1
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration. Nat Cell Biol 2024; 26:1062-1076. [PMID: 38951708 PMCID: PMC11364469 DOI: 10.1038/s41556-024-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
Affiliation(s)
- Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Parijat Banerjee
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guanghui Qin
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras-mediated homeostatic control of front-back signaling dictates cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555648. [PMID: 37693515 PMCID: PMC10491231 DOI: 10.1101/2023.08.30.555648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies in the model systems, Dictyostelium amoebae and HL-60 neutrophils, have shown that local Ras activity directly regulates cell motility or polarity. Localized Ras activation on the membrane is spatiotemporally regulated by its activators, RasGEFs, and inhibitors, RasGAPs, which might be expected to create a stable 'front' and 'back', respectively, in migrating cells. Focusing on C2GAPB in amoebae and RASAL3 in neutrophils, we investigated how Ras activity along the cortex controls polarity. Since existing gene knockout and overexpression studies can be circumvented, we chose optogenetic approaches to assess the immediate, local effects of these Ras regulators on the cell cortex. In both cellular systems, optically targeting the respective RasGAPs to the cell front extinguished existing protrusions and changed the direction of migration, as might be expected. However, when the expression of C2GAPB was induced globally, amoebae polarized within hours. Furthermore, within minutes of globally recruiting either C2GAPB in amoebae or RASAL3 in neutrophils, each cell type polarized and moved more rapidly. Targeting the RasGAPs to the cell backs exaggerated these effects on migration and polarity. Overall, in both cell types, RasGAP-mediated polarization was brought about by increased actomyosin contractility at the back and sustained, localized F-actin polymerization at the front. These experimental results were accurately captured by computational simulations in which Ras levels control front and back feedback loops. The discovery that context-dependent Ras activity on the cell cortex has counterintuitive, unanticipated effects on cell polarity can have important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
|
5
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
7
|
Xu X, Pots H, Gilsbach BK, Parsons D, Veltman DM, Ramachandra SG, Li H, Kortholt A, Jin T. C2GAP2 is a common regulator of Ras signaling for chemotaxis, phagocytosis, and macropinocytosis. Front Immunol 2022; 13:1075386. [PMID: 36524124 PMCID: PMC9745196 DOI: 10.3389/fimmu.2022.1075386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Phagocytosis, macropinocytosis, and G protein coupled receptor-mediated chemotaxis are Ras-regulated and actin-driven processes. The common regulator for Ras activity in these three processes remains unknown. Here, we show that C2GAP2, a Ras GTPase activating protein, highly expressed in the vegetative growth state in model organism Dictyostelium. C2GAP2 localizes at the leading edge of chemotaxing cells, phagosomes during phagocytosis, and macropinosomes during micropinocytosis. c2gapB- cells lacking C2GAP2 displayed increased Ras activation upon folic acid stimulation and subsequent impaired chemotaxis in the folic acid gradient. In addition, c2gaB- cells have elevated phagocytosis and macropinocytosis, which subsequently results in faster cell growth. C2GAP2 binds multiple phospholipids on the plasma membrane and the membrane recruitment of C2GAP2 requires calcium. Taken together, we show a shared negative regulator of Ras signaling that mediates Ras signaling for chemotaxis, phagocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States,*Correspondence: Xuehua Xu,
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Bernd K. Gilsbach
- Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dustin Parsons
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Douwe M. Veltman
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Sharmila G. Ramachandra
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Haoran Li
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
8
|
Extracellular Signalling Modulates Scar/WAVE Complex Activity through Abi Phosphorylation. Cells 2021; 10:cells10123485. [PMID: 34943993 PMCID: PMC8700165 DOI: 10.3390/cells10123485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 01/01/2023] Open
Abstract
The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.
