1
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Song YJ, Shinn MK, Bangru S, Wang Y, Sun Q, Hao Q, Chaturvedi P, Freier SM, Perez-Pinera P, Nelson ER, Belmont AS, Guttman M, Prasanth SG, Kalsotra A, Pappu RV, Prasanth KV. Chromatin-associated lncRNA-splicing factor condensates regulate hypoxia responsive RNA processing of genes pre-positioned near nuclear speckles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621310. [PMID: 39554052 PMCID: PMC11565956 DOI: 10.1101/2024.10.31.621310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypoxia-induced alternative splicing (AS) regulates tumor progression and metastasis. Little is known about how such AS is controlled and whether higher-order genome and nuclear domain (ND) organizations dictate these processes. We observe that hypoxia-responsive alternatively spliced genes position near nuclear speckle (NS), the ND that enhances splicing efficiency. NS-resident MALAT1 long noncoding RNA, induced in response to hypoxia, regulates hypoxia-responsive AS. MALAT1 achieves this by organizing the SR-family of splicing factor, SRSF1, near NS and regulating the binding of SRSF1 to pre-mRNAs. Mechanistically, MALAT1 enhances the recruitment of SRSF1 to elongating RNA polymerase II (pol II) by promoting the formation of phase-separated condensates of SRSF1, which are preferentially recognized by pol II. During hypoxia, MALAT1 regulates spatially organized AS by establishing a threshold SRSF1 concentration near NSs, potentially by forming condensates, critical for pol II-mediated recruitment of SRSF1 to pre-mRNAs.
Collapse
|
3
|
Strom AR, Eeftens JM, Polyachenko Y, Weaver CJ, Watanabe HF, Bracha D, Orlovsky ND, Jumper CC, Jacobs WM, Brangwynne CP. Interplay of condensation and chromatin binding underlies BRD4 targeting. Mol Biol Cell 2024; 35:ar88. [PMID: 38656803 PMCID: PMC11238092 DOI: 10.1091/mbc.e24-01-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Collapse
Affiliation(s)
- Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Jorine M. Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 XZ Nijmegen, Netherlands
| | - Yury Polyachenko
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Claire J. Weaver
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular and Cellular Biology, Princeton University, Princeton, NJ 08544
| | | | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Biotechnology and Food Engineering, Technion, Haifa 3200, Israel
| | - Natalia D. Orlovsky
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA 02115
| | - Chanelle C. Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Nereid Therapeutics, Boston, MA
| | | | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
4
|
Shin S, Shi G, Cho HW, Thirumalai D. Transcription-induced active forces suppress chromatin motion. Proc Natl Acad Sci U S A 2024; 121:e2307309121. [PMID: 38489381 PMCID: PMC10963020 DOI: 10.1073/pnas.2307309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
The organization of interphase chromosomes in a number of species is starting to emerge thanks to advances in a variety of experimental techniques. However, much less is known about the dynamics, especially in the functional states of chromatin. Some experiments have shown that the motility of individual loci in human interphase chromosome decreases during transcription and increases upon inhibiting transcription. This is a counterintuitive finding because it is thought that the active mechanical force (F) on the order of ten piconewtons, generated by RNA polymerase II (RNAPII) that is presumably transmitted to the gene-rich region of the chromatin, would render it more open, thus enhancing the mobility. We developed a minimal active copolymer model for interphase chromosomes to investigate how F affects the dynamical properties of chromatin. The movements of the loci in the gene-rich region are suppressed in an intermediate range of F and are enhanced at small F values, which has also been observed in experiments. In the intermediate F, the bond length between consecutive loci increases, becoming commensurate with the distance at the minimum of the attractive interaction between nonbonded loci. This results in a transient disorder-to-order transition, leading to a decreased mobility during transcription. Strikingly, the F-dependent change in the locus dynamics preserves the organization of the chromosome at [Formula: see text]. Transient ordering of the loci, which is not found in the polymers with random epigenetic profiles, in the gene-rich region might be a plausible mechanism for nucleating a dynamic network involving transcription factors, RNAPII, and chromatin.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Materials Science, University of Illinois, Urbana, IL61801
| | - Hyun Woo Cho
- Department of Fine Chemistry and Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul01811, Republic of Korea
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712
- Department of Physics, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
5
|
Sung HM, Schott J, Boss P, Lehmann JA, Hardt MR, Lindner D, Messens J, Bogeski I, Ohler U, Stoecklin G. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J Cell Biol 2023; 222:e202111151. [PMID: 37956386 PMCID: PMC10641589 DOI: 10.1083/jcb.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Hsu-Min Sung
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Boss
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Janina A. Lehmann
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Roland Hardt
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
6
|
Vester K, Preußner M, Holton N, Feng S, Schultz C, Heyd F, Wahl MC. Recruitment of a splicing factor to the nuclear lamina for its inactivation. Commun Biol 2022; 5:736. [PMID: 35869234 PMCID: PMC9307855 DOI: 10.1038/s42003-022-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Precursor messenger RNA splicing is a highly regulated process, mediated by a complex RNA-protein machinery, the spliceosome, that encompasses several hundred proteins and five small nuclear RNAs in humans. Emerging evidence suggests that the spatial organization of splicing factors and their spatio-temporal dynamics participate in the regulation of splicing. So far, methods to manipulate the spatial distribution of splicing factors in a temporally defined manner in living cells are missing. Here, we describe such an approach that takes advantage of a reversible chemical dimerizer, and outline the requirements for efficient, reversible re-localization of splicing factors to selected sub-nuclear compartments. In a proof-of-principle study, the partial re-localization of the PRPF38A protein to the nuclear lamina in HEK293T cells induced a moderate increase in intron retention. Our approach allows fast and reversible re-localization of splicing factors, has few side effects and can be applied to many splicing factors by fusion of a protein tag through genome engineering. Apart from the systematic analysis of the spatio-temporal aspects of splicing regulation, the approach has a large potential for the fast induction and reversal of splicing switches and can reveal mechanisms of splicing regulation in native nuclear environments. Through the use of a reversible chemical dimerizer, the splicing factor PRPF38A is re-localized to the nuclear lamina, paving the way for a systematic analysis of spatio-temporal splicing regulation.
