1
|
Shrestha B, Tallila M, Matilainen O. Folate receptor overexpression induces toxicity in a diet-dependent manner in C. elegans. Sci Rep 2024; 14:1066. [PMID: 38212621 PMCID: PMC10784478 DOI: 10.1038/s41598-024-51700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Milla Tallila
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Kalashnikova I, Patrikeeva S, Nanovskaya TN, Andreev YA, Ahmed MS, Rytting E. Folate-mediated Transport of Nanoparticles across the Placenta. Pharm Nanotechnol 2024; 12:171-183. [PMID: 37461351 DOI: 10.2174/2211738511666230717122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 05/23/2024]
Abstract
BACKGROUND In this study, a prototype of a targeted nanocarrier for drug delivery for prenatal therapy of the developing fetus was developed and examined in vitro and ex vivo. The folate transport mechanism in the human placenta was utilized as a possible pathway for the transplacental delivery of targeted nanoparticles. METHODS Several types of folic acid-decorated polymeric nanoparticles were synthesized and characterized. During transport studies of targeted and non-targeted fluorescent nanoparticles across the placental barrier, the apparent permeability values, uptake, transfer indices, and distribution in placental tissue were determined. RESULTS The nanoparticles had no effect on BeWo b30 cell viability. In vitro, studies showed significantly higher apparent permeability of the targeted nanoparticles across the cell monolayers as compared to the nontargeted nanoparticles (Pe = 5.92 ± 1.44 ×10-6 cm/s for PLGA-PEG-FA vs. 1.26 ± 0.31 ×10-6 cm/s for PLGA-PEG, P < 0.05), and the transport of the targeted nanoparticles was significantly inhibited by excess folate. Ex vivo placental perfusion showed significantly greater accumulation of the targeted nanoparticles in the placental tissue (4.31 ± 0.91%/g for PLGA-PEG-FA vs. 2.07 ± 0.26%/g for PLGA-PEG). CONCLUSION The data obtained suggested different mechanisms for the uptake and transplacental transfer of targeted versus nontargeted nanoparticles. This targeted nanoformulation may be a promising strategy for fetal drug therapy.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Svetlana Patrikeeva
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tatiana N Nanovskaya
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yaroslav A Andreev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mahmoud S Ahmed
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Akiyama T, Kuki I, Kim K, Yamamoto N, Yamada Y, Igarashi K, Ishihara T, Hatano Y, Kobayashi K. Folic acid inhibits 5-methyltetrahydrofolate transport across the blood-cerebrospinal fluid barrier: Clinical biochemical data from two cases. JIMD Rep 2022; 63:529-535. [PMID: 36341171 PMCID: PMC9626660 DOI: 10.1002/jmd2.12321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The use of folic acid (FA) has been discouraged in cerebral folate deficiency (CFD) because, theoretically, it could inhibit the transport of 5-methyltetrahydrofolic acid (5MTHF) across the blood-cerebrospinal fluid (CSF) barrier. We present the clinical biochemical data of two cases with CFD to support this hypothesis. Methods We measured CSF and serum 5MTHF concentrations in a patient with Kearns-Sayre syndrome (KSS) and a patient homozygous for MTHFR C677T polymorphism before and during folate supplementation therapy. To evaluate these 5MTHF concentrations, we also analyzed CSF and serum samples in pediatric patients without folate supplementation. Results Both patients had low CSF 5MTHF before treatment and high-dose FA therapy did not normalize CSF 5MTHF. There was a dissociation between serum total folate and 5MTHF concentrations during FA therapy, which was considered to be due to the appearance of unmetabolized FA. The addition of folinic acid did not improve low CSF 5MTHF in the KSS patient and the cessation of FA resulted in the normalization of CSF 5MTHF. In the patient homozygous for MTHFR C677T, minimization of the FA dosage resulted in the normalization of CSF 5MTHF and an increased CSF-to-serum 5MTHF ratio. Conclusions Our data suggest that excess supplementation of FA impaired 5MTHF transport across the blood-CSF barrier. In the treatment of CFD, supplementation of folinic acid or 5MTHF (in cases of impaired 5MTHF synthesis) is preferred over the use of FA. The reference values of CSF 5MTHF concentration based on 600 pediatric cases were also provided.
Collapse
Affiliation(s)
- Tomoyuki Akiyama
- Department of Child NeurologyOkayama University HospitalOkayamaJapan
- Department of Child Neurology, Okayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Ichiro Kuki
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
| | - Kiyohiro Kim
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
- Department of Pediatric NeurologyHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
| | - Naohiro Yamamoto
- Department of Pediatric NeurologyOsaka City General HospitalOsakaJapan
| | - Yumi Yamada
- Department of NeurologyNational Hospital Organization Nishiniigata Chuo HospitalNiigataJapan
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Kazuya Igarashi
- Department of NeurologyNational Hospital Organization Nishiniigata Chuo HospitalNiigataJapan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Yuya Hatano
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Katsuhiro Kobayashi
- Department of Child NeurologyOkayama University HospitalOkayamaJapan
- Department of Child Neurology, Okayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
5
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
7
|
Grigoletto A, Martinez G, Gabbia D, Tedeschini T, Scaffidi M, Martin SD, Pasut G. Folic Acid-Targeted Paclitaxel-Polymer Conjugates Exert Selective Cytotoxicity and Modulate Invasiveness of Colon Cancer Cells. Pharmaceutics 2021; 13:929. [PMID: 34201494 PMCID: PMC8309175 DOI: 10.3390/pharmaceutics13070929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Although selective tumor delivery of anticancer drugs has been sought by exploiting either passive targeting or by ligand-mediated targeting, a selective anticancer therapy remains an unmet medical need. Despite the advances which have been achieved by nanomedicines, nanosystems such as polymer-drug conjugates still miss the goal of clinical efficacy. In this study, we demonstrated that polymer-drug conjugates require a thoroughly chemical design and the right targeting agent/polymer ratio to be selective and effective towards cancer cells. In particular, two PEG conjugates carrying paclitaxel and targeted with different folic acid (FA)/PEG ratios (one or three) were investigated. The cytotoxicity study in positive (HT-29) and negative (HCT-15) FA receptor (FR)-cell lines demonstrated that the conjugates with one or three FAs were 4- or 28-fold more active in HT-29 cells, respectively. The higher activity of the 3-FA conjugate was confirmed by its strong impact on cell cycle arrest. Furthermore, FA targeting had a clear effect on migration and invasiveness of HT-29 cells, which were significantly reduced by both conjugates. Interestingly, the 3-FA conjugate showed also an improved pharmacokinetic profile in mice. The results of this study indicate that thorough investigations are needed to optimize and tune drug delivery and achieve the desired selectivity and activity towards cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara De Martin
- Pharmaceutical and Pharmacological Sciences Department, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy; (A.G.); (G.M.); (D.G.); (T.T.); (M.S.)