Collapse
|
9
|
An Autocrine Negative Feedback Loop Inhibits Dictyostelium discoideum Proliferation through Pathways Including IP3/Ca 2. mBio 2021; 12:e0134721. [PMID: 34154396 PMCID: PMC8262924 DOI: 10.1128/mbio.01347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how eukaryotic cells can sense their number or spatial density and stop proliferating when the local density reaches a set value. We previously found that Dictyostelium discoideum accumulates extracellular polyphosphate to inhibit its proliferation, and this requires the G protein-coupled receptor GrlD and the small GTPase RasC. Here, we show that cells lacking the G protein component Gβ, the Ras guanine nucleotide exchange factor GefA, phosphatase and tensin homolog (PTEN), phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor-like protein A (IplA), polyphosphate kinase 1 (Ppk1), or the TOR complex 2 component PiaA have significantly reduced sensitivity to polyphosphate-induced proliferation inhibition. Polyphosphate upregulates IP3, and this requires GrlD, GefA, PTEN, PLC, and PiaA. Polyphosphate also upregulates cytosolic Ca2+, and this requires GrlD, Gβ, GefA, RasC, PLC, IplA, Ppk1, and PiaA. Together, these data suggest that polyphosphate uses signal transduction pathways including IP3/Ca2+ to inhibit the proliferation of D. discoideum. IMPORTANCE Many mammalian tissues such as the liver have the remarkable ability to regulate their size and have their cells stop proliferating when the tissue reaches the correct size. One possible mechanism involves the cells secreting a signal that they all sense, and a high level of the signal tells the cells that there are enough of them and to stop proliferating. Although regulating such mechanisms could be useful to regulate tissue size to control cancer or birth defects, little is known about such systems. Here, we use a microbial system to study such a mechanism, and we find that key elements of the mechanism have similarities to human proteins. This then suggests the possibility that we may eventually be able to regulate the proliferation of selected cell types in humans and animals.
Collapse
|
10
|
Singh SP, Thomason PA, Lilla S, Schaks M, Tang Q, Goode BL, Machesky LM, Rottner K, Insall RH. Cell-substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biol 2020; 18:e3000774. [PMID: 32745097 PMCID: PMC7425996 DOI: 10.1371/journal.pbio.3000774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.
Collapse
Affiliation(s)
| | | | | | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Qing Tang
- Brandeis University, Waltham, Massachusetts, United States of America
| | - Bruce L. Goode
- Brandeis University, Waltham, Massachusetts, United States of America
| | | | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert H. Insall
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Jeon TJ, Gao R, Kim H, Lee A, Jeon P, Devreotes PN, Zhao M. Cell migration directionality and speed are independently regulated by RasG and Gβ in Dictyostelium cells in electrotaxis. Biol Open 2019; 8:bio.042457. [PMID: 31221628 PMCID: PMC6679393 DOI: 10.1242/bio.042457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motile cells manifest increased migration speed and directionality in gradients of stimuli, including chemoattractants, electrical potential and substratum stiffness. Here, we demonstrate that Dictyostelium cells move directionally in response to an electric field (EF) with specific acceleration/deceleration kinetics of directionality and migration speed. Detailed analyses of the migration kinetics suggest that migration speed and directionality are separately regulated by Gβ and RasG, respectively, in EF-directed cell migration. Cells lacking Gβ, which is essential for all chemotactic responses in Dictyostelium, showed EF-directed cell migration with the same increase in directionality in an EF as wild-type cells. However, these cells failed to show induction of the migration speed upon EF stimulation as much as wild-type cells. Loss of RasG, a key regulator of chemoattractant-directed cell migration, resulted in almost complete loss of directionality, but similar acceleration/deceleration kinetics of migration speed as wild-type cells. These results indicate that Gβ and RasG are required for the induction of migration speed and directionality, respectively, in response to an EF, suggesting separation of migration speed and directionality even with intact feedback loops between mechanical and signaling networks. Summary: Cell migration directionality and speed are independently regulated by RasG and Gβ, respectively, in electric field-directed cell migration in Dictyostelium, suggesting the points of molecular divergence of the two characteristics.
Collapse
Affiliation(s)
- Taeck J Jeon
- Department of Biology & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Runchi Gao
- School of life science, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Hyeseon Kim
- Department of Biology & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Ara Lee
- Department of Biology & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Pyeonghwa Jeon
- Department of Biology & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, CA 95817, USA
| |
Collapse
|
12
|
Sun Y, Reid B, Ferreira F, Luxardi G, Ma L, Lokken KL, Zhu K, Xu G, Sun Y, Ryzhuk V, Guo BP, Lebrilla CB, Maverakis E, Mogilner A, Zhao M. Infection-generated electric field in gut epithelium drives bidirectional migration of macrophages. PLoS Biol 2019; 17:e3000044. [PMID: 30964858 PMCID: PMC6456179 DOI: 10.1371/journal.pbio.3000044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Many bacterial pathogens hijack macrophages to egress from the port of entry to the lymphatic drainage and/or bloodstream, causing dissemination of life-threatening infections. However, the underlying mechanisms are not well understood. Here, we report that Salmonella infection generates directional electric fields (EFs) in the follicle-associated epithelium of mouse cecum. In vitro application of an EF, mimicking the infection-generated electric field (IGEF), induces directional migration of primary mouse macrophages to the anode, which is reversed to the cathode upon Salmonella infection. This infection-dependent directional switch is independent of the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. The switch is accompanied by a reduction of sialic acids on glycosylated surface components during phagocytosis of bacteria, which is absent in macrophages challenged by microspheres. Moreover, enzymatic cleavage of terminally exposed sialic acids reduces macrophage surface negativity and severely impairs directional migration of macrophages in response to an EF. Based on these findings, we propose that macrophages are attracted to the site of infection by a combination of chemotaxis and galvanotaxis; after phagocytosis of bacteria, surface electrical properties of the macrophage change, and galvanotaxis directs the cells away from the site of infection.
