig domain repeats. With regard to this sequence, although the region corresponding to the I-band is homologous to that of invertebrate connectin-like proteins and has an Ig-PEVK region similar to that of the Neanthes sp. 4000K protein, the region corresponding to the A-band has a super-repeat structure of Ig and fibronectin type 3 domains and a kinase domain near the C-terminus, which is similar to the structure of vertebrate connectin. These findings revealed that amphioxus connectin has the domain structure of invertebrate connectin-like proteins at its N-terminus and that of vertebrate connectin at its C-terminus. Thus, amphioxus connectin has a novel structure among known connectin-like proteins. This finding suggests that the formation and maintenance of the sarcomeric structure of amphioxus striated muscle are similar to those of vertebrates; however, its elasticity is different from that of vertebrates, being more similar to that of invertebrates.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Department of Biology, Graduate School of Science, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ayme-Southgate AJ, Southgate RJ, Philipp RA, Sotka EE, Kramp C. The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. J Mol Evol 2008; 67:653-69. [PMID: 18982379 PMCID: PMC2775928 DOI: 10.1007/s00239-008-9177-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
All striated muscles respond to stretch by a delayed increase in tension. This physiological response, known as stretch activation, is, however, predominantly found in vertebrate cardiac muscle and insect asynchronous flight muscles. Stretch activation relies on an elastic third filament system composed of giant proteins known as titin in vertebrates or kettin and projectin in insects. The projectin insect protein functions jointly as a "scaffold and ruler" system during myofibril assembly and as an elastic protein during stretch activation. An evolutionary analysis of the projectin molecule could potentially provide insight into how distinct protein regions may have evolved in response to different evolutionary constraints. We mined candidate genes in representative insect species from Hemiptera to Diptera, from published and novel genome sequence data, and carried out a detailed molecular and phylogenetic analysis. The general domain organization of projectin is highly conserved, as are the protein sequences of its two repeated regions-the immunoglobulin type C and fibronectin type III domains. The conservation in structure and sequence is consistent with the proposed function of projectin as a scaffold and ruler. In contrast, the amino acid sequences of the elastic PEVK domains are noticeably divergent, although their length and overall unusual amino acid makeup are conserved. These patterns suggest that the PEVK region working as an unstructured domain can still maintain its dynamic, and even its three-dimensional, properties, without the need for strict amino acid conservation. Phylogenetic analysis of the projectin proteins also supports a reclassification of the Hymenoptera in relation to Diptera and Coleoptera.
Collapse
Affiliation(s)
- Agnes J Ayme-Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401, USA.
| | | | | | | | | |
Collapse
|
6
|
Ayme-Southgate A, Saide J, Southgate R, Bounaix C, Cammarato A, Patel S, Wussler C. In indirect flight muscles Drosophila projectin has a short PEVK domain, and its NH2-terminus is embedded at the Z-band. J Muscle Res Cell Motil 2007; 26:467-77. [PMID: 16465474 DOI: 10.1007/s10974-005-9031-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Insect indirect flight muscles (IFM) contain a third filament system made up of elastic connecting or C-filaments. The giant protein projectin is the main, if not the only, component of these structures. In this study we found that projectin is oriented within the IFM sarcomere with its NH2-terminus embedded in the Z-bands. We demonstrate that this protein has an elastic region that can be detected by the movement of specific epitopes following stretch. One possible elastic region is the PEVK-like domain located close to the NH2-terminus. The amino acid length of this region is short, and 52% of its residues are P, E, V or K. We propose a model in which projectin extends from the Z-band to the lateral borders of the A-band. The PEVK-like domain and a series of Ig domains spanning the intervening I-band may provide the elastic properties of projectin.
Collapse
|
7
|
Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Protein expression in a Drosophila model of Parkinson's disease. J Proteome Res 2007; 6:348-57. [PMID: 17203978 PMCID: PMC2597372 DOI: 10.1021/pr060488o] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Liquid chromatographies coupled to mass spectrometry and database analysis techniques are used to carry out a large-scale proteome characterization for a Drosophila model of Parkinson's disease. Semiquantitative analysis is performed on A30P alpha-synuclein expressing transgenic Drosophila and a control lacking the gene at presymptomatic, early, and advanced disease stages. Changes in gene expression at the level of the proteome are compared with changes reported from published transcriptome measurements. A summary of the comparison indicates that approximately 44% of transcripts that show changes can also be observed as proteins. However, the patterns of change in protein expression vary substantially compared with the patterns of change observed for corresponding transcripts. In addition, the expression changes of many genes are observed for only transcripts or proteins. Proteome measurements provide evidence for dysregulation of a group of proteins associated with the actin cytoskeleton and mitochondrion at presymptomatic and early disease stages that may presage the development of later symptoms. Overall, the proteome measurements provide a view of gene expression that is highly complementary to the insights obtained from the transcriptome.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, IN, 47405
| | - Renã A. Sowell