Collapse
|
7
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
9
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
10
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
11
|
Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y, Ma J, Belmont AS. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 2021; 31:251-264. [PMID: 33355299 PMCID: PMC7849416 DOI: 10.1101/gr.266239.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
14
|
Smith KP, Hall LL, Lawrence JB. Nuclear hubs built on RNAs and clustered organization of the genome. Curr Opin Cell Biol 2020; 64:67-76. [PMID: 32259767 DOI: 10.1016/j.ceb.2020.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the 'karyotype to hub' hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.
Collapse
Affiliation(s)
- Kelly P Smith
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Ghaemi Z, Peterson JR, Gruebele M, Luthey-Schulten Z. An in-silico human cell model reveals the influence of spatial organization on RNA splicing. PLoS Comput Biol 2020; 16:e1007717. [PMID: 32210422 PMCID: PMC7094823 DOI: 10.1371/journal.pcbi.1007717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 01/12/2023] Open
Abstract
Spatial organization is a characteristic of all cells, achieved in eukaryotic cells by utilizing both membrane-bound and membrane-less organelles. One of the key processes in eukaryotes is RNA splicing, which readies mRNA for translation. This complex and highly dynamical chemical process involves assembly and disassembly of many molecules in multiple cellular compartments and their transport among compartments. Our goal is to model the effect of spatial organization of membrane-less organelles (specifically nuclear speckles) and of organelle heterogeneity on splicing particle biogenesis in mammalian cells. Based on multiple sources of complementary experimental data, we constructed a spatial model of a HeLa cell to capture intracellular crowding effects. We then developed chemical reaction networks to describe the formation of RNA splicing machinery complexes and splicing processes within nuclear speckles (specific type of non-membrane-bound organelles). We incorporated these networks into our spatially-resolved human cell model and performed stochastic simulations for up to 15 minutes of biological time, the longest thus far for a eukaryotic cell. We find that an increase (decrease) in the number of nuclear pore complexes increases (decreases) the number of assembled splicing particles; and that compartmentalization is critical for the yield of correctly-assembled particles. We also show that a slight increase of splicing particle localization into nuclear speckles leads to a disproportionate enhancement of mRNA splicing and a reduction in the noise of generated mRNA. Our model also predicts that the distance between genes and speckles has a considerable effect on the mRNA production rate, with genes located closer to speckles producing mRNA at higher levels, emphasizing the importance of genome organization around speckles. The HeLa cell model, including organelles and sub-compartments, provides a flexible foundation to study other cellular processes that are strongly modulated by spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Zhaleh Ghaemi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Joseph R. Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
16
|
Bartholomé O, Franck C, Piscicelli P, Lalun N, Defourny J, Renauld J, Thelen N, Lamaye F, Ploton D, Thiry M. Relationships between the structural and functional organization of the turtle cell nucleolus. J Struct Biol 2019; 208:107398. [PMID: 31585176 DOI: 10.1016/j.jsb.2019.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
The nucleolus is a multifunctional structure of the eukaryotic cell nucleus. However, its primary role is ribosome formation. Although the factors and mechanisms involved in ribogenesis are well conserved in eukaryotes, two types of nucleoli have been observed under the electron microscope: a tricompartmentalized nucleolus in amniotes and a bicompartmentalized nucleolus in other species. A recent study has also revealed that turtles, although belonging to amniotes, displayed a nucleolus with bipartite organization, suggesting that this reptile group may have carried out a reversion phenomenon during evolution. In this study, we examine in great detail the functional organization of the turtle nucleolus. In liver and spleen cells cultured in vitro, we confirm that the turtle nucleolus is mainly formed by two components: a fibrillar zone surrounded by a granular zone. We further show that the fibrillar zone includes densely-contrasted strands, which are positive after silver-stained Nucleolar Organizer Region (Ag-NOR) staining and DNA labelling. We also reveal that the dense strands condensed into a very compact mass within the fibrillar zone after a treatment with actinomycin D or 5,6-dichlorobenzimidazole riboside. Finally, by using pulse-chase experiments with BrUTP, three-dimensional image reconstructions of confocal optical sections, and electron microscopy analysis of ultrathin sections, we show that the topological and spatial dynamics of rRNA within the nucleolus extend from upstream binding factor (UBF)-positive sites in the fibrillar zone to the granular zone, without ever releasing the positive sites for the UBF. Together, these results seem to clearly indicate that the compartmentalization of the turtle nucleolus into two main components reflects a less orderly organization of ribosome formation.
Collapse
Affiliation(s)
- Odile Bartholomé
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Claire Franck
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Patricia Piscicelli
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Nathalie Lalun
- UMRCNRS 6237, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Jean Defourny
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Justine Renauld
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Nicolas Thelen
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Françoise Lamaye
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium
| | - Dominique Ploton
- UMRCNRS 6237, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Marc Thiry
- Unit of Cell Biology, GIGA-Neurosciences, University of Liege, CHU Sart-Tilman, B36, 4000 Liege, Belgium.