Collapse
Affiliation(s)
- Yaohui Sun
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Courant Institute and Department of Biology, New York University, New York, New York, United States of America
| | - Brian Reid
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Fernando Ferreira
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, Portugal
| | - Guillaume Luxardi
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Li Ma
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China
| | - Kristen L. Lokken
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Kan Zhu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Gege Xu
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Yuxin Sun
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Volodymyr Ryzhuk
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Betty P. Guo
- Office of Research, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York, United States of America
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
13
|
Kida Y, Pan K, Kuwayama H. Some chemotactic mutants can be progress through development in chimeric populations. Differentiation 2019; 105:71-79. [PMID: 30797173 DOI: 10.1016/j.diff.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
Cell migration in response to morphogen gradients affects morphogenesis. Chemotaxis towards adenosine 3', 5'-monophosphate (cAMP) is essential for the early stage of morphogenesis in the slime mold Dictyostelium discoideum. Here, we show that D. discoideum completes morphogenesis without cAMP-chemotaxis-dependent cell migration. The extracellular cAMP gradient is believed to cause cells to form a slug-shaped multicellular structure and fruiting body. The cAMP receptor, cAR1, was not expressed at the cell surface during these stages, correlating with reduced chemotactic activity. Gβ-null cells expressing temperature sensitive Gβ are unable to generate extracellular cAMP (Jin et al., 1998) and thus unable to aggregate and exhibit proper morphogenesis under restrictive temperature. However, when mixed with wild type cells ts-Gβ expressing gβ-null cells normally aggregated and exhibited normal morphogenesis under restrictive temperature. Furthermore, cells migrated after aggregation in a mixture containing wild-type cells. KI-5 cells, which do not show aggregation or morphogenesis, spontaneously migrated to a transplanted wild-type tip and underwent normal morphogenesis and cell differentiation; this was not observed in cells lacking tgrB1and tgrC1 cells adhesion molecules. Thus, cAMP gradient-dependent cell migration may not be required for multicellular pattern formation in late Dictyostelium development.
Collapse
Affiliation(s)
- Yuya Kida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Kai Pan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
14
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
15
|
Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018; 104:359-374. [PMID: 29873835 PMCID: PMC6099250 DOI: 10.1002/jlb.1mr0218-044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.
Collapse
Affiliation(s)
- Monica A. Thomas
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew B. Kleist
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Brian F. Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
16
|
Pan M, Neilson MP, Grunfeld AM, Cruz P, Wen X, Insall RH, Jin T. A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biol 2018; 16:e2005754. [PMID: 29799847 PMCID: PMC5969738 DOI: 10.1371/journal.pbio.2005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Alexander M. Grunfeld
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
17
|
Tariqul Islam AFM, Yue H, Scavello M, Haldeman P, Rappel WJ, Charest PG. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules. Cell Signal 2018; 48:25-37. [PMID: 29698704 DOI: 10.1016/j.cellsig.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 02/01/2023]
Abstract
To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing.
Collapse
Affiliation(s)
- A F M Tariqul Islam
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Haicen Yue
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pearce Haldeman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA; Division of Biology and Biological Engineering, Joint Center for Transitional Medicine, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA.