- Department of Chemistry, Indiana University, Bloomington, IN, 47405
| | | | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405
| |
Collapse
|
8
|
Mateos J, Herranz R, Domingo A, Sparrow J, Marco R. The structural role of high molecular weight tropomyosins in dipteran indirect flight muscle and the effect of phosphorylation. J Muscle Res Cell Motil 2006; 27:189-201. [PMID: 16752200 DOI: 10.1007/s10974-005-9044-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 10/18/2005] [Indexed: 10/24/2022]
Abstract
In Drosophila melanogaster two high molecular weight tropomyosin isoforms, historically named heavy troponins (TnH-33 and TnH-34), are encoded by the Tm1 tropomyosin gene. They are specifically expressed in the indirect flight muscles (IFM). Their N-termini are conventional and complete tropomyosin sequences, but their C-termini consist of different IFM-specific domains that are rich in proline, alanine, glycine and glutamate. The evidence indicates that in Diptera these IFM-specific isoforms are conserved and are not troponins, but heavy tropomyosins (TmH). We report here that they are post-translationally modified by several phosphorylations in their C-termini in mature flies, but not in recently emerged flies that are incapable of flight. From stoichiometric measurements of thin filament proteins and interactions of the TmH isoforms with the standard Drosophila IFM tropomyosin isoform (protein 129), we propose that the TmH N-termini are integrated into the thin filament structural unit as tropomyosin dimers. The phosphorylated C-termini remain unlocated and may be important in IFM stretch-activation. Comparison of the Tm1 and Tm2 gene sequences shows a complete conservation of gene organisation in other Drosophilidae, such as Drosophila pseudoobscura, while in Anopheles gambiae only one exon encodes a single C-terminal domain, though overall gene organization is maintained. Interestingly, in Apis mellifera (hymenopteran), while most of the Tm1 and Tm2 gene features are conserved, the gene lacks any C-terminal exons. Instead these sequences are found at the 3' end of the troponin I gene. In this insect order, as in Lethocerus (hemipteran), the original designation of troponin H (TnH) should be retained. We discuss whether the insertion of the IFM-specific pro-ala-gly-glu-rich domain into the tropomyosin or troponin I genes in different insect orders may be related to proposals that the IFM stretch activation mechanism has evolved independently several times in higher insects.
Collapse
Affiliation(s)
- Jesús Mateos
- Departamento de Bioquímica (UAM) e Instituto Alberto Sols (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
9
|
Peng J, Raddatz K, Labeit S, Granzier H, Gotthardt M. Muscle atrophy in Titin M-line deficient mice. J Muscle Res Cell Motil 2006; 26:381-8. [PMID: 16470336 DOI: 10.1007/s10974-005-9020-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the response to deletion of the titin M-line region in striated muscle, using a titin knockout model and a range of techniques that include histology, in situ hybridization, electron microscopy, and 2D gel analysis. We found that the loss of titin's kinase domain and binding sites for myomesin and MURF-1 causes structural changes in the sarcomere that proceed from the M-line to the Z-disc and ultimately result in disassembly of the sarcomere. Disassembly goes along with central localization of nuclei (a hallmark for muscular dystrophy), up-regulation of heat-shock proteins, and induction of proteasome activity. While fiber type composition does not change in soleus and extensor digitorum longus muscle, fiber size is reduced. Animals die from complications of muscle atrophy at five weeks of age. In addition to the structural importance of the titin M-line region in any striated muscle, our data show how differences in M-line composition between heart and skeletal muscle affect sarcomere stability and function.
Collapse
MESH Headings
- Animals
- Connectin
- Electrophoresis, Gel, Two-Dimensional
- Exons/genetics
- Gene Expression/genetics
- Heat-Shock Proteins/metabolism
- In Situ Hybridization
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microscopy, Electron
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Proteasome Endopeptidase Complex/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Kinases/deficiency
- Protein Kinases/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
Collapse
Affiliation(s)
- J Peng
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
11
|
Oshino T, Shimamura J, Fukuzawa A, Maruyama K, Kimura S. The entire cDNA sequences of projectin isoforms of crayfish claw closer and flexor muscles and their localization. J Muscle Res Cell Motil 2004; 24:431-8. [PMID: 14677646 DOI: 10.1023/a:1027313204786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Projectin is a giant protein related to twitchin and titin/connectin, that is found in arthropod striated muscle. The complete sequence of a 1 MDa projectin from Drosophila muscle was recently deduced from a thorough analysis of the genomic DNA (Southgate and Ayme-Southgate, 2001). Here we report the complete sequence for projectin from crayfish claw closer muscle (8625 residues; 962,634 Da). The N-terminal sequence contains 12 unique 19-residue repeats rich in glutamic acid (E) and lysine (K). This region, termed the EK region, is clearly distinguishable from the PEVK-like domain of Drosophila projectin. The sequence of crayfish flexor projectin differs from that of closer muscle projectin in that there is a 114-residue deletion and a 35-residue insertion in the N-terminal region. Immunofluorescence microscopy demonstrated that projectin is mainly localized within the sarcomeric A band in both closer and flexor muscles, although the N-terminal region was shown to extrude into the I band region. In the closer muscles, invertebrate connectin (D-titin) connects the Z line to the edge of the A band (Fukuzawa et al., 2001). We have shown that invertebrate connectin is also present in flexor muscle sarcomeres, although in very low abundance.