| |
Collapse
|
17
|
Chen Y, Belmont AS. Genome organization around nuclear speckles. Curr Opin Genet Dev 2019; 55:91-99. [PMID: 31394307 DOI: 10.1016/j.gde.2019.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Higher eukaryotic cell nuclei are highly compartmentalized into bodies and structural assemblies of specialized functions. Nuclear speckles/IGCs are one of the most prominent nuclear bodies, yet their functional significance remains largely unknown. Recent advances in sequence-based mapping of nuclear genome organization now provide genome-wide analysis of chromosome organization relative to nuclear speckles. Here we review older microscopy-based studies on a small number of genes with the new genomic mapping data suggesting a significant fraction of the genome is almost deterministically positioned near nuclear speckles. Both microscopy and genomic-based approaches support the concept of the nuclear speckle periphery as a major active chromosomal compartment which may play an important role in fine-tuning gene regulation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Epstein-Barr Virus-Induced Nodules on Viral Replication Compartments Contain RNA Processing Proteins and a Viral Long Noncoding RNA. J Virol 2018; 92:JVI.01254-18. [PMID: 30068640 DOI: 10.1128/jvi.01254-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
Profound alterations in host cell nuclear architecture accompany the lytic phase of Epstein-Barr virus (EBV) infection. Viral replication compartments assemble, host chromatin marginalizes to the nuclear periphery, cytoplasmic poly(A)-binding protein translocates to the nucleus, and polyadenylated mRNAs are sequestered within the nucleus. Virus-induced changes to nuclear architecture that contribute to viral host shutoff (VHS) must accommodate selective processing and export of viral mRNAs. Here we describe additional previously unrecognized nuclear alterations during EBV lytic infection in which viral and cellular factors that function in pre-mRNA processing and mRNA export are redistributed. Early during lytic infection, before formation of viral replication compartments, two cellular pre-mRNA splicing factors, SC35 and SON, were dispersed from interchromatin granule clusters, and three mRNA export factors, Y14, ALY, and NXF1, were depleted from the nucleus. During late lytic infection, virus-induced nodular structures (VINORCs) formed at the periphery of viral replication compartments. VINORCs were composed of viral (BMLF1 and BGLF5) and cellular (SC35, SON, SRp20, and NXF1) proteins that mediate pre-mRNA processing and mRNA export. BHLF1 long noncoding RNA was invariably found in VINORCs. VINORCs did not contain other nodular nuclear cellular proteins (PML or coilin), nor did they contain viral proteins (BRLF1 or BMRF1) found exclusively within replication compartments. VINORCs are novel EBV-induced nuclear structures. We propose that EBV-induced dispersal and depletion of pre-mRNA processing and mRNA export factors during early lytic infection contribute to VHS; subsequent relocalization of these pre-mRNA processing and mRNA export proteins to VINORCs and viral replication compartments facilitates selective processing and export of viral mRNAs.IMPORTANCE In order to make protein, mRNA transcribed from DNA in the nucleus must enter the cytoplasm. Nuclear export of mRNA requires correct processing of mRNAs by enzymes that function in splicing and nuclear export. During the Epstein-Barr virus (EBV) lytic cycle, nuclear export of cellular mRNAs is blocked, yet export of viral mRNAs is facilitated. Here we report the dispersal and dramatic reorganization of cellular (SC35, SON, SRp20, Y14, ALY, and NXF1) and viral (BMLF1 and BGLF5) proteins that play key roles in pre-mRNA processing and export of mRNA. These virus-induced nuclear changes culminate in formation of VINORCs, novel nodular structures composed of viral and cellular RNA splicing and export factors. VINORCs localize to the periphery of viral replication compartments, where viral mRNAs reside. These EBV-induced changes in nuclear organization may contribute to blockade of nuclear export of host mRNA, while enabling selective processing and export of viral mRNA.
Collapse
|
19
|
Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, Adam SA, Goldman R, van Steensel B, Ma J, Belmont AS. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J Cell Biol 2018; 217:4025-4048. [PMID: 30154186 PMCID: PMC6219710 DOI: 10.1083/jcb.201807108] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023] Open
Abstract
Chen et al. present TSA-Seq, a new mapping method that measures cytological distances relative to spatially distinct nuclear subcompartments. From novel nuclear organization maps of human cells, they identify transcription hot zones of high gene density that are near nuclear speckles and enriched in highly expressed genes, housekeeping genes, and genes with low transcriptional pausing. While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a “cytological ruler” for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription “hot zones.” Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL.,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Eva K Brinkman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
20
|
Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM, Pappu RV, Prasanth KV, Ha T. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci 2017; 130:4180-4192. [PMID: 29133588 DOI: 10.1242/jcs.206854] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.
Collapse
Affiliation(s)
- Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA .,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Mahdieh Jadaliha
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler S Harmon
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Isaac T S Li
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, British Columbia, Canada, V1V 1V7
| | - Boyang Hua
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew Reyer
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Creamer KM, Lawrence JB. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160360. [PMID: 28947659 PMCID: PMC5627162 DOI: 10.1098/rstb.2016.0360] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST, but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA 'coats' euchromatin and may impact chromosome architecture in a manner opposite of XIST A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- K M Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J B Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
22
|
Li R, Harvey AR, Hodgetts SI, Fox AH. Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA (NEW YORK, N.Y.) 2017; 23:872-881. [PMID: 28325845 PMCID: PMC5435860 DOI: 10.1261/rna.059477.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/07/2017] [Indexed: 05/16/2023]
Abstract
Large numbers of long noncoding RNAs have been discovered in recent years, but only a few have been characterized. NEAT1 (nuclear paraspeckle assembly transcript 1) is a mammalian long noncoding RNA that is important for the reproductive physiology of mice, cancer development, and the formation of subnuclear bodies termed paraspeckles. The two major isoforms of NEAT1 (3.7 kb NEAT1_1 and 23 kb NEAT1_2 in human) are generated from a common promoter and are produced through the use of alternative transcription termination sites. This gene structure has made the functional relationship between the two isoforms difficult to dissect. Here we used CRISPR-Cas9 genome editing to create several different cell lines: total NEAT1 knockout cells, cells that only express the short form NEAT1_1, and cells with twofold more NEAT1_2. Using these reagents, we obtained evidence that NEAT1_1 is not a major component of paraspeckles. In addition, our data suggest NEAT1_1 localizes in numerous nonparaspeckle foci we termed "microspeckles," which may carry paraspeckle-independent functions. This study highlights the complexity of lncRNA and showcases how genome editing tools are useful in dissecting the structural and functional roles of overlapping transcripts.