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy; (A.G.); (G.M.); (D.G.); (T.T.); (M.S.)
| |
Collapse
|
8
|
Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting. J Mater Chem B 2021; 8:3959-3971. [PMID: 32222756 DOI: 10.1039/d0tb00289e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, nanoparticle-based drug delivery systems have been extensively explored. However, the average tumour enrichment ratio of passive targeting systems corresponds to only 0.7% due to the nonspecific uptake by normal organs and poor selective retention in tumours. The therapeutic specificity and efficacy of nano-medicine can be enhanced by equipping it with active targeting ligands, although it is not possible to ignore the recognition and clearance of the reticuloendothelial system (RES) caused by targeting ligands. Given the complexity of the systemic circulation environment, it is necessary to carefully consider the hydrophobicity, immunogenicity, and electrical property of targeting ligands. Thus, for an active targeting system, the targeting ligands should be shielded in blood circulation and de-shielded in the tumour region for enhanced tumour accumulation. In this study, strategies for improving the performance of active targeting ligands are introduced. The strategies include irreversible shielding, reversible shielding, and methods of modulating the multivalent interactions between ligands and receptors. Furthermore, challenges and future developments in designing active ligand targeting systems are also discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
10
|
Tsyupka DV, Mordovina EA, Sindeeva OA, Sapelkin AV, Sukhorukov GB, Goryacheva IY. High-fluorescent product of folic acid photodegradation: Optical properties and cell effect. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem 2020; 13:77-88. [PMID: 33349694 DOI: 10.1038/s41557-020-00605-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaomeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cen Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, Hong Kong SAR, China.
| |
Collapse
|
12
|
Musalli AH, Talukdar PD, Roy P, Kumar P, Wong TW. Folate-induced nanostructural changes of oligochitosan nanoparticles and their fate of cellular internalization by melanoma. Carbohydr Polym 2020; 244:116488. [PMID: 32536388 DOI: 10.1016/j.carbpol.2020.116488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 05/17/2020] [Indexed: 01/13/2023]
Abstract
This study examined the effects of folate environment of oligochitosan nanoparticles on their cellular internalization profiles in human melanoma cells. The conjugates and nanoparticles of oligochitosan-folate, oligochitosan-carboxymethyl-5-fluorouracil, and oligochitosan-folate-carboxymethyl-5-fluorouracil were synthesized by carbodiimide chemistry and prepared by nanospray drying technique respectively. The cellular internalization profiles of oligochitosan-folate nanoparticles against the human malignant melanoma cell line (SKMEL-28) were evaluated using confocal scanning electron microscopy technique through fluorescence labelling and endocytic inhibition, as a function of nanoparticulate folate content, size, polydispersity index, zeta potential, shape, surface roughness and folate population density. The cytotoxicity and cell cycle arrest characteristics of oligochitosan-folate-carboxymethyl-5-fluorouracil nanoparticles, prepared with an optimal folate content that promoted cellular internalization, were evaluated against the oligochitosan-folate and oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles. The oligochitosan-folate conjugate nanoparticles were endocytosed by melanoma cells via caveolae- and lipid raft-mediated endocytic pathways following them binding to the cell surface folate receptor. Nanoparticles that were larger and with higher folic acid contents and zeta potentials exhibited a higher degree of cellular internalization. Excessive conjugation of nanoparticles with folate resulted in a high nanoparticulate density of folate which hindered nanoparticles-cell interaction via folate receptor binding and reduced cellular internalization of nanoparticles. Conjugating oligochitosan with 20 %w/w folate was favorable for cellular uptake as supported by in silico models. Conjugating of oligochitosan nanoparticles with carboxymethyl-5-fluorouracil and 20 %w/w of folate promoted nanoparticles-folate receptor binding, cellular internalization and cancer cell death via cell cycle arrest at S phase at a lower drug dose than oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles and neat carboxymethyl-5-fluorouracil.