Collapse
Affiliation(s)
- Taichi Oshino
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
12
|
Ayme-Southgate A, Bounaix C, Riebe TE, Southgate R. Assembly of the giant protein projectin during myofibrillogenesis in Drosophila indirect flight muscles. BMC Cell Biol 2004; 5:17. [PMID: 15119962 PMCID: PMC419972 DOI: 10.1186/1471-2121-5-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 04/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Projectin is a giant modular protein of Drosophila muscles and a key component of the elastic connecting filaments (C-filaments), which are involved in stretch activation in insect Indirect Flight Muscles. It is comparable in its structure to titin, which has been implicated as a scaffold during vertebrate myofibrillogenesis. METHODS We performed immunofluorescence studies on Drosophila pupal tissue squashes and isolated myofibrils to identify the pattern of appearance and assembly for projectin and several other myofibrillar proteins, using both wild type and mutant fly stocks. RESULTS AND CONCLUSIONS In the first step of assembly, projectin immunolocalization appears as random aggregates colocalizing with alpha-actinin, kettin and Z(210), as well as, F-actin. In the second step of assembly, all these proteins become localized within discrete bands, leading ultimately to the regularly spaced I-Z-I regions of myofibrils. This assembly process is not affected in myosin heavy chain mutants, indicating that the anchoring of projectin to the thick filament is not essential for the assembly of projectin into the developing myofibrils. In the actin null mutation, KM88, the early step involving the formation of the aggregates takes place despite the absence of the thin filaments. All tested Z-band proteins including projectin are present and are colocalized over the aggregates. This supports the idea that interactions of projectin with other Z-band associated proteins are sufficient for its initial assembly into the forming myofibrils. In KM88, though, mature Z-bands never form and projectin I-Z-I localization is lost at a later stage during pupal development. In contrast, treatment of adult myofibrils with calpain, which removes the Z-bands, does not lead to the release of projectin. This suggests that after the initial assembly with the Z-bands, projectin also establishes additional anchoring points along the thick and/or thin filaments. In conclusion, during pupation the initial assembly of projectin into the developing myofibril relies on early association with Z-band proteins, but in the mature myofibrils, projectin is also held in position by interactions with the thick and/or the thin filaments.
Collapse
Affiliation(s)
- Agnes Ayme-Southgate
- Department of Biology, College of Charleston, Charleston, South Carolina, 29404 USA
| | - Christophe Bounaix
- Department of Biology, College of Charleston, Charleston, South Carolina, 29404 USA
- INSERM U 417 Bâtiment Ecran, Hôpital Robert Debré, 48 boulevard Serurier, PARIS 75935, France
| | - Theresa E Riebe
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015 USA
| | - Richard Southgate
- Department of Biology, College of Charleston, Charleston, South Carolina, 29404 USA
| |
Collapse
|
13
|
Rogalski TM, Gilbert MM, Devenport D, Norman KR, Moerman DG. DIM-1, a novel immunoglobulin superfamily protein in Caenorhabditis elegans, is necessary for maintaining bodywall muscle integrity. Genetics 2003; 163:905-15. [PMID: 12663531 PMCID: PMC1462474 DOI: 10.1093/genetics/163.3.905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The UNC-112 protein is required during initial muscle assembly in C. elegans to form dense bodies and M-lines. Loss of this protein results in arrest at the twofold stage of embryogenesis. In contrast, a missense mutation in unc-112 results in viable animals that have disorganized bodywall muscle and are paralyzed as adults. Loss or reduction of dim-1 gene function can suppress the severe muscle disruption and paralysis exhibited by these mutant hermaphrodites. The overall muscle structure in hermaphrodites lacking a functional dim-1 gene is slightly disorganized, and the myofilament lattice is not as strongly anchored to the muscle cell membrane as it is in wild-type muscle. The dim-1 gene encodes two polypeptides that contain three Ig-like repeats. The short DIM-1 protein isoform consists entirely of three Ig repeats and is sufficient for wild-type bodywall muscle structure and stability. DIM-1(S) localizes to the region of the muscle cell membrane around and between the dense bodies, which are the structures that anchor the actin filaments and may play a role in stabilizing the thin rather than the thick filament components of the sarcomere.
Collapse
Affiliation(s)
- Teresa M Rogalski
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
14
|
Fährmann M, Fonk I, Beinbrech G. The kinase activity of the giant protein projectin of the flight muscle of Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1401-1407. [PMID: 12530207 DOI: 10.1016/s0965-1748(02)00060-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Projectin is a member of the functionally and structurally heterogeneous family of myosin light chain kinases associated to myosin of synchronous as well as asynchronous insect muscles. We examined the phosphotransferase activity of projectin from flight muscle of Locusta migratoria. Isolated projectin exhibits an unstimulated autophosphorylation activity in vitro. We observed differences in the formation of synthetic filaments with myosin, and paramyosin depending on if projectin was autophosphorylated in vitro or not. Aggregates of native projectin with myosin and paramyosin (molar ratio 0.08:1:0.5) showed diameters 20-50 nm similar to those of myosin filaments. When in vitro autophosphorylated projectin was used we predominantly obtained, however, subfilament-like structures of only 7-10 nm in diameter. The in vitro autophosphorylation of projectin was suppressed in the presence of either acto-myosin, actin-filaments or myosin, but still seems to exhibit a phosphorylation activity: Projectin added to actomyosin resulted in the phosphorylation of three polypeptides of apparent molecular masses of 200, 165 and 100 kDa, respectively. These data suggest that the autophosphorylation activity of projectin is regulated by its environment. We conclude, therefore, a dual function of its kinase domain: at first, a role of its autophosphorylation in the formation of myosin filaments (association of subfilaments to filaments); secondly, the transphosphorylation activity of projectin modulates the contractile response of the actomyosin system by phosphorylating some of its components. Moreover, we could stimulate in vitro the projectin autophosphorylation 3.4-fold by calmodulin (EC50 = 17.8 nM). However, the transphosphorylations described above were not stimulated by calmodulin.