Collapse
Affiliation(s)
- Ruohan Li
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
| | - Archa H Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
23
|
Aubol BE, Hailey KL, Fattet L, Jennings PA, Adams JA. Redirecting SR Protein Nuclear Trafficking through an Allosteric Platform. J Mol Biol 2017; 429:2178-2191. [PMID: 28576472 DOI: 10.1016/j.jmb.2017.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Although phosphorylation directs serine-arginine (SR) proteins from nuclear storage speckles to the nucleoplasm for splicing function, dephosphorylation paradoxically induces similar movement, raising the question of how such chemical modifications are balanced in these essential splicing factors. In this new study, we investigated the interaction of protein phosphatase 1 (PP1) with the SR protein splicing factor (SRSF1) to understand the foundation of these opposing effects in the nucleus. We found that RNA recognition motif 1 (RRM1) in SRSF1 binds PP1 and represses its catalytic function through an allosteric mechanism. Disruption of RRM1-PP1 interactions reduces the phosphorylation status of the RS domain in vitro and in cells, redirecting SRSF1 in the nucleus. The data imply that an allosteric SR protein-phosphatase platform balances phosphorylation levels in a "goldilocks" region for the proper subnuclear storage of an SR protein splicing factor.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Kendra L Hailey
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
24
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
25
|
Yang YA, Kim J, Yu J. Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer. APPLICATION OF CLINICAL GENETICS 2014; 7:81-91. [PMID: 24876790 PMCID: PMC4036145 DOI: 10.2147/tacg.s35598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, facilitated by rapid technological advances, we are becoming more adept at probing the molecular processes, which take place in the nucleus, that are crucial for the hierarchical regulation and organization of chromatin architecture. With an unprecedented level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, modifications, chromosome territories, and DNA looping) and mechanisms underlying their establishment, provides invaluable insight into physiological as well as pathological phenomena. In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently observed oncogenic alterations associated with chromatin conformation, while emphasizing the TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and its functions in compromising the chromatin landscape in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA ; Robert H Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Moelans CB, Holst F, Hellwinkel O, Simon R, van Diest PJ. ESR1 amplification in breast cancer by optimized RNase FISH: frequent but low-level and heterogeneous. PLoS One 2013; 8:e84189. [PMID: 24367641 PMCID: PMC3867473 DOI: 10.1371/journal.pone.0084189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023] Open
Abstract
Prevalence of ESR1 amplification in breast cancer is highly disputed and discrepancies have been related to different technical protocols and different scoring approaches. In addition, pre-mRNA artifacts have been proposed to influence outcome of ESR1 FISH analysis. We analyzed ESR1 gene copy number status combining an improved RNase FISH protocol with multiplex ligation-dependent probe amplification (MLPA) after laser microdissection. FISH showed a high prevalence of ESR1 gains and amplifications despite RNase treatment but MLPA did not confirm ESR1 copy number increases detected by FISH in more than half of cases. We suggest that the combination of the ESR1-specific intra-tumor heterogeneity and low-level copy number increase accounts for these discrepancies.
Collapse
Affiliation(s)
- Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederik Holst
- Section of Gynecology and Obstetrics, Department of Clinical Science, Haukeland University Hospital, Bergen, Norway
- Department of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Olaf Hellwinkel
- Department of Legal Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Misteli T, Spector DL. Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol 2012; 7:135-8. [PMID: 17708924 DOI: 10.1016/s0962-8924(96)20043-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Controlled execution of transcription and pre-mRNA splicing is crucial for proper gene expression. The organization of these essential events within the cell nucleus is only beginning to be understood. Here, we describe a model for the cellular arrangement of transcription and pre-mRNA splicing based on recent biochemical and morphological data: transcription and pre-mRNA splicing are spatially and temporally coordinated, and protein phosphorylation regulates both the activity and the subnuclear localization of pre-mRNA splicing factors in nuclear subcompartments.
Collapse
|
28
|
Rivera-Molina YA, Rojas BR, Tang Q. Nuclear domain 10-associated proteins recognize and segregate intranuclear DNA/protein complexes to negate gene expression. Virol J 2012; 9:222. [PMID: 23021128 PMCID: PMC3502357 DOI: 10.1186/1743-422x-9-222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/27/2012] [Indexed: 11/29/2022] Open
Abstract
Background DNA viruses, such as herpes simplex virus type 1 (HSV-1), Simian virus 40 (SV40), and Cytomegaloviruses (CMV), start their replicative processes and transcription at specific nuclear domains known as ND10 (nuclear domain 10, also called PML bodies). It has been previously determined that for HSV-1 and SV40, a short DNA sequence and its binding protein are required and sufficient for cell localization of viral DNA replication and gene transcription. Results Our recent observations provide evidence that a foreign (not endogenous) DNA/protein complex in the nucleus recruits ND10 proteins. First, the complexes formed from the bacterial lac operator DNA and its binding protein (lac repressor), or from HPV11 (human papillomavirus 11) origin DNA and its binding protein (E2), co-localized with different ND10 proteins. Second, the HSV-1 amplicon without inserted lac operator DNA repeats distributed in the nucleus randomly, whereas the amplicon with lac operator DNA repeats associated with ND10, suggesting that DNA-binding proteins are required to localize at ND10. The cellular intrinsic DNA/protein complex (as detected for U2 DNA) showed no association with ND10. Furthermore, our examination of PML−/−, Daxx−/−, and Sp100-negative cells led to our discovering that DNA/protein complexes recruit ND10 protein independently. Using the GFP-LacI/Operator system, we were able to direct the transfected DNA to ND10 and found that gene expression was significantly repressed when the transfected DNA was directed to ND10. Conclusion Taken together, the results suggest that cells recognize DNA/protein complexes through a mechanism that involves interaction with the ND10-associated proteins.