Collapse
Affiliation(s)
- Abdul Hadi Musalli
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia
| | - Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Partha Roy
- Department of Pharmaceutical Technology, Adamas University, Kolkata, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
13
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
14
|
Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li Y, Lin J, Cai Z, Wang P, Luo Q, Yao C, Zhang Y, Hou Z, Liu J, Liu X. Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. J Control Release 2020; 321:222-235. [PMID: 32061620 DOI: 10.1016/j.jconrel.2020.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Carrier-free nanodrug via small-molecule assembly is a promising alternative strategy for tumor therapy. Thus, developing a self-recognizing carrier-free nanodrug without introduction of foreign ligand is very attractive to meet both targeting and therapeutic requirements while reducing structural complexity. Here we fabricated a tumor microenvironment-activated self-targeting nanodrug, via co-assembly of hydroxycamptothecin (HCPT) and bi-functional methotrexate (MTX, not only has antitumor effect but also shows innate affinity towards folate receptors) followed by surface covering through acidity-responsive polyethylene glycol (PEG). Notably, the morphology and size of MTX-HCPT nanodrug could be tuned by varying the drug-to-drug ratio and assembly time. The PEG shell of our nanodrug could be detached in response to acidic tumor microenvironment, and then MTX could be exposed for self-targeting to enhance tumor cell uptake. Subsequently, the shell-detached nanodrug could be dissociated in relatively stronger acidic lysosomal environment, resulting in burst release of both drugs. Further in vitro and in vivo studies demonstrated that our nanodrug showed a ~2.98-fold increase in cancer cell uptake, a ~1.25-fold increase in drug accumulation at tumor site, a significantly lower CI50 value of ~0.3, a ~27.3% improvement in tumor inhibition comparing with the corresponding non-responsive nanodrug. Taken together, the here reported tumor microenvironment-activated self-recognizing nanodrug might be an extremely promising strategy for synergistically enhancing chemotherapy efficiency with minimized side effects.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Qiang Luo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Cuiping Yao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Zhenqing Hou
- College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, PR China.
| | - Jingfeng Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| |
Collapse
|
16
|
Dhanda AS, Yu C, Lulic KT, Vogl AW, Rausch V, Yang D, Nichols BJ, Kim SH, Polo S, Hansen CG, Guttman JA. Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. mBio 2020; 11:e02857-19. [PMID: 31964732 PMCID: PMC6974566 DOI: 10.1128/mbio.02857-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katarina T Lulic
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valentina Rausch
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
17
|
Samodelov SL, Gai Z, Kullak-Ublick GA, Visentin M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019; 11:nu11102353. [PMID: 31581752 PMCID: PMC6836044 DOI: 10.3390/nu11102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023] Open
Abstract
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
18
|
Jimenez AR, Naz N, Miyan JA. Altered folate binding protein expression and folate delivery are associated with congenital hydrocephalus in the hydrocephalic Texas rat. J Cereb Blood Flow Metab 2019; 39:2061-2073. [PMID: 29798726 PMCID: PMC6775583 DOI: 10.1177/0271678x18776226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.
Collapse
Affiliation(s)
- Alicia Requena Jimenez
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Naila Naz
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Geersing A, de Vries RH, Jansen G, Rots MG, Roelfes G. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorg Med Chem Lett 2019; 29:1922-1927. [DOI: 10.1016/j.bmcl.2019.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
20
|
Aberrant Expression of Folate Metabolism Enzymes and Its Diagnosis and Survival Prediction in Ovarian Carcinoma. Anal Cell Pathol (Amst) 2019; 2019:1438628. [PMID: 31049278 PMCID: PMC6462347 DOI: 10.1155/2019/1438628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/05/2019] [Indexed: 01/16/2023] Open
Abstract
This study was to validate changes in the levels of folate receptor-α (FOLR1), dihydrofolate reductase (DHFR), and methionine synthase reductase (MTRR) in the tissue of OC patients. The expression of FOLR1, DHFR, and MTRR was evaluated in 80 cases of primary OC, 50 cases of benign ovarian tumors, and 30 normal ovarian tissues. Associations between protein expression and clinicopathological characters were assessed, and diagnostic and prognostic evaluation of FOLR1, DHFR, and MTRR was performed. Results showed that upregulated FOLR1 and MTRR and downregulated DHFR were detected in OC. Patients with abnormality of FOLR1, DHFR, and MTRR tend to have a higher percentage of platinum resistance. Moreover, the areas under receiver operating characteristic curves (AUCs-ROC) for FOLR1, DHFR, and MTRR were 0.723, 0.717, and 0.714, respectively. The combination of FOLR1, DHFR, and MTRR could produce an area of 0.864 under the receiver-operating characteristic curve in distinguishing platinum-resistant patients from platinum-sensitive patients (P < 0.0001). Correlations were present between the expression of FOLR1, DHFR, and MTRR. Furthermore, Kaplan-Meier curves indicated that the patients with overexpressed MTRR had a poorer overall survival time compared to those with low expression (P < 0.05). Thus, folate metabolic enzymes could provide a potential promising biomarker for diagnosis platinum-resistant in OC.
Collapse
|
21
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res 2019; 9:366-378. [PMID: 30280318 PMCID: PMC6328514 DOI: 10.1007/s13346-018-0589-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages play a key role in the pathophysiology of rheumatoid arthritis (RA). Notably, positive correlations have been reported between synovial macrophage infiltration and disease activity as well as therapy outcome in RA patients. Hence, macrophages can serve as an important target for both imaging disease activity and drug delivery in RA. Folate receptor β (FRβ) is a glycosylphosphatidyl (GPI)-anchored plasma membrane protein being expressed on myeloid cells and activated macrophages. FRβ harbors a nanomolar binding affinity for folic acid allowing this receptor to be exploited for RA disease imaging (e.g., folate-conjugated PET tracers) and therapeutic targeting (e.g., folate antagonists and folate-conjugated drugs). This review provides an overview of these emerging applications in RA by summarizing and discussing properties of FRβ, expression of FRβ in relation to macrophage polarization, FRβ-targeted in vivo imaging modalities, and FRβ-directed drug targeting.