| |
Collapse
|
18
|
Williams TD, Kay RR. The physiological regulation of macropinocytosis during Dictyostelium growth and development. J Cell Sci 2018; 131:jcs213736. [PMID: 29440238 PMCID: PMC5897714 DOI: 10.1242/jcs.213736] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
Macropinocytosis is a conserved endocytic process used by Dictyostelium amoebae for feeding on liquid medium. To further Dictyostelium as a model for macropinocytosis, we developed a high-throughput flow cytometry assay to measure macropinocytosis, and used it to identify inhibitors and investigate the physiological regulation of macropinocytosis. Dictyostelium has two feeding states: phagocytic and macropinocytic. When cells are switched from phagocytic growth on bacteria to liquid media, the rate of macropinocytosis slowly increases, due to increased size and frequency of macropinosomes. Upregulation is triggered by a minimal medium containing three amino acids plus glucose and likely depends on macropinocytosis itself. The presence of bacteria suppresses macropinocytosis while their product, folate, partially suppresses upregulation of macropinocytosis. Starvation, which initiates development, does not of itself suppress macropinocytosis: this can continue in isolated cells, but is shut down by a conditioned-medium factor or activation of PKA signalling. Thus macropinocytosis is a facultative ability of Dictyostelium cells, regulated by environmental conditions that are identified here.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Thomas D Williams
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Robert R Kay
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
Aufderheide KJ, Janetopoulos C. Migration of Dictyostelium discoideum to the Chemoattractant Folic Acid. Methods Mol Biol 2017; 1407:25-39. [PMID: 27271892 DOI: 10.1007/978-1-4939-3480-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dictyostelium discoideum can be grown axenically in a cultured media or in the presence of a natural food source, such as the bacterium Klebsiella aerogenes (KA). Here we describe the advantages and methods for growing D. discoideum on a bacterial lawn for several processes studied using this model system. When grown on a bacterial lawn, D. discoideum show positive chemotaxis towards folic acid (FA). While these vegetative cells are highly unpolarized, it has been shown that the signaling and cytoskeletal molecules regulating the directed migration of these cells are homologous to those seen in the motility of polarized cells in response to the chemoattractant cyclic adenosine monophosphate (cAMP). Growing D. discoideum on KA stimulates chemotactic responsiveness to FA. A major advantage of performing FA-mediated chemotaxis is that it does not require expression of the cAMP developmental program and therefore has the potential to identify mutants that are purely unresponsive to chemoattractant gradients. The cAMP-mediated chemotaxis can appear to fail when cells are developmentally delayed or do not up-regulate genes needed for cAMP-mediated migration. In addition to providing robust chemotaxis to FA, cells grown on bacterial lawns are highly resistant to light damage during fluorescence microscopy. This resistance to light damage could be exploited to better understand other biological processes such as phagocytosis or cytokinesis. The cell cycle is also shortened when cells are grown in the presence of KA, so the chances of seeing a mitotic event increases.
Collapse
Affiliation(s)
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Islam AFMT, Stepanski BM, Charest PG. Studying Chemoattractant Signal Transduction Dynamics in Dictyostelium by BRET. Methods Mol Biol 2017; 1407:63-77. [PMID: 27271894 DOI: 10.1007/978-1-4939-3480-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the dynamics of chemoattractant signaling is key to our understanding of the mechanisms underlying the directed migration of cells, including that of neutrophils to sites of infections and of cancer cells during metastasis. A model frequently used for deciphering chemoattractant signal transduction is the social amoeba Dictyostelium discoideum. However, the methods available to quantitatively measure chemotactic signaling are limited. Here, we describe a protocol to quantitatively study chemoattractant signal transduction in Dictyostelium by monitoring protein-protein interactions and conformational changes using Bioluminescence Resonance Energy Transfer (BRET).
Collapse
Affiliation(s)
- A F M Tariqul Islam
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, 85721-0088, AZ, USA
| | - Branden M Stepanski
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, 85721-0088, AZ, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, 85721-0088, AZ, USA.
| |
Collapse
|
21
|
Pergolizzi B, Bozzaro S, Bracco E. G-Protein Dependent Signal Transduction and Ubiquitination in Dictyostelium. Int J Mol Sci 2017; 18:ijms18102180. [PMID: 29048338 PMCID: PMC5666861 DOI: 10.3390/ijms18102180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Enrico Bracco
- Department of Oncology, University of Turin, AOU S. Luigi, 10043 Orbassano TO, Italy.
| |
Collapse
|
22
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
23
|
Meena NP, Kimmel AR. Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing. eLife 2017; 6. [PMID: 28541182 PMCID: PMC5476428 DOI: 10.7554/elife.24627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model Dictyostelium and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; Dictyostelium chemotax toward bacteria and phagocytose them as food sources. We quantified Dictyostelium chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.24627.001
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| |
Collapse
|
24
|
Traynor D, Kay RR. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP. Biol Open 2017; 6:200-209. [PMID: 28011630 PMCID: PMC5312093 DOI: 10.1242/bio.020685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. Summary: We show that a Trp channel related to the mammalian polycystin channel, rather than a P2X receptor, is responsible for the purinergic stimulation of cytosolic calcium levels in Dictyostelium cells.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| |
Collapse
|
25
|
Castillo B, Kim SH, Sharief M, Sun T, Kim LW. SodC modulates ras and PKB signaling in Dictyostelium. Eur J Cell Biol 2016; 96:1-12. [PMID: 27919433 DOI: 10.1016/j.ejcb.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
We have previously reported that the basal RasG activity is aberrantly high in cells lacking Superoxide dismutase C (SodC). Here we report that other Ras proteins such as RasC and RasD activities are not affected in sodC- cells and mutagenesis studies showed that the presence of the Cys118 in the Ras proteins is essential for the superoxide-mediated activation of Ras proteins in Dictyostelium. In addition to the loss of SodC, lack of extracellular magnesium ions increased the level of intracellular superoxide and active RasG proteins. Aberrantly active Ras proteins in sodC- cells persistently localized at the plasma membrane, but those in wild type cells under magnesium deficient medium exhibited intracellular vesicular localization. Interestingly, the aberrantly activated Ras proteins in wild type cells were largely insulated from their normal downstream events such as Phosphatidylinositol-3,4,5-P3 (PIP3) accumulation, Protein Kinase B (PKB) activation, and PKBs substrates phosphorylation. Intriguingly, however, aberrantly activated Ras proteins in sodC- cells were still engaged in signaling to their downstream targets, and thus excessive PKBs substrates phosphorylation persisted. In summary, we suggest that SodC and RasG proteins are essential part of a novel inhibitory mechanism that discourages oxidatively stressed cells from chemotaxis and thus inhibits the delivery of potentially damaged genome to the next generation.