Collapse
Affiliation(s)
- Michael Fährmann
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany.
| | | | | |
Collapse
|
15
|
Fährmann M, Erfmann M, Beinbrech G. Binding of CaMKII to the giant muscle protein projectin: stimulation of CaMKII activity by projectin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1569:127-34. [PMID: 11853966 DOI: 10.1016/s0304-4165(01)00251-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Projectin is an integral high molecular mass protein of insect flight muscle binding to myosin and paramyosin. Yet, the role of projectin in insect flight muscle is not well understood. In this study we provide evidence for the interaction of projectin with the calcium sensor Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Two CaMKII variants of 52 and 60 kDa, respectively, of locust flight muscle cells were shown by an anti-CaMKII antibody. Both variants were associated to myofibrils. The 52 kDa variant was also shown abundant in the cytosol. The cytosolic CaMKII variant was co-precipitated in vitro with externally added purified projectin in a dose-dependent manner. To specify the binding properties of CaMKII to projectin we used both purified projectin from the flight muscle of locust and CaMKII from rat forebrain, a naturally rich source of CaMKII. CaMKII is highly conserved even between insects and mammals. The binding of CaMKII to native projectin was demonstrated in vitro by the solid phase enzyme assay, immunoprecipitation, and 'overlay' binding. One mol projectin bound maximally 1.38 +/- 0.02 mol CaMKII in vitro with a K(d) of 3.08 Z+/- 0.09 nM. Application of in vitro autophosphorylated CaMKII revealed a decreased stoichiometry of binding to projectin (0.86 +/- 0.04 mol mol(-1)) accompanied by a lower affinity (K(d) of 5.54 +/- 0.73) compared to non-autophosphorylated CaMKII. Furthermore, the CaMKII phosphotransferase activity was stimulated up to 2-fold by projectin. Even in the presence of calmodulin projectin enhanced the CaMKII activity moderately. Our data suggest that projectin represents a subcellular compartment for CaMKII to achieve its specificity, and activity in insect flight muscle cells.
Collapse
Affiliation(s)
- Michael Fährmann
- Muscle Physiology Group, Westfälische Wilhelms-Universitäat Münster, Hindenburgplatz 55, D-48143 Münster, Germany.
| | | | | |
Collapse
|
16
|
Southgate R, Ayme-Southgate A. Alternative splicing of an amino-terminal PEVK-like region generates multiple isoforms of Drosophila projectin. J Mol Biol 2001; 313:1035-43. [PMID: 11700060 DOI: 10.1006/jmbi.2001.5115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila projectin is an extremely large protein found within the muscle sarcomeric unit, parallel with the actin and myosin filaments. Projectin has been suggested as the elastic component of C-filaments in insect indirect flight muscles, which is consistent with its localization from the Z band to the tip of the A band in these muscles. Here, we describe the completion of the projectin sequence analysis, which defines projectin as a 1 MDa protein, composed of 39 immunoglobulin and 39 fibronectin III domains. This analysis led also to the identification of a domain rich in the amino acids P, E, V and K within the NH(2) terminus of projectin. The length of the projectin PEVK-like region varies from 100 to 624 amino acid residues, following a complex pattern of alternative splicing events. PEVK domains were first identified in vertebrate titin and they have been associated with the elasticity of the protein. The PEVK-like domain of the projectin isoforms in indirect flight muscles may contribute to the elastic function of the C-filaments. The synchronous projectin isoforms contain a PEVK-like region, and the possible non-elastic function(s) of this domain in synchronous muscles are discussed.
Collapse
Affiliation(s)
- R Southgate
- College of Charleston, Charleston, SC 29424, USA
| | | |
Collapse
|
17
|
Vigoreaux JO, Moore JR, Maughan DW. Role of the elastic protein projectin in stretch activation and work output of Drosophila flight muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:237-47; discussion 247-50. [PMID: 10987076 DOI: 10.1007/978-1-4615-4267-4_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We examine how the stretch activation response of the Drosophila indirect flight muscles (IFM) is affected by the projectin mutation bentDominant. IFM from flies heterozygous for this mutation (bentD/+) produce approximately 85% full length projectin and approximately 15% truncated projectin lacking the kinase domain and more C-terminal sequences. Passive stiffness and power output of mutant fibers is similar to that of wild-type (+/+) fibers, but the amplitude of the stretch activation response (delayed tension rise) was significantly reduced. Measurement of actomyosin kinetics by sinusoidal analysis revealed that the apparent rate constant of the delayed tension rise (2 pi b) increased in proportion to the decrease in amplitude, accounting for the near wild-type levels of power output and nearly normal flight ability. These results suggest that projectin plays a crucial role in stretch activation, possibly through its protein kinase activity, by modulating crossbridge recruitment and kinetics.