Collapse
Affiliation(s)
- Durga M S H Chandrupatla
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Dong Y, Wang L, Lei Y, Yang N, Cabrera RM, Finnell RH, Ren A. Gene variants in the folate pathway are associated with increased levels of folate receptor autoantibodies. Birth Defects Res 2018; 110:973-981. [PMID: 29732742 DOI: 10.1002/bdr2.1334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Folate receptors (FRs) facilitate embryonic uptake of folates and are important for proper early embryonic development. There is accumulating evidence that blocking FR autoantibodies contribute to developmental diseases. However, genetic factors associated with the expression of FR autoantibodies remain unknown. OBJECTIVE We investigated the effects of genetic polymorphisms in folate pathway genes on FR autoantibody titers in women. METHODS We recruited 302 pregnant women in China. The FR antigen-down immunoassay was used to measure levels of FR autoantibodies including human immunoglobulin G (IgG) and immunoglobulin M (IgM) in maternal plasma. Genotypes were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and polymerase chain reaction methods. General linear model was used to analyze the effects of genetic variants on FR autoantibody levels. RESULTS Significant associations were observed between genotypic variations and levels of FR autoantibodies. Plasma levels of FR autoantibodies in women with the TT genotype at MTHFR rs1801133 were significantly higher than those of women with the CC genotype (IgG: β = 0.62, 95% CI 0.21-1.04; IgM: β = 0.42, 95% CI 0.12-0.72). For DNMT3A rs7560488, the level of FR autoantibody IgG significantly increased in the TT genotype compared with CC genotype (β = 0.90, 95% CI 0.20-1.59). For MTHFD2 rs828903, genotype GG was associated with elevated levels of FR autoantibody IgM compared to the AA genotype (β = 0.60, 95% CI 0.10-1.10). No association was detected between genetic variants of the DHFR gene with FR autoantibodies levels. CONCLUSION Genetic variations in MTHFR, DNMT3A, and MTHFD2 genes were associated with elevated plasma levels of FR autoantibodies.
Collapse
Affiliation(s)
- Yuqi Dong
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Yang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Robert M Cabrera
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Cai L, Michelakos T, Ferrone CR, Zhang L, Deshpande V, Shen Q, DeLeo A, Yamada T, Zhang G, Ferrone S, Wang X. Expression status of folate receptor alpha is a predictor of survival in pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:37646-37656. [PMID: 28430580 PMCID: PMC5514937 DOI: 10.18632/oncotarget.16841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognosis among malignancies. Thus, the identification of markers useful in developing innovative diagnostic and therapeutic methods is an imperative need. Folate receptor alpha (FRα) has been associated with prognosis in several cancers and has served as a target of novel anti-tumor therapies. However, FRα expression in PDAC and its correlation with the clinical course of the disease has not been thoroughly investigated. In this study, we analyzed FRα expression in 140 PDAC specimens and 7 PDAC cell lines in order to define the significance of FRα expression in PDAC and its potential role as a target for immunotherapy. Immunohistochemical analysis demonstrated that FRα expression intensity was low, intermediate and high in 22(16%), 73(52%) and 45(32%) PDACs, respectively. The staining was located in both membrane and cytoplasm in most cases (123, 88%). Lower FRα expression was associated with cigarette smoking (p<0.001), alcohol consumption (p<0.001), and lymphovascular invasion (p=0.002). Additionally, lower FRα expression was associated with poor overall survival (5-year overall survival: low 13%, intermediate 31%, high 33%; p=0.006). FRα expression (HR=0.61; p=0.03) and Charlson Comorbidity Index (HR=1.16; p=0.01) emerged as independent predictors of survival. The analysis by flow cytometry of 7 PDAC cell lines (AsPC-1, Capan-2, MIA PaCa-2, PANC-1, PDAC2, PDAC3, and PDAC5) demonstrated the highest expression of FRα on the PDAC3 cell line (45%). Therefore, a higher FRα expression is predictive of a favorable prognosis in PDAC and FRα may represent a promising target for novel treatments, including immunotherapy.
Collapse
Affiliation(s)
- Lei Cai
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Hepatobiliary, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Theodoros Michelakos
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liyuan Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qi Shen
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert DeLeo
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teppei Yamada
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gong Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Balashova OA, Visina O, Borodinsky LN. Folate action in nervous system development and disease. Dev Neurobiol 2018; 78:391-402. [PMID: 29380544 DOI: 10.1002/dneu.22579] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 01/04/2023]
Abstract
The vitamin folic acid has been recognized as a crucial environmental factor for nervous system development. From the early fetal stages of the formation of the presumptive spinal cord and brain to the maturation and maintenance of the nervous system during infancy and childhood, folate levels and its supplementation have been considered influential in the clinical outcome of infants and children affected by neurological diseases. Despite the vast epidemiological information recorded on folate function and neural tube defects, neural development and neurodegenerative diseases, the mechanisms of folate action in the developing neural tissue have remained elusive. Here we compiled studies that argue for a unique role for folate in nervous system development and function and its consequences to neural disease and repair. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 391-402, 2018.
Collapse
Affiliation(s)
- Olga A Balashova
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| | - Olesya Visina
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
26
|
Novel theranostic zinc phthalocyanine–phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake. Colloids Surf B Biointerfaces 2018; 162:76-89. [DOI: 10.1016/j.colsurfb.2017.10.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 12/26/2022]
|
27
|
Roti G, Qi J, Kitara S, Sanchez-Martin M, Saur Conway A, Varca AC, Su A, Wu L, Kung AL, Ferrando AA, Bradner JE, Stegmaier K. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. J Exp Med 2017; 215:197-216. [PMID: 29158376 PMCID: PMC5748843 DOI: 10.1084/jem.20151778] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 08/17/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
NOTCH1 is an attractive cancer target, particularly in T cell acute lymphoblastic leukemia (T-ALL), with activating mutations in this gene identified in more than 50% of cases. In this study, Roti et al. describe the synthesis, characterization, and validation of JQ-FT, a first-in-class NOTCH1 inhibitor that has dual selectivity for leukemia over normal cells and NOTCH1 mutants over wild-type receptors. On-target drug delivery remains a challenge in cancer precision medicine; it is difficult to deliver a targeted therapy to cancer cells without incurring toxicity to normal tissues. The SERCA (sarco-endoplasmic reticulum Ca2+ ATPase) inhibitor thapsigargin inhibits mutant NOTCH1 receptors compared with wild type in T cell acute lymphoblastic leukemia (T-ALL), but its administration is predicted to be toxic in humans. Leveraging the addiction of ALL to folic acid, we conjugated folate to an alcohol derivative of thapsigargin via a cleavable ester linkage. JQ-FT is recognized by folate receptors on the plasma membrane and delivered into leukemia cells as a potent antileukemic agent. In mechanistic and translational models of T-ALL, we demonstrate NOTCH1 inhibition in vitro and in vivo. These proof-of-concept studies support the further optimization of this first-in-class NOTCH1 inhibitor with dual selectivity: leukemia over normal cells and NOTCH1 mutants over wild-type receptors. Furthermore, tumor-specific disruption of Notch signaling may overcome legitimate concerns associated with the tumor suppressor function of nontargeted Notch pathway inhibitors.