Collapse
Affiliation(s)
- Boris Castillo
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Seon-Hee Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Mujataba Sharief
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Tong Sun
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lou W Kim
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
26
|
Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. Proc Natl Acad Sci U S A 2016; 113:E7500-E7509. [PMID: 27821730 DOI: 10.1073/pnas.1608767113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants. Loss of G protein subunits, inhibition of multiple signal transduction events, or disruption of calcium signaling attenuated the response to acute mechanical stimulation. Unlike the response to chemoattractants, an intact actin cytoskeleton was essential for reacting to mechanical perturbation. These results taken together suggest that chemotactic and mechanical stimuli trigger activation of a common signal transduction network that integrates external cues to regulate cytoskeletal activity and drive cell migration.
Collapse
|
27
|
Kamino K, Kondo Y. Rescaling of Spatio-Temporal Sensing in Eukaryotic Chemotaxis. PLoS One 2016; 11:e0164674. [PMID: 27792738 PMCID: PMC5085096 DOI: 10.1371/journal.pone.0164674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic cells respond to a chemoattractant gradient by forming intracellular gradients of signaling molecules that reflect the extracellular chemical gradient—an ability called directional sensing. Quantitative experiments have revealed two characteristic input-output relations of the system: First, in a static chemoattractant gradient, the shapes of the intracellular gradients of the signaling molecules are determined by the relative steepness, rather than the absolute concentration, of the chemoattractant gradient along the cell body. Second, upon a spatially homogeneous temporal increase in the input stimulus, the intracellular signaling molecules are transiently activated such that the response magnitudes are dependent on fold changes of the stimulus, not on absolute levels. However, the underlying mechanism that endows the system with these response properties remains elusive. Here, by adopting a widely used modeling framework of directional sensing, local excitation and global inhibition (LEGI), we propose a hypothesis that the two rescaling behaviors stem from a single design principle, namely, invariance of the governing equations to a scale transformation of the input level. Analyses of the LEGI-based model reveal that the invariance can be divided into two parts, each of which is responsible for the respective response properties. Our hypothesis leads to an experimentally testable prediction that a system with the invariance detects relative steepness even in dynamic gradient stimuli as well as in static gradients. Furthermore, we show that the relation between the response properties and the scale invariance is general in that it can be implemented by models with different network topologies.
Collapse
Affiliation(s)
- Keita Kamino
- FOM Institute AMOLF, Amsterdam, Netherlands
- * E-mail: (KK); (YK)
| | - Yohei Kondo
- Graduate school of Informatics, Kyoto University, Kyoto, Japan
- * E-mail: (KK); (YK)
| |
Collapse
|
28
|
Abstract
In this issue of Developmental Cell, Pan et al. (2016) identified in cells of the social amoeba Dictyostelium a G protein-coupled receptor (GPCR) that recognizes a chemoattractant secreted by bacteria. This work uncovers a mechanism by which a single GPCR mediates pseudopod extension during cell migration and bacterial engulfment.