Collapse
Affiliation(s)
- J O Vigoreaux
- Department of Biology, University of Vermont, Burlington, USA
| | | | | |
Collapse
|
18
|
Ayme-Southgate A, Southgate R, McEliece MK. Drosophila projectin: a look at protein structure and sarcomeric assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:251-62; discussion 262-4. [PMID: 10987077 DOI: 10.1007/978-1-4615-4267-4_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The large projectin protein is found in all Drosophila muscles; however, it shows a dual sarcomeric localization depending on the muscle type. In larval and adult synchronous muscles, projectin is found localized over the A-band. Initial in vitro binding assays indicate interactions of several projectin regions with themselves and myosin heavy chain. These interactions might be critical for the assembly of projectin over the myosin filament during embryonic myofibrillogenesis and larval growth. On the other hand, projectin localizes over the I-Z-I region in indirect flight muscles. Correspondingly, projectin is found in association with forming Z-bands during pupation and colocalizes with alpha-actinin and kettin.
Collapse
Affiliation(s)
- A Ayme-Southgate
- Department of Biological Sciences, Lehigh University, Betheleham, PA, USA
| | | | | |
Collapse
|
19
|
SM22α Promoter Targets Gene Expression to Vascular Smooth Muscle Cells In Vitro and In Vivo. Mol Med 2000. [DOI: 10.1007/bf03401832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
20
|
Machado C, Andrew DJ. D-Titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151:639-52. [PMID: 11062264 PMCID: PMC2185597 DOI: 10.1083/jcb.151.3.639] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 09/20/2000] [Indexed: 11/28/2022] Open
Abstract
Previously, we reported that chromosomes contain a giant filamentous protein, which we identified as titin, a component of muscle sarcomeres. Here, we report the sequence of the entire titin gene in Drosophila melanogaster, D-Titin, and show that it encodes a two-megadalton protein with significant colinear homology to the NH(2)-terminal half of vertebrate titin. Mutations in D-Titin cause chromosome undercondensation, chromosome breakage, loss of diploidy, and premature sister chromatid separation. Additionally, D-Titin mutants have defects in myoblast fusion and muscle organization. The phenotypes of the D-Titin mutants suggest parallel roles for titin in both muscle and chromosome structure and elasticity, and provide new insight into chromosome structure.
Collapse
Affiliation(s)
- C Machado
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
21
|
Zhang Y, Featherstone D, Davis W, Rushton E, Broadie K. Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J Cell Sci 2000; 113 ( Pt 17):3103-15. [PMID: 10934048 DOI: 10.1242/jcs.113.17.3103] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An ethylmethane sulfonate (EMS) mutagenesis of Drosophila melanogaster aimed at discovering novel genes essential for neuromuscular development identified six embryonic lethal alleles of one genetic locus on the third chromosome at 62C. Two additional lethal P element insertion lines, l(3)S02001 and l(3)j1D7, failed to complement each other and each of the six EMS alleles. Analysis of genomic sequence bracketing the two insertion sites predicted a protein of 16,215 amino acid residues, encoded by a 70 kb genomic region. This sequence includes the recently characterized kettin, and includes all known partial D-Titin sequences. We call the genetic locus, which encodes both D-Titin and kettin, D-Titin. D-Titin has 53 repeats of the immunoglobulin C2 domain, 6 repeats of the fibronectin type III domain and two large PEVK domains. Kettin appears to be the NH2-terminal one third of D-Titin, presumably expressed via alternative splicing. Phenotype assays on the allelic series of D-Titin mutants demonstrated that D-Titin plays an essential role in muscle development. First, D-Titin has an unsuspected function in myoblast fusion during myogenesis and, second, D-Titin later serves to organize myofilaments into the highly ordered arrays underlying skeletal muscle striation. We propose that D-Titin is instrumental in the development of the two defining features of striated muscle: the formation of multi-nucleate syncitia and the organization of actin-myosin filaments into striated arrays.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | |
Collapse
|
22
|
Baqui MM, Milder R, Mortara RA, Pudles J. In vivo and in vitro phosphorylation and subcellular localization of trypanosomatid cytoskeletal giant proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:25-37. [PMID: 11002308 DOI: 10.1002/1097-0169(200009)47:1<25::aid-cm3>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Promastigote forms of Phytomonas serpens, Leptomonas samueli, and Leishmania tarentolae express cytoskeletal giant proteins with apparent molecular masses of 3,500 kDa (Ps 3500), 2,500 kDa (Ls 2500), and 1,200 kDa (Lt 1200), respectively. Polyclonal antibodies to Lt 1200 and to Ps 3500 specifically recognize similar polypeptides of the same genera of parasite. In addition to reacting with giant polypeptides of the Leptomonas species, anti-Ls 2500 also cross reacts with Ps 3500, and with a 500-kDa polypeptide of Leishmania. Confocal immunofluorescence and immunogold electron microscopy showed major differences in topological distribution of these three proteins, though they partially share a common localization at the anterior end of the cell body skeleton. Furthermore, Ps 3500, Ls 2500, and Lt 1200 are in vivo phosphorylated at serine and threonine residues, whereas, in vitro phosphorylation of cytoskeletal fractions reveal that only Ps 3500 and Ls 2500 are phosphorylated. Heat treatment (100 degrees C) of high salt cytoskeletal extracts demonstrates that Ps 3500 and Ls 2500 remain stable in solution, whereas Lt 1200 is denatured. Kinase assays with immunocomplexes of heat-treated giant proteins show that only Ps 3500 and Ls 2500 are phosphorylated. These results demonstrate the existence of a novel class of megadalton phosphoproteins in promastigote forms of trypanosomatids that appear to be genera specific with distinct cytoskeletal functions. In addition, there is also evidence that Ps 3500 and Ls 2500, in contrast to Lt 1200, seem to be autophosphorylating serine and threonine protein kinases, suggesting that they might play regulatory roles in the cytoskeletal organization.