Collapse
Affiliation(s)
- Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA.,Department of Medicine and Surgery, University of Parma, Italy
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | | | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Anthony C Varca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Angela Su
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Lei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA .,Department of Medicine, Harvard Medical School, Boston, MA.,Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA .,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA.,Broad Institute, Cambridge, MA
| |
Collapse
|
28
|
Li Y, Song L, Lin J, Ma J, Pan Z, Zhang Y, Su G, Ye S, Luo FH, Zhu X, Hou Z. Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39127-39142. [PMID: 29039650 DOI: 10.1021/acsami.7b08218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor-targeting combination chemotherapy is an important way to improve the therapeutic index and reduce the side effects as compared to traditional cancer treatments. However, one of the major challenges in surface functionalization of nanoparticle (NP) is accomplishing multiple purposes through one single ligand. Upon such consideration, methotrexate (MTX), an anticancer drug with a targeting moiety inspired by the similar structure of folate, could be used to covalently link with lipid-polymer conjugate (DSPE-PEG) via a pH-sensitive dynamic covalent imine (CH═N) bond to synthesize the acid-induced function "targeting-anticancer" switching DSPE-PEG-CH═N-MTX. We hypothesize that using this kind of MTX prodrug to functionalize NP's surface would be conductive to combine the early phase active targeting function and the late-phase anticancer function in one nanosystem. Herein, a nanococktail is programmed for codelivery of epirubicin (EPI) and MTX by co-self-assembly of acid-dissociated EPI-phospholipid (PC) complex and acid-cleavable DSPE-PEG-CH═N-MTX conjugate. The obtained nanococktail (MTX-PEG-EPI-PC NPs) could not only actively target folate receptors-overexpressing tumor cells but also respond to acidic endo/lysosomes for triggering the on-demand release of pharmaceutically active EPI/MTX. The intracellular drug distribution also demonstrated that the system could codeliver two drugs to individual target sites of action, inducing the significant synergistic anticancer efficiency based on different anticancer mechanisms. More importantly, the in vivo tumor accumulation and anticancer efficacy of MTX-PEG-EPI-PC NPs (via cleavable imine bond) were significantly enhanced as compared to the individual free drug, both free drugs, PEG-EPI-PC NPs, and MTX-PEG-EPI-PC NPs (via the uncleavable amide bond). This self-synergistic tumor-targeting therapy might represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, Peopel's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
30
|
Pamungkas AD, Medriano CA, Sim E, Lee S, Park YH. A pilot study identifying a potential plasma biomarker for determining EGFR mutations in exons 19 or 21 in lung cancer patients. Mol Med Rep 2017; 15:4155-4161. [PMID: 28487968 PMCID: PMC5436150 DOI: 10.3892/mmr.2017.6530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Abstract
The most common type of lung cancer is non-small cell lung cancer (NSCLC), which is frequently characterized by a mutation in the epidermal growth factor receptor (EGFR). Determining the presence of an EGFR mutation in lung cancer is important, as it determines the type of treatment that a patients will receive. Therefore, the aim of the present study was to apply high-resolution metabolomics (HRM) using liquid chromatography-mass spectrometry to identify significant compounds in human plasma samples obtained from South Korean NSCLC patients, as potential biomarkers for providing early detection and diagnosis of minimally-invasive NSCLC. The metabolic differences between lung cancer patients without EGFR mutations were compared with patients harboring EGFR mutations. Univariate analysis was performed, with a false discovery rate of q=0.05, in order to identify significant metabolites between the two groups. In addition, hierarchical clustering analysis was performed to discriminate between the metabolic profiles of the two groups. Furthermore, the significant metabolites were identified and mapped using Mummichog software, in order to generate a potential metabolic network model. Using metabolome-wide association studies, metabolic alterations were identified. Linoleic acid [303.23 m/z, (M+Na)+], 5-methyl tetrahydrofolate [231.10 m/z, (M+2H)+] and N-succinyl-L-glutamate-5 semialdehyde [254.06 m/z, (M+Na)+], were observed to be elevated in patients harboring EGFR mutations, whereas tetradecanoyl carnitine [394.29 m/z, (M+Na)+] was observed to be reduced. This suggests that these compounds may be affected by the EGFR mutation. In conclusion, the present study identified four potential biomarkers in patients with EGFR mutations, using HRM combined with pathway analysis. These results may facilitate the development of novel diagnostic tools for EGFR mutation detection in patients with lung cancer.