Collapse
Affiliation(s)
- Yisel A Rivera-Molina
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce, 00716, Puerto Rico
| | | | | |
Collapse
|
29
|
Weston DJ, Adams NM, Russell RA, Stephens DA, Freemont PS. Analysis of spatial point patterns in nuclear biology. PLoS One 2012; 7:e36841. [PMID: 22615822 PMCID: PMC3353971 DOI: 10.1371/journal.pone.0036841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 04/16/2012] [Indexed: 12/31/2022] Open
Abstract
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells.
Collapse
Affiliation(s)
- David J Weston
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Ooi A, Inokuchi M, Harada S, Inazawa J, Tajiri R, Kitamura SS, Ikeda H, Kawashima H, Dobashi Y. Gene amplification of ESR1 in breast cancers--fact or fiction? A fluorescence in situ hybridization and multiplex ligation-dependent probe amplification study. J Pathol 2012; 227:8-16. [PMID: 22170254 DOI: 10.1002/path.3974] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/03/2023]
Abstract
Oestrogen receptor-alpha (ERα), encoded by the ESR1 gene located on 6q25, is a nuclear transcription factor. Since it was reported in 2007 that more than 20% of breast cancers show ESR1 gene amplification, there has been considerable controversy about its frequency and clinical significance. We set out to assess the frequency and levels of ESR1 amplification in breast cancers. In a total of 106 breast needle biopsy specimens examined by immunohistochemistry, 78 tumours contained more than 10% ERα-positive cancer cells. In fluorescence in situ hybridization (FISH) analysis with an ESR1-specific probe, variously extended ESR1 signals were found in ERα-expressing cells. Some of these were indistinguishable from large clustered signals generally accepted to mean high-level gene amplification in homogeneously staining regions (HSRs), and could be considered to represent gene amplification. However, with RNase treatment, the 'HSR-like' signals changed to small compact signals, and are thus thought to represent concentrated RNA. FISH using two differently labelled probes corresponding to the non-overlapping 5'- and 3'-end portions of the ESR1 gene on touch smears showed a preserved spatial relationship of the 3' to 5' sequence of ESR1, therefore strongly suggesting that the RNA consisted of primary transcripts. Using touch smears obtained from 51 fresh tumours, precise enumeration of ESR1 signals with a correction by the number of centromere 6 on FISH after RNase A treatment revealed that three tumours (5.9%) had tumour cells with one to three additional copies of ESR1 as predominant subpopulations. This infrequent and low level of gene amplification of ESR1 was also detected as a 'gain' of the gene by analysis with multiplex ligation-dependent probe amplification (MLPA). The consistent results from immunohistochemistry, FISH, and MLPA in the present study settle the long-standing debate concerning gene amplification of ESR1 in breast carcinoma.
Collapse
Affiliation(s)
- Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Boothby TC, Wolniak SM. Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of Mago nashi. BMC Cell Biol 2011; 12:45. [PMID: 21995518 PMCID: PMC3205038 DOI: 10.1186/1471-2121-12-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022] Open
Abstract
Background Many rapidly developing systems rely on the regulated translation of stored transcripts for the formation of new proteins essential for morphogenesis. The microspores of the water fern Marsilea vestita dehydrate as they mature. During this process both mRNA and proteins required for subsequent development are stored within the microspores as they become fully desiccated and enter into senescence. At this point microspores become transcriptionally silent and remain so upon rehydration and for the remainder of spermatogenesis. Transcriptional silencing coupled with the translation of preformed RNA makes the microspore of M. vestita a useful system in which to study post-transcriptional regulation of RNA. Results We have characterized the distribution of mRNA as well as several conserved markers of subnuclear bodies within the nuclei of desiccating spores. During this period, nuclear speckles containing RNA were seen to aggregate forming a single large coalescence. We found that aggregated speckles contain several masked mRNA species known to be essential for spermatogenesis. During spermatogenesis masked mRNA and associated speckle proteins were shown to fragment and asymmetrically localize to spermatogenous but not sterile cells. This asymmetric localization was disrupted by RNAi knockdown of the Marsilea homolog of the Exon Junction Complex core component Mago nashi. Conclusions A subset of masked mRNA is stored in association with nuclear speckles during the dormant phase of microspore development in M. vestita. The asymmetric distribution of specific mRNAs to spermatogenous but not sterile cells mirrors their translational activities and appears to require the EJC or EJC components. This suggests a novel role for nuclear speckles in the post-transcriptional regulation of transcripts.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
32
|
Elizondo LI, Jafar-Nejad P, Clewing JM, Boerkoel CF. Gene clusters, molecular evolution and disease: a speculation. Curr Genomics 2011; 10:64-75. [PMID: 19721813 PMCID: PMC2699835 DOI: 10.2174/138920209787581271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/20/2008] [Accepted: 12/21/2008] [Indexed: 01/10/2023] Open
Abstract
Traditionally eukaryotic genes are considered independently expressed under the control of their promoters and cis-regulatory domains. However, recent studies in worms, flies, mice and humans have shown that genes co-habiting a chromatin domain or “genomic neighborhood” are frequently co-expressed. Often these co-expressed genes neither constitute part of an operon nor function within the same biological pathway. The mechanisms underlying the partitioning of the genome into transcriptional genomic neighborhoods are poorly defined. However, cross-species analyses find that the linkage among the co-expressed genes of these clusters is significantly conserved and that the expression patterns of genes within clusters have coevolved with the clusters. Such selection could be mediated by chromatin interactions with the nuclear matrix and long-range remodeling of chromatin structure. In the context of human disease, we propose that dysregulation of gene expression across genomic neighborhoods will cause highly pleiotropic diseases. Candidate genomic neighborhood diseases include the nuclear laminopathies, chromosomal translocations and genomic instability disorders, imprinting disorders of errant insulator function, syndromes from impaired cohesin complex assembly, as well as diseases of global covalent histone modifications and DNA methylation. The alteration of transcriptional genomic neighborhoods provides an exciting and novel model for studying epigenetic alterations as quantitative traits in complex common human diseases.