Collapse
Affiliation(s)
- M M Baqui
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
23
|
Champagne MB, Edwards KA, Erickson HP, Kiehart DP. Drosophila stretchin-MLCK is a novel member of the Titin/Myosin light chain kinase family. J Mol Biol 2000; 300:759-77. [PMID: 10891286 DOI: 10.1006/jmbi.2000.3802] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the titin/myosin light chain kinase family play an essential role in the organization of the actin/myosin cytoskeleton, especially in sarcomere assembly and function. In Drosophila melanogaster, projectin is so far the only member of this family for which a transcription unit has been characterized. The locus of another member of this family, a protein related to Myosin light chain kinase, was also identified. The cDNA and genomic sequences published explain only the shorter transcripts expressed by this locus. Here, we report the complete molecular characterization of this transcription unit, which spans 38 kb, includes 33 exons and accounts for transcripts up to 25 kb in length. This transcription unit contains both the largest exon (12,005 nt) and the largest coding region (25,213 nt) reported so far for Drosophila. This transcription unit features both internal promoters and internal polyadenylation signals, which enable it to express seven different transcripts, ranging from 3.3 to 25 kb in size. The latter encodes a huge, titin-like, 926 kDa kinase that features two large PEVK-rich repeats, 32 immunoglobulin and two fibronectin type-III domains, which we designate stretchin-MLCK. In addition, the 3' end of the stretchin-MLCK transcription unit expresses shorter transcripts that encode 86 to 165 kDa isoforms of stretchin-MLCK that are analogous to vertebrate Myosin light chain kinases. Similarly, the 5' end of the Stretchin-Mlck transcription unit can also express transcripts encoding kettin and Unc-89-like isoforms, which share no sequences with the MLCK-like transcripts. Thus, this locus can be viewed as a single transcription unit, Stretchin-Mlck (genetic abbreviation Strn-Mlck), that expresses large, composite transcripts and protein isoforms (sequences available at http://www.academicpress.com/jmb), as well as a complex of two independent transcription units, the Stretchin and Mlck transcription units (Strn and Mlck, respectively) the result of a "gene fission" event, that encode independent transcripts and proteins with distinct structural and enzymatic functions.
Collapse
Affiliation(s)
- M B Champagne
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710-0001, USA
| | | | | | | |
Collapse
|
24
|
Hakeda S, Endo S, Saigo K. Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J Cell Biol 2000; 148:101-14. [PMID: 10629221 PMCID: PMC3207145 DOI: 10.1083/jcb.148.1.101] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kettin is a giant muscle protein originally identified in insect flight muscle Z-discs. Here, we determined the entire nucleotide sequence of Drosophila melanogaster kettin, deduced the amino acid sequence of its protein product (540 kD) along with that of the Caenorhabditis elegans counterpart, and found that the overall primary structure of Kettin has been highly conserved in evolution. The main body of Drosophila Kettin consists of 35 immunoglobulin C2 domains separated by spacers. The central two thirds of spacers are constant in length and share in common two conserved motifs, putative actin binding sites. Neither fibronectin type III nor kinase domains were found. Kettin is present at the Z-disc in several muscle types. Genetic analysis showed that kettin is essential for the formation and maintenance of normal sarcomere structure of muscles and muscle tendons. Accordingly, embryos lacking kettin activity cannot hatch nor can adult flies heterozygous for the kettin mutation fly.
Collapse
Affiliation(s)
- Satoko Hakeda
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Endo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Moore JR, Vigoreaux JO, Maughan DW. The Drosophila projectin mutant, bentD, has reduced stretch activation and altered indirect flight muscle kinetics. J Muscle Res Cell Motil 1999; 20:797-806. [PMID: 10730582 DOI: 10.1023/a:1005607818302] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Projectin is a ca. 900 kDa protein that is a member of the titin protein superfamily. In skeletal muscle titins are involved in the longitudinal reinforcement of the sarcomere by connecting the Z-band to the M-line. In insect indirect flight muscle (IFM), projectin is believed to form the connecting filaments that link the Z-band to the thick filaments and is responsible for the high relaxed stiffness found in this muscle type. The Drosophila mutant bentD (btD) has been shown to have a breakpoint close to the carboxy-terminal kinase domain of the projectin sequence. Homozygotes for btD are embryonic lethal but heterozygotes (btD/+) are viable. Here we show that btD/+ flies have normal flight ability and a slightly elevated wing beat frequency (btD/+ 223+/-13 Hz; +/+ 203+/-5 Hz, mean +/- SD; P < 0.01). Electron microscopy of btD/+ IFM show normal ultrastructure but skinned fiber mechanics show reduced stretch activation and oscillatory work. Although btD/+ IFM power output was at wild-type levels, maximum power was achieved at a higher frequency of applied length perturbation (btD/+ 151+/-6 Hz; +/+ 102+/-14 Hz; P < 0.01). Results were interpreted in the context of a viscoelastic model of the sarcomere and indicate altered cross-bridge kinetics of the power-producing step. These results show that the btD mutation reduces oscillatory work in a way consistent with the proposed role of the connecting filaments in the stretch activation response of IFM.