Collapse
Affiliation(s)
- Aryo D Pamungkas
- College of Pharmacy, Korea University, Jochiwon‑eup, Sejong 30029, Republic of Korea
| | - Carl A Medriano
- College of Pharmacy, Korea University, Jochiwon‑eup, Sejong 30029, Republic of Korea
| | - Eunjung Sim
- Department of Pulmonology, Korea University Guro Hospital, Guro‑gu, Seoul 08308, Republic of Korea
| | - Sungyong Lee
- Department of Pulmonology, Korea University Guro Hospital, Guro‑gu, Seoul 08308, Republic of Korea
| | - Youngja H Park
- College of Pharmacy, Korea University, Jochiwon‑eup, Sejong 30029, Republic of Korea
| |
Collapse
|
31
|
Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers. Mol Immunol 2017; 85:293-304. [PMID: 28360017 DOI: 10.1016/j.molimm.2017.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022]
Abstract
Folate receptor alpha (FRα) is aberrantly expressed in ovarian cancers but largely absent in normal tissues, and therefore represents an attractive target for immunotherapy. In recent years, modification of T cells with chimeric antigen receptor (CAR) targeting FRα has been reported to improve antitumor immunity of T cells. However, there are limited data regarding CAR-modified cytokine-induced killer (CAR-CIK) cells. In the present study, we modified CIK cells with FRα-specific CARs and investigated their antitumor immunity against ovarian cancers. We found that both non-transduced and mock CAR-transduced CIK cells showed only low antitumor activity against either FRα-positive (FRα+) or FRα-negative (FRα-) targets. However, all three generations of CAR-modified CIK cells showed enhanced antitumor activity against FRα+ targets, but not FRα- targets. First-generation ζ-CAR-CIK cells increased production of IFN-γ, enhanced short-term cytotoxicity against FRα+ ovarian cancer cells, and showed modest and short-term suppression of established tumors; while second-generation 28ζ- and third-generation 28BBζ-CAR-CIK cells showed significant proliferation, enhanced secretion of IL-2, eliminated the FRα+ ovarian cancer cells in long-term co-culture, and showed dramatic and long-term inhibition of tumor growth and prolonged survival of xenograft-bearing mice. It is noteworthy that the 28BBζ-CAR was more potent in the modification of CIK cells than 28ζ-CAR both in vitro and in vivo. Moreover, CAR-CIK cells showed more efficient anticancer activity compared with CAR-T cells in vitro, but less efficient than CAR-T cells in vivo. According to these results, we conclude that modification of CIK cells with FRα-specific CARs enhances their antitumor immunity to FRα+ ovarian cancers. The third-generation 28BB-ζ CAR containing 4-1BB co-stimulation was more efficient in modification of CIK cells than either first-generation ζ-CAR or second-generation CD28-ζ-CAR.
Collapse
|
32
|
Merzel RL, Boutom SM, Chen J, Frey C, Shedden K, Marsh ENG, Banaszak Holl MM. Folate binding protein: therapeutic natural nanotechnology for folic acid, methotrexate, and leucovorin. NANOSCALE 2017; 9:2603-2615. [PMID: 28155935 DOI: 10.1039/c6nr09060e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Blood serum proteins play a critical role in the transport, biodistribution, and efficacy of systemically-delivered therapeutics. Here, we have investigated the concentration- and ligand-dependent aggregation of folate binding protein (FBP), focusing in particular on folic acid, an important vitamin and targeting agent; methotrexate, an antifolate drug used to treat cancer and rheumatoid arthritis; and leucovorin which is used to decrease methotrexate toxicity. We employed atomic force microscopy to characterize, on a particle-by-particle basis, the volumes of the FBP nanoparticles that form upon ligand binding. We measured the distribution of FBP nanoparticle volumes as a function of ligand concentration over physiologically- and therapeutically-relevant ranges. At physiologically-relevant concentrations, significant differences in particle volume distributions exist that we hypothesize are consistent with different trafficking mechanisms for folic acid and methotrexate. In addition, we hypothesize leucovorin is trafficked and delivered like folic acid at therapeutically-relevant concentrations. We propose that changes in dosing procedures could improve the delivery and therapeutic index for methotrexate and other folic acid-targeted drug conjugates and imaging agents. Specifically, we suggest pre-binding the drugs to FBP may provide a better formulation for drug delivery of methotrexate for both cancer and rheumatoid arthritis. This would be analogous to pre-binding paclitaxel to albumin, which is already used in the clinic.
Collapse
Affiliation(s)
- Rachel L Merzel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Sarah M Boutom
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Carolina Frey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mark M Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. and Department of Biomedical Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA and Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Zhu M, Chen S, Hua L, Zhang C, Chen M, Chen D, Dong Y, Zhang Y, Li M, Song X, Chen H, Zheng H. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine (Lond) 2017; 12:295-315. [PMID: 28093940 DOI: 10.2217/nnm-2016-0382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To target both head and neck squamous cell carcinoma (HNSCC) cells and cancer stem cells (CSCs) by salinomycin-loaded DSPE-PEG-MTX (synthesized using DSPE-PEG2000-NH2 and methotrexate) nanomicelles (M-SAL-MTX). MATERIALS & METHODS The characterization, antitumor activity and mechanism of M-SAL-MTX were evaluated. RESULTS & CONCLUSION M-SAL-MTX showed enhanced inhibitory effect toward both HNSCC CSCs and non-CSCs compared with a single treatment of methotrexate and salinomycin. In nude mice-bearing HNSCC xenografts, M-SAL-MTX suppressed tumor growth more effectively than other controls including combination of methotrexate and salinomycin. Therefore, M-SAL-MTX may provide a strategy for treating HNSCC by targeting both HNSCC CSCs and HNSCC cells.
Collapse
Affiliation(s)
- Minhui Zhu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Shicai Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Libo Hua
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Caiyun Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Mengjie Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Donghui Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yinmei Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yingying Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Meng Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xianmin Song
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huaiwen Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.,Sunlipo Biotech Research Center for Nanomedicine, 3688 Tingwei Road, Shanghai 201507, China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
34
|
Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 2016; 106:157-171. [PMID: 26994591 DOI: 10.1016/j.addr.2016.03.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented.