Collapse
|
33
|
Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JAT, Chanda SK, König R, Malani N, Berry CC, Bushman FD. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 2011; 7:e1001313. [PMID: 21423673 PMCID: PMC3053352 DOI: 10.1371/journal.ppat.1001313] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 02/03/2011] [Indexed: 12/22/2022] Open
Abstract
Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration. HIV continues to be responsible for approximately two million deaths worldwide each year. As part of the viral replication cycle, the viral cDNA is transported through the nuclear pore into the nucleus where it integrates into the host cell genome. HIV integrates non-randomly, likely choosing integration sites within the host chromosomes that best enable the viral genes to be expressed and, ultimately, progeny virus to be produced. HIV uses host factors to guide its selection of integration sites. Here we demonstrate that components of the nuclear trafficking and nuclear pore machinery are required for HIV to achieve its normal pattern of integration sites. This finding suggests that passage of the virus through the nuclear pore into the nucleus is coupled to downstream integration events and enables the virus to achieve its final position within the host genome. Our study provides new insights into two important steps of the HIV replication cycle and suggests possible new targets for anti-retroviral drugs.
Collapse
Affiliation(s)
- Karen E. Ocwieja
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Troy L. Brady
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alyssa Huegel
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shoshannah L. Roth
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Torsten Schaller
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Leo C. James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - John A. T. Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Renate König
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles C. Berry
- Department of Family/Preventive Medicine, University of California, San Diego School of Medicine, San Diego, California, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20-50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery.
Collapse
Affiliation(s)
- David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
35
|
Sánchez-Álvarez M, Sánchez-Hernández N, Suñé C. Spatial Organization and Dynamics of Transcription Elongation and Pre-mRNA Processing in Live Cells. GENETICS RESEARCH INTERNATIONAL 2011; 2011:626081. [PMID: 22567362 PMCID: PMC3335512 DOI: 10.4061/2011/626081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
Abstract
During the last 30 years, systematic biochemical and functional studies have significantly expanded our knowledge of the transcriptional molecular components and the pre-mRNA processing machinery of the cell. However, our current understanding of how these functions take place spatiotemporally within the highly compartmentalized eukaryotic nucleus remains limited. Moreover, it is increasingly clear that “the whole is more than the sum of its parts” and that an understanding of the dynamic coregulation of genes is essential for fully characterizing complex biological phenomena and underlying diseases. Recent technological advances in light microscopy in addition to novel cell and molecular biology approaches have led to the development of new tools, which are being used to address these questions and may contribute to achieving an integrated and global understanding of how the genome works at a cellular level. Here, we review major hallmarks and novel insights in RNA polymerase II activity and pre-mRNA processing in the context of nuclear organization, as well as new concepts and challenges arising from our ability to gather extensive dynamic information at the single-cell resolution.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Dynamical Cell Systems Team, Section of Cellular and Molecular Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | |
Collapse
|
36
|
Szczerbal I, Bridger JM. Association of adipogenic genes with SC-35 domains during porcine adipogenesis. Chromosome Res 2010; 18:887-95. [PMID: 21127962 DOI: 10.1007/s10577-010-9176-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Spatial organization of the genome within interphase nuclei is non-random. It has been shown that not only whole chromosomes but also individual genes occupy specific nuclear locations and these locations can be changed during different processes like differentiation or disease. Using a porcine in vitro adipogenesis stem cell differentiation system as a model to study nuclear organization, it was demonstrated that nuclear position of selected genes involved in porcine adipogenesis was altered with the up-regulation of gene expression, correlating with these genes becoming more internally located within nuclei, without whole territory relocation. Here, we investigated whether the gene relocation observed during porcine adipogenesis is related to spatial co-association with SC-35 domains. These domains are nuclear speckles enriched in numerous splicing and RNA metabolic factors. Using a DNA immuno-FISH approach we investigated the localisation of three adipogenic genes (PPARG, SREBF1, and FABP4) with SC-35 domains in porcine mesenchymal stem cells and after they were differentiated into adipocytes. We found that the location of these genes relative to SC-35 domains was non-random and correlated with the up-regulation of gene expression. In addition, we observed more frequent clustering of the studied genes located on different chromosomes around the same nuclear speckle in differentiated adipocytes than in mesenchymal stem cells. However, the choice of the domain was more random. This study adds to the evidence that SC-35 domains are hubs of gene activity and gene-domain association may be considered as a common mechanism to enhance gene expression.
Collapse
Affiliation(s)
- Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland,
| | | |
Collapse
|
37
|
Hu Y, Plutz M, Belmont AS. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. ACTA ACUST UNITED AC 2010; 191:711-9. [PMID: 21059845 PMCID: PMC2983068 DOI: 10.1083/jcb.201004041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
An Hsp70 transgene system is used to identify cis-elements required for gene-specific association with nuclear speckles. Many mammalian genes localize near nuclear speckles, nuclear bodies enriched in ribonucleic acid–processing factors. In this paper, we dissect cis-elements required for nuclear speckle association of the heat shock protein 70 (Hsp70) locus. We show that speckle association is a general property of Hsp70 bacterial artificial chromosome transgenes, independent of the chromosome integration site, and can be recapitulated using a 2.8-kilobase HSPA1A gene fragment. Association of Hsp70 transgenes and their transcripts with nuclear speckles is transcription dependent, independent of the transcribed sequence identity, but dependent on the Hsp70 promoter sequence. Transgene speckle association does not correlate with the amount of transcript accumulation, with large transgene arrays driven by different promoters showing no speckle association, but smaller Hsp70 transgene arrays with lower transcript accumulation showing high speckle association. Moreover, despite similar levels of transcript accumulation, Hsp70 transgene speckle association is observed after heat shock but not cadmium treatment. We suggest that certain promoters may direct specific chromatin and/or transcript ribonucleoprotein modifications, leading to nuclear speckle association.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
38
|
Dias AP, Dufu K, Lei H, Reed R. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 2010; 1:97. [PMID: 20981025 DOI: 10.1038/ncomms1103] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
The TREX complex, which functions in mRNA export, is recruited to mRNA during splicing. Both the splicing machinery and the TREX complex are concentrated in 20-50 discrete foci known as nuclear speckle domains. In this study, we use a model system where DNA constructs are microinjected into HeLa cell nuclei, to follow the fates of the transcripts. We show that transcripts lacking functional splice sites, which are inefficiently exported, do not associate with nuclear speckle domains but are instead distributed throughout the nucleoplasm. In contrast, pre-mRNAs containing functional splice sites accumulate in nuclear speckles, and our data suggest that splicing occurs in these domains. When the TREX components UAP56 or Aly are knocked down, spliced mRNA, as well as total polyA+ RNA, accumulates in nuclear speckle domains. Together, our data raise the possibility that pre-mRNA undergoes splicing in nuclear speckle domains, before their release by TREX components for efficient export to the cytoplasm.