Collapse
Affiliation(s)
- J R Moore
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington 05405, USA.
| | | | | |
Collapse
|
26
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
27
|
|
28
|
Benian GM, Ayme-Southgate A, Tinley TL. The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999; 138:235-68. [PMID: 10396143 DOI: 10.1007/bfb0119629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- G M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
29
|
|
30
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Weitkamp B, Jurk K, Beinbrech G. Projectin-thin filament interactions and modulation of the sensitivity of the actomyosin ATPase to calcium by projectin kinase. J Biol Chem 1998; 273:19802-8. [PMID: 9677413 DOI: 10.1074/jbc.273.31.19802] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insect muscle protein projectin (900 kDa) belongs to a novel family of cytoskeleton-associated protein kinases (titin, twitchin, and projectin) that are members of the immunoglobulin superfamily. The functions of these kinases are still unknown although recent data suggest a role in modulating muscle activity and generating passive elasticity. An important question is what are the in vivo substrates for these enzymes. We found a thin filament-associated 30 kDa protein that acts as an in vitro substrate for projectin kinase from Locusta migratoria. However, we did not find activators for projectin kinase. Neither calcium, calcium with calmodulin, nor cAMP activated the in vitro activity of projectin kinase. Binding studies revealed a strong interaction between projectin and thin filaments comparable with that of the projectin-myosin interaction. That an interaction might be possible in vivo is suggested by immunological studies showing that projectin is attached to the surface of myosin filaments. Since the molecular weights indicate that the 30 kDa protein might be troponin I, which is known to play a central role in modulating cardiac contractile activity, we studied whether phosphorylation of this protein by projectin changes the calcium sensitivity of the actomyosin ATPase. We found a significant increase in the calcium sensitivity. Thus, our results indicate the existence of a novel mechanism of regulation of muscle activity by a cytoskeleton-associated kinase.
Collapse
Affiliation(s)
- B Weitkamp
- Institute for Animal Physiology, University of Münster, D-48143 Münster, Germany
| | | | | |
Collapse
|
33
|
Daley J, Southgate R, Ayme-Southgate A. Structure of the Drosophila projectin protein: isoforms and implication for projectin filament assembly. J Mol Biol 1998; 279:201-10. [PMID: 9636710 DOI: 10.1006/jmbi.1998.1756] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein composition of the various muscle types in Drosophila melanogaster has been studied quite thoroughly and the analysis has revealed many differences involving the usage of muscle specific isoforms of a given protein, as well as the presence of proteins restricted to one muscle type. Drosophila projectin, the giant protein component of the third filament is quite unusual as it not only shows specific isoforms in various muscle types, but these isoforms are located at different sarcomeric locations, I band in the IFM and A band in synchronous muscles. This may suggest distinct functions for the projectin protein in various muscles, as well as a different set of protein interactions for each projectin isoform. Projectin is encoded by a single gene and the isoforms were proposed to be the result of alternative splicing of a primary transcript. Here, we report the nearly complete sequence of Drosophila projectin, as well as the possible splicing patterns used to generate different isoforms. The overall domain organization in projectin is composed of repeated motifs I and II in a few specific patterns, similar to its Caenorhabditis homolog, twitchin. Sequence similarity between twitchin and projectin further suggests how some domains may possibly be important for protein interactions and/or functions. Alternative splicing operates at the COOH terminus, leading to a shorter projectin protein lacking some of the terminal motifs II and unique sequence. These isoforms are discussed in view of projectin differential size and localization.
Collapse
Affiliation(s)
- J Daley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
34
|
Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998; 141:321-33. [PMID: 9548712 PMCID: PMC2148454 DOI: 10.1083/jcb.141.2.321] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1997] [Revised: 02/02/1998] [Indexed: 02/07/2023] Open
Abstract
Assembly of the higher-order structure of mitotic chromosomes is a prerequisite for proper chromosome condensation, segregation and integrity. Understanding the details of this process has been limited because very few proteins involved in the assembly of chromosome structure have been discovered. Using a human autoimmune scleroderma serum that identifies a chromosomal protein in human cells and Drosophila embryos, we cloned the corresponding Drosophila gene that encodes the homologue of vertebrate titin based on protein size, sequence similarity, developmental expression and subcellular localization. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle that may also function as a molecular scaffold for myofibrillar assembly. Molecular analysis and immunostaining with antibodies to multiple titin epitopes indicates that the chromosomal and muscle forms of titin may vary in their NH2 termini. The identification of titin as a chromosomal component provides a molecular basis for chromosome structure and elasticity.
Collapse
Affiliation(s)
- C Machado
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | |
Collapse
|
35
|
Abstract
Titin is a giant protein of vertebrate striated muscles (M(r), > or = 3000 kD). Its molecules are of filamentous shape and span from the Z disk to the M line, thereby forming a third filament system of the sarcomere. This filament system is important for both the structural integrity of the myofibril and the passive tension response of a stretched muscle fiber. The determination of the cDNA sequence of human cardiac titin has shown that the cardiac titin filament is formed by a single, giant. 27,000-residue-long polypeptide chain. The titin strand has a modular structure, and different modular arrangements are expressed in different muscle tissue types by differential splicing. In the A band, the titin modules provide regular arrays of binding sites for other sarcomeric proteins, thereby contributing to a precise assembly of myofibrillar proteins in vivo. In the I band, two specific motif families, tandem-immunoglobulin domains and PEVK-rich sequences, confer extensibility to the titin filament. Expression of muscle tissue-specific length variants of the PEVK region by alternative splicing may explain the differences in the passive tension properties between various striated muscle types. Apart from the titin sequences with apparent functions for muscle structure and elasticity, the titin molecule contains a class of unique sequence insertions. Among these sequences are phosphorylation sites, a serine/threonine kinase domain, and binding sites for muscle-specific calpain proteases. Thus, it is likely that the titin filament also plays a role in myofibrillar signal transduction pathways.