Collapse
|
35
|
Li Y, Lin J, Liu G, Ma J, Xie L, Guo F, Zhu X, Hou Z. Dual-acting, function-responsive, and high drug payload nanospheres for combining simplicity and efficacy in both self-targeted multi-drug co-delivery and synergistic anticancer effect. Int J Pharm 2016; 512:194-203. [DOI: 10.1016/j.ijpharm.2016.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
36
|
Notaro S, Reimer D, Fiegl H, Schmid G, Wiedemair A, Rössler J, Marth C, Zeimet AG. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers. BMC Cancer 2016; 16:589. [PMID: 27485273 PMCID: PMC4971744 DOI: 10.1186/s12885-016-2637-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Background In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer. Methods Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique. Results No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012). Conclusion No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a reliable indicator of improved platinum responsiveness reflecting a transient better one-year follow up outcome in highly FOLR1 expressing type I cancers. An independent prognostic role of global DNA hypomethylation was demonstrated in type I tumours. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2637-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Notaro
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Department of Gynecology and Obstetrics, University of Brescia, P.zza Spedali Civili 1, 25123, Brescia, Italy
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gabriel Schmid
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Annamarie Wiedemair
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Julia Rössler
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
37
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
38
|
Li Y, Lin J, Liu G, Li Y, Song L, Fan Z, Zhu X, Su G, Hou Z. Self-assembly of multifunctional integrated nanoparticles loaded with a methotrexate–phospholipid complex: combining simplicity and efficacy in both targeting and anticancer effects. RSC Adv 2016. [DOI: 10.1039/c6ra17260a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Self-assembly of multifunctional integrated nanoparticles loaded with methotrexate-phospholipid complex have both targeting and anticancer effect to FA receptors overexpressed cancer cells.
Collapse
Affiliation(s)
- Yanxiu Li
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Jinyan Lin
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Guihua Liu
- Department of Pharmacy
- School of Pharmaceutical Science
- Xiamen University
- Xiamen 361005
- China
| | - Yang Li
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Liang Song
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Zhongxiong Fan
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Xuan Zhu
- Department of Pharmacy
- School of Pharmaceutical Science
- Xiamen University
- Xiamen 361005
- China
| | - Guanghao Su
- Institute of Pediatric Research
- Children's Hospital of Soochow University
- Suzhou 215025
- China
| | - Zhenqing Hou
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
39
|
Li Y, Lin J, Huang Y, Li Y, Yang X, Wu H, Wu S, Xie L, Dai L, Hou Z. Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25553-25559. [PMID: 26529185 DOI: 10.1021/acsami.5b07348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We constructed 10-hydroxycamptothecin (CPT) "nanodrugs" with functionalization of lipid-PEG-methotrexate (MTX) to prepare high-drug-loaded, and sustained/controlled-release MTX-PEG-CPT nanorods (NRs), in which MTX drug itself can serve as a specific "targeting ligand". The self-targeted nanodrug can codeliver both CPT and MTX drugs with distinct anticancer mechanisms. Furthermore, MTX-PEG-CPT NRs significantly reduced burst release, improved blood circulation and tumor accumulation, enhanced cellular uptake, and synergistically increased anticancer effect against tumor cells compared with MTX-PEG-CPT nanospheres (NSs) and either both free drugs or individual free drug. Therefore, the synergistic targeting/therapeuticy nano-multi-drug codelivery assisted by shape design may advantageously offer a promising new strategy for nanomedicine.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Jinyan Lin
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Yu Huang
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Yanxiu Li
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Xiangrui Yang
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Hongjie Wu
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Shichao Wu
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Liya Xie
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Lizong Dai
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| | - Zhenqing Hou
- Department of Biomaterials and Department of Materials Science and Engineering, College of Materials, §Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, ⊥Department of Chemistry, College of Chemistry & Chemical Engineering, ∥Department of Pharmacy, School of Pharmaceutical Science, and #The First Affiliated Hospital of Xiamen University, Xiamen University , Xiamen 361005, China
| |
Collapse
|
40
|
Castellanos-Sinco H, Ramos-Peñafiel C, Santoyo-Sánchez A, Collazo-Jaloma J, Martínez-Murillo C, Montaño-Figueroa E, Sinco-Ángeles A. Megaloblastic anaemia: Folic acid and vitamin B12 metabolism. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Lin J, Li Y, Li Y, Wu H, Yu F, Zhou S, Xie L, Luo F, Lin C, Hou Z. Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11908-20. [PMID: 25978458 DOI: 10.1021/acsami.5b01685] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multifunctional nanocomposites hold great potential to integrate therapeutic and diagnostic functions into a single nanoscale structure. In this paper, we prepared the MTX-PEG-CS-IONPs-Cy5.5 nanocomposites by functionalizing the surface of chitosan-decorated iron oxide nanoparticles (CS-IONPs) with polyethylene glycolated methotraxate (MTX-PEG) and near-infrared fluorescent cyanin dye (Cy5.5). A clinically useful PEGylated anticancer prodrug, MTX-PEG, was also developed as a tumor cell-specific targeting ligand for self-targeted cancer treatment. In such nanocomposites, the advantage was that the orthogonally functionalized, self-targeted MTX-PEG-CS-IONPs-Cy5.5 can synergistically combine an early phase selective tumor-targeting efficacy with a late-phase cancer-killing effect, which was also confirmed by dual model (magnetic resonance and fluorescence) imaging. Furthermore, with the aids of the folate (FA) receptor-mediated endocytosis (able to turn cellular uptake "off" in normal cells and "on" in cancer cells) and pH/intracellular protease-mediated hydrolyzing peptide bonds (able to turn drug release "off" in systemic circulation and "on" inside endo/lysosomes), the MTX-PEG-CS-IONPs-Cy5.5 could deliver MTX to FA receptors-overexpressed cancer cells, showing the improved anticancer activity with the reduced side effects. Together, the MTX-PEG-CS-IONPs-Cy5.5 could act as a highly convergent, flexible, and simplified system for dual model imaging and synergistically self-targeted cancer therapy, holding great promise for versatile biomedical applications in future.