Collapse
|
29
|
Pan M, Xu X, Chen Y, Jin T. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis. Dev Cell 2016; 36:428-39. [PMID: 26906738 DOI: 10.1016/j.devcel.2016.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/09/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
30
|
Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol 2016; 14:e1002381. [PMID: 26890004 PMCID: PMC4758609 DOI: 10.1371/journal.pbio.1002381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023] Open
Abstract
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. Coupling of individual oscillators regulates biological functions ranging from crickets chirping in unison to the coordination of pacemaker cells of the heart. This study finds that a similar concept—coupling between actin oscillators—is at work within single slime mold cells to establish polarity and guide their direction of migration. The actin cytoskeleton of motile cells is comprised of highly dynamic structures. Recently, small oscillating actin foci have been discovered around the periphery of Dictyostelium cells. These oscillators are thought to enable pseudopod formation, but how their dynamics are regulated for this is unknown. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. Actin oscillators are weakly coupled to one another in wild-type cells, but they become strongly synchronized after acute inactivation of the signaling protein Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. Supported by a mathematical model, our data suggest that wild-type cells are tuned to an optimal coupling strength for patterning by upstream cues. These observations are only possible following acute inhibition of Gβ, which highlights the value of revisiting classical mutants with acute loss-of-function perturbations.
Collapse
|
31
|
Rectified directional sensing in long-range cell migration. Nat Commun 2014; 5:5367. [PMID: 25373620 PMCID: PMC4272253 DOI: 10.1038/ncomms6367] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This 'rectification' of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition.
Collapse
|
32
|
Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat Commun 2014; 5:5175. [PMID: 25346418 PMCID: PMC4211273 DOI: 10.1038/ncomms6175] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2014] [Indexed: 01/22/2023] Open
Abstract
Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.
Collapse
|
33
|
Omosigho NN, Swaminathan K, Plomann M, Müller-Taubenberger A, Noegel AA, Riyahi TY. The Dictyostelium discoideum RACK1 orthologue has roles in growth and development. Cell Commun Signal 2014; 12:37. [PMID: 24930026 PMCID: PMC4094278 DOI: 10.1186/1478-811x-12-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in several cellular processes. Results We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes during growth and development. Conclusion DdRACK1 interacts with heterotrimeric G proteins and can through these interactions impact on processes specifically regulated by these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany.
| | | |
Collapse
|
34
|
Zatulovskiy E, Tyson R, Bretschneider T, Kay RR. Bleb-driven chemotaxis of Dictyostelium cells. ACTA ACUST UNITED AC 2014; 204:1027-44. [PMID: 24616222 PMCID: PMC3998804 DOI: 10.1083/jcb.201306147] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blebs and F-actin-driven pseudopods are alternative ways of extending the leading edge of migrating cells. We show that Dictyostelium cells switch from using predominantly pseudopods to blebs when migrating under agarose overlays of increasing stiffness. Blebs expand faster than pseudopods leaving behind F-actin scars, but are less persistent. Blebbing cells are strongly chemotactic to cyclic-AMP, producing nearly all of their blebs up-gradient. When cells re-orientate to a needle releasing cyclic-AMP, they stereotypically produce first microspikes, then blebs and pseudopods only later. Genetically, blebbing requires myosin-II and increases when actin polymerization or cortical function is impaired. Cyclic-AMP induces transient blebbing independently of much of the known chemotactic signal transduction machinery, but involving PI3-kinase and downstream PH domain proteins, CRAC and PhdA. Impairment of this PI3-kinase pathway results in slow movement under agarose and cells that produce few blebs, though actin polymerization appears unaffected. We propose that mechanical resistance induces bleb-driven movement in Dictyostelium, which is chemotactic and controlled through PI3-kinase.
Collapse
|
35
|
Veltman DM, Lemieux MG, Knecht DA, Insall RH. PIP₃-dependent macropinocytosis is incompatible with chemotaxis. J Cell Biol 2014; 204:497-505. [PMID: 24535823 PMCID: PMC3926956 DOI: 10.1083/jcb.201309081] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/07/2014] [Indexed: 12/16/2022] Open
Abstract
In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP₃) has been particularly controversial. PIP₃ has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP₃ is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP₃. PIP₃ patches in these cells show no directional bias, and overall only PIP₃-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP₃ patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP₃ patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP₃ promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells.
Collapse
Affiliation(s)
- Douwe M. Veltman
- Beatson Institute for Cancer Research, Glasgow G61 1BD, Scotland, UK
| | - Michael G. Lemieux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Robert H. Insall
- Beatson Institute for Cancer Research, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
36
|
Huang CH, Tang M, Shi C, Iglesias PA, Devreotes PN. An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 2013; 15:1307-16. [PMID: 24142103 PMCID: PMC3838899 DOI: 10.1038/ncb2859] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022]
Abstract
It is generally believed that cytoskeletal activities drive random cell migration while signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving Scar/Wave, Arp 2/3, and actin binding proteins, is only capable of generating rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI3K, and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, displaying wave propagation, refractoriness, and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of “pacemaker” signal transduction and “idling motor” cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration.