Collapse
Affiliation(s)
- S Labeit
- European Molecular Biology Láboratory, Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Kobe B, Heierhorst J, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE. Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J 1996; 15:6810-21. [PMID: 9003756 PMCID: PMC452506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules. We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain. The structure of the longer fragment shows that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues. Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.
Collapse
Affiliation(s)
- B Kobe
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Heierhorst J, Tang X, Lei J, Probst WC, Weiss KR, Kemp BE, Benian GM. Substrate specificity and inhibitor sensitivity of Ca2+/S100-dependent twitchin kinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:454-9. [PMID: 9022668 DOI: 10.1111/j.1432-1033.1996.454rr.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myosin-associated giant protein kinases of the titin/witchin-like superfamily have previously been implicated in the regulation of muscle function, based on genetic and physiological studies. We find that recombinant constitutively active Caenorhabditis elegans and Aplysia twitchin kinase fragments differ in their catalytic activities and peptide-substrate specificities, as well as in their sensitivities to the naphthalene sulfonamide inhibitors 1-(5-chloronaphthalenesulfonyl)-1H-hexahydro-1,4-diazepine (ML-7) and 1-(5-iodonaphthalenesulfonyl)-1H-hexahydro-1,4-diazepine (ML-9). The constitutively active Aplysia twitchin kinase fragment has a remarkably high activity (Vmax > 100 mumol.min-1.mg-1) towards some substrate peptides. The autoinhibited forms of these twitchin kinases can be activated in a Ca(2+)-dependent manner by the dimeric form of the S100A1 protein (S100A1(2)). The twitchin kinase S100A1(2)-binding site can also bind Ca2+/calmodulin but neither kinase is activated by calmodulin. The data provide a functional basis for the ongoing crystallographic study of twitchin kinase fragments.
Collapse
Affiliation(s)
- J Heierhorst
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Heierhorst J, Kobe B, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE. Ca2+/S100 regulation of giant protein kinases. Nature 1996; 380:636-9. [PMID: 8602266 DOI: 10.1038/380636a0] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein phosphorylation by protein kinases plays a central regulatory role in cellular processes and these kinases are themselves tightly regulated. One common mechanism of regulation involves Ca2+-binding proteins (CaBP) such as calmodulin (CaM). Here we report a Ca2+-effector mechanism for protein kinase activation by demonstrating the specific and >1,000-fold activation of the myosin-associated giant protein kinase twitchin by Ca2+/S100A1(2). S100A1(2) is a member of a large CaBP family that is implicated in various cellular processes, including cell growth, differentiation and motility, but whose molecular actions are largely unknown. The S100A1(2)-binding site is a part of the autoregulatory sequence positioned in the active site that is responsible for intrasteric autoinhibition of twitchin kinase; the mechanism of autoinhibition based on the crystal structures of two twitchin kinase fragments is described elsewhere. Ca2+/S100 represents a likely physiological activator for the entire family of giant protein kinases involved in muscle contractions and cytoskeletal structure.
Collapse
Affiliation(s)
- J Heierhorst
- St. Vincent's Institute of Medical Research, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Benian GM, Tinley TL, Tang X, Borodovsky M. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Biophys Biochem Cytol 1996; 132:835-48. [PMID: 8603916 PMCID: PMC2120741 DOI: 10.1083/jcb.132.5.835] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in-frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line.
Collapse
Affiliation(s)
- G M Benian
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Twitchin and related giant Ig superfamily members of C. elegans and other invertebrates. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0065-227x(96)81674-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
|
43
|
Heierhorst J, Probst WC, Kohanski RA, Buku A, Weiss KR. Phosphorylation of myosin regulatory light chains by the molluscan twitchin kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:426-31. [PMID: 7588784 DOI: 10.1111/j.1432-1033.1995.426_2.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The unusually large (approximately 600 to > 3000 kDa) myosin-associated proteins of the titin/twitchin superfamily are considered to be important cytoskeletal rulers for thick filament assembly in muscle. This function is maintained by approximately 60-240 modular fibronectin-type-III and immunoglobulin-C2 repeats in these proteins which further contain a protein serine/threonine kinase domain of unknown function. In this study, the bacterially expressed kinase domain of Aplysia twitchin was used in order to identify a potential physiological substrate. Addition of the recombinant kinase to Aplysia actomyosin preparations resulted in the specific phosphorylation of the 19-kDa myosin regulatory light chains. The twitchin kinase phosphorylated purified light chains on Thr15 in a region which shared a high degree of similarity with the phosphorylation site for vertebrate smooth muscle myosin light chain kinase. Peptide analogs of the twitchin substrate sequence and the similar sequence in vertebrate smooth muscle myosin light chains were phosphorylated with good kinetic properties. These data reveal the first potential substrate for any of the giant protein kinases and support a dual role of twitchin in molluscan muscle as a cytoskeletal protein as well as a myosin light chain kinase.
Collapse
Affiliation(s)
- J Heierhorst
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, City University of New York, USA
| | | | | | | | | |
Collapse
|