Collapse
Affiliation(s)
- Anusha P Dias
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
39
|
Zheng R, Shen Z, Tripathi V, Xuan Z, Freier SM, Bennett CF, Prasanth SG, Prasanth KV. Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci 2010; 123:3734-44. [PMID: 20940252 DOI: 10.1242/jcs.070466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In higher eukaryotic cells, long non-protein-coding RNAs (lncRNAs) have been implicated in a wide array of cellular functions. Cell- or tissue-specific expression of lncRNA genes encoded in the mammalian genome is thought to contribute to the complex gene networks needed to regulate cellular function. Here, we have identified a novel species of polypurine triplet repeat-rich lncRNAs, designated as GAA repeat-containing RNAs (GRC-RNAs), that localize to numerous punctate foci in the mammalian interphase nuclei. GRC-RNAs consist of a heterogeneous population of RNAs, ranging in size from ~1.5 kb to ~4 kb and localize to subnuclear domains, several of which associate with GAA.TTC-repeat-containing genomic regions. GRC-RNAs are components of the nuclear matrix and interact with various nuclear matrix-associated proteins. In mitotic cells, GRC-RNAs form distinct cytoplasmic foci and, in telophase and G1 cells, localize to the midbody, a structure involved in accurate cell division. Differentiation of tissue culture cells leads to a decrease in the number of GRC-RNA nuclear foci, albeit with an increase in size as compared with proliferating cells. Conversely, the number of GRC-RNA foci increases during cellular transformation. We propose that nuclear GRC-RNAs represent a novel family of mammalian lncRNAs that might play crucial roles in the cell nucleus.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010; 107:15093-8. [PMID: 20689044 DOI: 10.1073/pnas.1009945107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.
Collapse
|
41
|
Abstract
Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 2009; 42:53-61. [PMID: 20010836 DOI: 10.1038/ng.496] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
The discovery of interchromosomal interactions in higher eukaryotes points to a functional interplay between genome architecture and gene expression, challenging the view of transcription as a one-dimensional process. However, the extent of interchromosomal interactions and the underlying mechanisms are unknown. Here we present the first genome-wide analysis of transcriptional interactions using the mouse globin genes in erythroid tissues. Our results show that the active globin genes associate with hundreds of other transcribed genes, revealing extensive and preferential intra- and interchromosomal transcription interactomes. We show that the transcription factor Klf1 mediates preferential co-associations of Klf1-regulated genes at a limited number of specialized transcription factories. Our results establish a new gene expression paradigm, implying that active co-regulated genes and their regulatory factors cooperate to create specialized nuclear hot spots optimized for efficient and coordinated transcriptional control.
Collapse
|
43
|
Butler JT, Hall LL, Smith KP, Lawrence JB. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells. J Cell Biochem 2009; 107:609-21. [PMID: 19449340 DOI: 10.1002/jcb.22183] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.
Collapse
Affiliation(s)
- John T Butler
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | |
Collapse
|
44
|
Hall LL, Byron M, Pageau G, Lawrence JB. AURKB-mediated effects on chromatin regulate binding versus release of XIST RNA to the inactive chromosome. ACTA ACUST UNITED AC 2009; 186:491-507. [PMID: 19704020 PMCID: PMC2733744 DOI: 10.1083/jcb.200811143] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How XIST RNA strictly localizes across the inactive X chromosome is unknown; however, prophase release of human XIST RNA provides a clue. Tests of inhibitors that mimic mitotic chromatin modifications implicated an indirect role of PP1 (protein phosphatase 1), potentially via its interphase repression of Aurora B kinase (AURKB), which phosphorylates H3 and chromosomal proteins at prophase. RNA interference to AURKB causes mitotic retention of XIST RNA, unlike other mitotic or broad kinase inhibitors. Thus, AURKB plays an unexpected role in regulating RNA binding to heterochromatin, independent of mechanics of mitosis. H3 phosphorylation (H3ph) was shown to precede XIST RNA release, whereas results exclude H1ph involvement. Of numerous Xi chromatin (chromosomal protein) hallmarks, ubiquitination closely follows XIST RNA retention or release. Surprisingly, H3S10ph staining (but not H3S28ph) is excluded from Xi and is potentially linked to ubiquitination. Results suggest a model of multiple distinct anchor points for XIST RNA. This study advances understanding of RNA chromosome binding and the roles of AURKB and demonstrates a novel approach to manipulate and study XIST RNA.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
45
|
Hurt JA, Obar RA, Zhai B, Farny NG, Gygi SP, Silver PA. A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export. ACTA ACUST UNITED AC 2009; 185:265-77. [PMID: 19364924 PMCID: PMC2700372 DOI: 10.1083/jcb.200811072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coupling of messenger RNA (mRNA) nuclear export with prior processing steps aids in the fidelity and efficiency of mRNA transport to the cytoplasm. In this study, we show that the processes of export and polyadenylation are coupled via the Drosophila melanogaster CCCH-type zinc finger protein CG6694/dZC3H3 through both physical and functional interactions. We show that depletion of dZC3H3 from S2R+ cells results in transcript hyperadenylation. Using targeted coimmunoprecipitation and liquid chromatography mass spectrometry (MS)/MS techniques, we characterize interactions of known components of the mRNA nuclear export and polyadenylation machineries with dZC3H3. Furthermore, we demonstrate the functional conservation of this factor, as depletion of its human homologue ZC3H3 by small interfering RNA results in an mRNA export defect in human cells as well. Nuclear polyadenylated (poly(A)) RNA in ZC3H3-depleted cells is sequestered