Collapse
Affiliation(s)
- Chuan-Hsiang Huang
- 1] Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA [2]
| | | | | | | | | |
Collapse
|
37
|
Kortholt A, Keizer-Gunnink I, Kataria R, Van Haastert PJM. Ras activation and symmetry breaking during Dictyostelium chemotaxis. J Cell Sci 2013; 126:4502-13. [PMID: 23886948 DOI: 10.1242/jcs.132340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
The G alpha subunit Gα8 inhibits proliferation, promotes adhesion and regulates cell differentiation. Dev Biol 2013; 380:58-72. [PMID: 23665473 DOI: 10.1016/j.ydbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Heterotrimeric G protein-mediated signal transduction plays a pivotal role in both vegetative and developmental stages in the eukaryote Dictyostelium discoideum. Here we describe novel functions of the G protein alpha subunit Gα8 during vegetative and development stages. Gα8 is expressed at low levels during vegetative growth. Loss of Gα8 promotes cell proliferation, whereas excess Gα8 expression dramatically inhibits growth and induces aberrant cytokinesis on substrates in a Gβ-dependent manner. Overexpression of Gα8 also leads to increased cell-cell cohesion and cell-substrate adhesion. We demonstrate that the increased cell-cell cohesion is mainly caused by induced CadA expression, and the induced cell-substrate adhesion is responsible for the cytokinesis defects. However, the expression of several putative constitutively active mutants of Gα8 does not augment the phenotypes caused by intact Gα8. Gα8 is strongly induced after starvation, and loss of Gα8 results in decreased expression of certain adhesion molecules including CsA and tgrC1. Interestingly, Gα8 is preferentially distributed in the upper and lower cup of the fruiting body. Lack of Gα8 decreases the expression of the specific marker of the anterior-like cells, suggesting that Gα8 is required for anterior-like cell differentiation.
Collapse
|
39
|
Dictyostelium Ric8 is a nonreceptor guanine exchange factor for heterotrimeric G proteins and is important for development and chemotaxis. Proc Natl Acad Sci U S A 2013; 110:6424-9. [PMID: 23576747 DOI: 10.1073/pnas.1301851110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins couple external signals to the activation of intracellular signal transduction pathways. Agonist-stimulated guanine nucleotide exchange activity of G-protein-coupled receptors results in the exchange of G-protein-bound GDP to GTP and the dissociation and activation of the complex into Gα-GTP and a Gβγ dimer. In Dictyostelium, a basal chemotaxis pathway consisting of heterotrimeric and monomeric G proteins is sufficient for chemotaxis. Symmetry breaking and amplification of chemoattractant sensing occurs between heterotrimeric G protein signaling and Ras activation. In a pull-down screen coupled to mass spectrometry, with Gα proteins as bait, we have identified resistant to inhibitors of cholinesterase 8 (Ric8) as a nonreceptor guanine nucleotide exchange factor for Gα-protein. Ric8 is not essential for the initial activation of heterotrimeric G proteins or Ras by uniform chemoattractant; however, it amplifies Gα signaling, which is essential for Ras-mediated symmetry breaking during chemotaxis and development.
Collapse
|
40
|
O'Day DH, Huber RJ. Matricellular signal transduction involving calmodulin in the social amoebozoan dictyostelium. Genes (Basel) 2013; 4:33-45. [PMID: 24705101 PMCID: PMC3899956 DOI: 10.3390/genes4010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022] Open
Abstract
The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM) sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL) repeat-containing, calmodulin (CaM)-binding protein (CaMBP) CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa) releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa) in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM) has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| | - Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Huber RJ, O'Day DH. A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum. Cell Mol Life Sci 2012; 69:3989-97. [PMID: 22782112 PMCID: PMC11115030 DOI: 10.1007/s00018-012-1068-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/13/2022]
Abstract
Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada,
| | | |
Collapse
|
42
|
Srinivasan K, Wright GA, Hames N, Housman M, Roberts A, Aufderheide KJ, Janetopoulos C. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J Cell Sci 2012; 126:221-33. [PMID: 23132928 DOI: 10.1242/jcs.113415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and unpolarized cells responding to cAMP. Taken together, these findings suggest that similar components control gradient sensing during FA- and cAMP-mediated motility, but the response of polarized cells is more stable, which ultimately helps maintain their directionality.
Collapse
|
43
|
A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 2012; 22:92-103. [PMID: 22264729 DOI: 10.1016/j.devcel.2011.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/19/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
Abstract
Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.