Collapse
Affiliation(s)
| | | | | | - Hongjie Wu
- §Department of Pharmacy, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | | | | | - Liya Xie
- ⊥The First Affiliated Hospital of Xiamen University, Xiamen 361002, China
| | - Fanghong Luo
- ∥Cancer Research Center, Medical College, Xiamen University, Xiamen 361005, China
| | | | - Zhenqing Hou
- ◊Department of Physics, Changji University, Changji 831100, China
| |
Collapse
|
42
|
Gallon E, Matini T, Sasso L, Mantovani G, Armiñan de Benito A, Sanchis J, Caliceti P, Alexander C, Vicent MJ, Salmaso S. Triblock Copolymer Nanovesicles for pH-Responsive Targeted Delivery and Controlled Release of siRNA to Cancer Cells. Biomacromolecules 2015; 16:1924-37. [DOI: 10.1021/acs.biomac.5b00286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena Gallon
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Teresa Matini
- School
of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Luana Sasso
- School
of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Giuseppe Mantovani
- School
of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Ana Armiñan de Benito
- Centro de Investigation Principe Felipe (CIPF), Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012, Valencia, Spain
| | - Joaquin Sanchis
- Centro de Investigation Principe Felipe (CIPF), Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012, Valencia, Spain
| | - Paolo Caliceti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Cameron Alexander
- School
of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Maria J. Vicent
- Centro de Investigation Principe Felipe (CIPF), Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012, Valencia, Spain
| | - Stefano Salmaso
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
43
|
Wong PT, Choi SK. Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chem Rev 2015; 115:3388-432. [DOI: 10.1021/cr5004634] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Cui F, Lin J, Li Y, Li Y, Wu H, Yu F, Jia M, Yang X, Wu S, Xie L, Ye S, Luo F, Hou Z. Bacillus-Shape Design of Polymer Based Drug Delivery Systems with Janus-Faced Function for Synergistic Targeted Drug Delivery and More Effective Cancer Therapy. Mol Pharm 2015; 12:1318-27. [DOI: 10.1021/mp500464b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fei Cui
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jinyan Lin
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yang Li
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yanxiu Li
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hongjie Wu
- Department
of Pharmacy, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Fei Yu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengmeng Jia
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiangrui Yang
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shichao Wu
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liya Xie
- The First Affiliated Hospital of Xiamen University, Xiamen 361002, China
| | - Shefang Ye
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
| | - Fanghong Luo
- Cancer
Research Center, Medical College, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department
of Biomaterials, Research Center of Biomedical Engineering, Institute
of Soft Matter and Biomimetics, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
45
|
Li Y, Lin J, Wu H, Chang Y, Yuan C, Liu C, Wang S, Hou Z, Dai L. Orthogonally Functionalized Nanoscale Micelles for Active Targeted Codelivery of Methotrexate and Mitomycin C with Synergistic Anticancer Effect. Mol Pharm 2015; 12:769-82. [DOI: 10.1021/mp5006068] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yang Li
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Jinyan Lin
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Hongjie Wu
- School
of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Ying Chang
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Cheng Liu
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Shuang Wang
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College
of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 2015; 16:1772-90. [PMID: 25590303 PMCID: PMC4307333 DOI: 10.3390/ijms16011772] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023] Open
Abstract
The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Seok Ki Choi
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Lin J, Li Y, Li Y, Cui F, Yu F, Wu H, Xie L, Luo F, Hou Z, Lin C. Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. J Mater Chem B 2015; 3:7707-7717. [DOI: 10.1039/c5tb00724k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for highly efficient cancer chemotherapy: more elongated is better.
Collapse
|
48
|
Tudisco C, Cambria MT, Sinatra F, Bertani F, Alba A, Giuffrida AE, Saccone S, Fantechi E, Innocenti C, Sangregorio C, Dalcanale E, Condorelli GG. Multifunctional magnetic nanoparticles for enhanced intracellular drug transport. J Mater Chem B 2015; 3:4134-4145. [DOI: 10.1039/c5tb00547g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New multicomponent biocompatible MNPs are designed as intracellular vectors to in situ load antitumor drugs and transport them inside cells.
Collapse
|
49
|
Hou Z, Lin J, Li Y, Guo F, Yu F, Wu H, Fan Z, Zhi L, Luo F. Validation of a dual role of methotrexate-based chitosan nanoparticles in vivo. RSC Adv 2015. [DOI: 10.1039/c5ra03705k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Surface functionalization of a PEGylated chitosan nanoparticle with dual-acting methotrexate drives a tumor-targeting effect and also introduces an anticancer effect.
Collapse
Affiliation(s)
- Zhenqing Hou
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Jinyan Lin
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Yanxiu Li
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Fuqiang Guo
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Fei Yu
- Department of Chemistry
- College of Chemistry & Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Hongjie Wu
- Department of Pharmacy
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen 361002
- China
| | - Zhongxiong Fan
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Lili Zhi
- Department of Physics
- Changji University
- Changji 831100
- China
- Department of Biomaterials
| | - Fanghong Luo
- Cancer Research Center
- Medical College
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
50
|
Wen Y, Graybill WS, Previs RA, Hu W, Ivan C, Mangala LS, Zand B, Nick AM, Jennings NB, Dalton HJ, Sehgal V, Ram P, Lee JS, Vivas-Mejia PE, Coleman RL, Sood AK. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer. Clin Cancer Res 2014; 21:448-59. [PMID: 25416196 DOI: 10.1158/1078-0432.ccr-14-1578] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized mAb against FRα, in ovarian cancer models. EXPERIMENTAL DESIGN We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003-induced cell death. RESULTS MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation, but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In addition, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cancer. CONCLUSIONS MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation.
Collapse
Affiliation(s)
- Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney S Graybill
- Department of Gynecologic Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca A Previs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Behrouz Zand
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alpa M Nick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vasudha Sehgal
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ju-Seog Lee
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pablo E Vivas-Mejia
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|