in foci removed from SC35-containing speckles, indicating a shift from the normal subnuclear distribution of poly(A) RNA. Our data suggest a model wherein ZC3H3 interfaces between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 2009; 8:345-56. [PMID: 19177009 DOI: 10.4161/cc.8.3.7494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate expression of their target messenger RNAs. We recently demonstrated that primary miRNA transcripts (pri-miRNAs) retained at transcription sites are processed with enhanced efficiency, suggesting that pri-miRNA processing is coupled to transcription in mammalian cells. We also observed that transiently expressed pri-miRNAs accumulate in nuclear foci with splicing factor SC35 and Microprocessor components, Drosha and DGCR8. Here, we show that pri-miRNAs containing a self-cleaving hepatitis delta ribozyme accumulate in the nucleoplasm after release from their transcription sites, but are not efficiently processed. Pri-miRNAs with ribozyme-generated 3' ends do not localize to SC35-containing foci, whereas cleaved and polyadenylated pri-miRNA transcripts with or without the pre-miRNA hairpin do. Pri-miRNA/SC35 foci contain a number of proteins normally associated with SC35 domains, including ASF/SF2, PABII, and the prolyl isomerase, Pin1. In contrast, RNA polymerase II and PM/Scl-100 do not strongly colocalize with pri-miRNAs in SC35-containing foci. These data argue that pri-miRNA/SC35-containing foci are not major sites of pri-miRNA processing and that pri-miRNA processing is coupled to transcription. We discuss the implications of our findings relative to recent insights into miRNA biogenesis, mRNA metabolism, and the nuclear organization of gene expression.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Pharmacology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
47
|
Bobrow MN, Moen PT. Tyramide signal amplification (TSA) systems for the enhancement of ISH signals in cytogenetics. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.9. [PMID: 18770747 DOI: 10.1002/0471142956.cy0809s11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit provides a series of techniques that dramatically improve the sensitivity of direct and indirect in situ detection. TSA is a peroxidase-based signal amplification system which is compatible with all in situ hybridization as well as immunocytochemical detection systems. The assay is performed on a glass slide and combines the use of fluorescent probes in either direct or indirect format using either an enzyme-labeled streptavidin or antibody. Protocols are provided for brightfield and fluorescent detection of single DNA targets, DNA or RNA in cultured cells, multitarget detection for DNA/RNA and DNA and RNA. In addition a protocol is included for the TSA plus system, a DNP-based detection system using horseradish peroxidase and alkaline phosphatase.
Collapse
Affiliation(s)
- M N Bobrow
- NEN Life Science Products, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Dirks RW. Combination DNA/RNA FISH and immunophenotyping. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 8:Unit 8.7. [PMID: 18770745 DOI: 10.1002/0471142956.cy0807s06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit presents methods for combining immunophenotyping with DNA/RNA FISH. The approach is used in so-called genotype/phenotype analysis to identify chromosomal aberrations in sub-populations of cells present in heterogenous populations. Combining RNA and DNA detection with identification of cellular proteins is quite difficult. This series of protocols is provided to enable the successful application of the combination of these techniques.
Collapse
Affiliation(s)
- R W Dirks
- Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
49
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
50
|
Simoneau M, Boulanger J, Coulombe G, Renaud MA, Duchesne C, Rivard N. Activation of Cdk2 stimulates proteasome-dependent truncation of tyrosine phosphatase SHP-1 in human proliferating intestinal epithelial cells. J Biol Chem 2008; 283:25544-25556. [PMID: 18617527 DOI: 10.1074/jbc.m804177200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is expressed in the nuclei of intestinal epithelial cells (IECs). Increased SHP-1 expression and phosphatase activity coincide with cell cycle arrest and differentiation in these cells. Suspecting the tumor-suppressive properties of SHP-1, a yeast two-hybrid screen of an IEC cDNA library was conducted using the full-length SHP-1 as bait. Characterization of many positive clones revealed sequences identical to a segment of the Cdk2 cDNA sequence. Interaction between SHP-1 and Cdk2 was confirmed by co-immunoprecipitations whereby co-precipitated Cdk2 phosphorylated SHP-1 protein. Inhibition of Cdk2 (roscovitine) or proteasome (MG132) was associated with an enhanced nuclear punctuate distribution of SHP-1. Double labeling localization studies with signature proteins of subnuclear domains revealed a co-localization between the splicing factor SC35 and SHP-1 in bright nucleoplasmic foci. Using Western blot analyses with the anti-SHP-1 antibody recognizing the C terminus, a lower molecular mass species of 45 kDa was observed in addition to the full-length 64-65-kDa SHP-1 protein. Treatment with MG132 led to an increase in expression of the full-length SHP-1 protein while concomitantly leading to a decrease in the levels of the lower mass 45-kDa molecular species. Further Western blots revealed that the 45-kDa protein corresponds to the C-terminal portion of SHP-1 generated from proteasome activity. Mutational analysis of Tyr(208) and Ser(591) (a Cdk2 phosphorylation site) residues on SHP-1 abolished the expression of the amino-truncated 45-kDa SHP-1 protein. In conclusion, our results indicate that Cdk2-associated complexes, by targeting SHP-1 for proteolysis, counteract the ability of SHP-1 to block cell cycle progression of IECs.
Collapse
Affiliation(s)
- Mélanie Simoneau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jim Boulanger
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Geneviève Coulombe
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Marc-André Renaud
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|