Collapse
|
44
|
Zhao M, Chalmers L, Cao L, Vieira AC, Mannis M, Reid B. Electrical signaling in control of ocular cell behaviors. Prog Retin Eye Res 2012; 31:65-88. [PMID: 22020127 PMCID: PMC3242826 DOI: 10.1016/j.preteyeres.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, UC Davis School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification. EMBO Rep 2011; 12:1273-9. [PMID: 22081140 DOI: 10.1038/embor.2011.210] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/16/2011] [Accepted: 09/22/2011] [Indexed: 11/08/2022] Open
Abstract
Central to chemotaxis is the molecular mechanism by which cells exhibit directed movement in shallow gradients of a chemoattractant. We used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signalling module providing activation of Ras at the leading edge, which is sufficient for chemotaxis. The signalling enzymes PI3K, TorC2, PLA2 and sGC are not required for Ras activation and chemotaxis to folate or to steep gradients of cAMP, but they provide a memory of direction and improved orientation of the cell, which together increase the sensitivity about 150-fold for chemotaxis in shallow cAMP gradients.
Collapse
|
46
|
Das S, Rericha EC, Bagorda A, Parent CA. Direct biochemical measurements of signal relay during Dictyostelium development. J Biol Chem 2011; 286:38649-38658. [PMID: 21911494 DOI: 10.1074/jbc.m111.284182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon starvation, individual Dictyostelium discoideum cells enter a developmental program that leads to collective migration and the formation of a multicellular organism. The process is mediated by extracellular cAMP binding to the G protein-coupled cAMP receptor 1, which initiates a signaling cascade leading to the activation of adenylyl cyclase A (ACA), the synthesis and secretion of additional cAMP, and an autocrine and paracrine activation loop. The release of cAMP allows neighboring cells to polarize and migrate directionally and form characteristic chains of cells called streams. We now report that cAMP relay can be measured biochemically by assessing ACA, ERK2, and TORC2 activities at successive time points in development after stimulating cells with subsaturating concentrations of cAMP. We also find that the activation profiles of ACA, ERK2, and TORC2 change in the course of development, with later developed cells showing a loss of sensitivity to the relayed signal. We examined mutants in PKA activity that have been associated with precocious development and find that this loss in responsiveness occurs earlier in these mutants. Remarkably, we show that this loss in sensitivity correlates with a switch in migration patterns as cells transition from streams to aggregates. We propose that as cells proceed through development, the cAMP-induced desensitization and down-regulation of cAMP receptor 1 impacts the sensitivities of chemotactic signaling cascades leading to changes in migration patterns.
Collapse
Affiliation(s)
- Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin C Rericha
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
| | - Anna Bagorda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
47
|
Hadwiger JA, Nguyen HN. MAPKs in development: insights from Dictyostelium signaling pathways. Biomol Concepts 2011; 2:39-46. [PMID: 21666837 DOI: 10.1515/bmc.2011.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development.
Collapse
Affiliation(s)
- Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| | | |
Collapse
|
48
|
Huber R, O'Day DH. EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling. Cell Signal 2010; 23:731-8. [PMID: 21195758 DOI: 10.1016/j.cellsig.2010.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 02/06/2023]
Abstract
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA(-), carC(-), gpaB(-), gpbA(-)), the endogenous calcium (Ca(2+)) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca(2+) signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1±10.7% and 25.9±2.1% respectively and demonstrate a link between Ca(2+)/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA(-)/carC(-) cells by 844±136% compared to only 106±6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms.
Collapse
Affiliation(s)
- Robert Huber
- Department of Cell & Systems Biology, 25 Harbord Street, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
49
|
Pang TL, Chen FC, Weng YL, Liao HC, Yi YH, Ho CL, Lin CH, Chen MY. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility. J Cell Sci 2010; 123:3745-55. [PMID: 20940261 DOI: 10.1242/jcs.064709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.
Collapse
Affiliation(s)
- Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cellular responses to extracellular guidance cues. EMBO J 2010; 29:2734-45. [PMID: 20717143 DOI: 10.1038/emboj.2010.170] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/05/2010] [Indexed: 01/20/2023] Open
Abstract
Extracellular guidance cues have a key role in orchestrating cell behaviour. They can take many forms, including soluble and cell-bound ligands (proteins, lipids, peptides or small molecules) and insoluble matrix substrates, but to act as guidance cues, they must be presented to the cell in a spatially restricted manner. Cells that recognize such cues respond by activating intracellular signal transduction pathways in a spatially restricted manner and convert the extracellular information into intracellular polarity. Although extracellular cues influence a broad range of cell polarity decisions, such as mitotic spindle orientation during asymmetric cell division, or the establishment of apical-basal polarity in epithelia, this review will focus specifically on guidance cues that promote cell migration (chemotaxis), or localized cell shape changes (chemotropism).
Collapse
|